• This record comes from PubMed

Mannich-type modifications of (-)-cannabidiol and (-)-cannabigerol leading to new, bioactive derivatives

. 2023 Nov 10 ; 13 (1) : 19618. [epub] 20231110

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 37949940
PubMed Central PMC10638401
DOI 10.1038/s41598-023-45565-7
PII: 10.1038/s41598-023-45565-7
Knihovny.cz E-resources

(-)-Cannabidiol (CBD) and (-)-cannabigerol (CBG) are two major non-psychotropic phytocannabinoids that have many beneficial biological properties. However, due to their low water solubility and prominent first-pass metabolism, their oral bioavailability is moderate, which is unfavorable for medicinal use. Therefore, there is a great need for appropriate chemical modifications to improve their physicochemical and biological properties. In this study, Mannich-type reaction was used for the synthetic modification of CBD and CBG for the first time, and thus fifteen new cannabinoid derivatives containing one or two tertiary amino groups were prepared. Thereafter the antiviral, antiproliferative and antibacterial properties of the derivatives and their effects on certain skin cells were investigated. Some modified CBD derivatives showed remarkable antiviral activity against SARS-CoV-2 without cytotoxic effect, while synthetic modifications on CBG resulted in a significant increase in antiproliferative activity in some cases compared to the parent compound.

See more in PubMed

Walsh KB, McKinney AE, Holmes AE. Minor cannabinoids: Biosynthesis, molecular pharmacology and potential therapeutic uses. Front. Pharmacol. 2021;12:777804. doi: 10.3389/fphar.2021.777804. PubMed DOI PMC

Solymosi K, Kofalvi A. Cannabis: A treasure trove or pandora’s box? Mini-Rev. Med. Chem. 2017;17:1223–1291. doi: 10.2174/1389557516666161004162133. PubMed DOI

Abu-Sawwa R, Scutt B, Park Y. Emerging use of epidiolex (cannabidiol) in epilepsy. J. Pediatr. Pharmacol. Ther. 2020;25:485–499. doi: 10.5863/1551-6776-25.6.485. PubMed DOI PMC

Hilliard A, Stott C, Wright S, Guy G, Pryce G, Al-Izki S, Bolton C, Giovannoni G. Evaluation of the effects of sativex (THC BDS: CBD BDS) on inhibition of spasticity in a chronic relapsing experimental allergic autoimmune encephalomyelitis: A model of multiple sclerosis. ISRN Neurol. 2012;2012:802649. doi: 10.5402/2012/802649. PubMed DOI PMC

Nachnani R, Raup-Konsavage WM, Vrana KE. The pharmacological case for cannabigerol. J. Pharmacol. Exp. Ther. 2021;376:204–212. doi: 10.1124/jpet.120.000340. PubMed DOI

Zagzoog A, Mohamed KA, Kim HJ, Kim ED, Frank CS, Black T, Jadhav PD, Holbrook LA, Laprairie RB. In vitro and in vivo pharmacological activity of minor cannabinoids isolated from Cannabis sativa. Sci. Rep. 2020;10:20405. doi: 10.1038/s41598-020-77175-y. PubMed DOI PMC

O'Sullivan SE. An update on PPAR activation by cannabinoids. Br. J. Pharmacol. 2016;173:1899–1910. doi: 10.1111/bph.13497. PubMed DOI PMC

Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J. Adv. Pharm. Technol. Res. 2011;2:236–240. doi: 10.4103/2231-4040.90879. PubMed DOI PMC

Lah TT, Novak M, Pena Almidon MA, Marinelli O, Žvar Baškovič B, Majc B, Mlinar M, Bošnjak R, Breznik B, Zomer R, Nabissi M. Cannabigerol is a potential therapeutic agent in a novel combined therapy for glioblastoma. Cells. 2021;10:340. doi: 10.3390/cells10020340. PubMed DOI PMC

Solinas M, Massi P, Cinquina V, Valenti M, Bolognini D, Gariboldi M, Monti E, Rubino T, Parolaro D. Cannabidiol, a non-psychoactive cannabinoid compound, inhibits proliferation and invasion in U87-MG and T98G glioma cells through a multitarget effect. PLoS ONE. 2013;8:e76918. doi: 10.1371/journal.pone.0076918. PubMed DOI PMC

Shrivastava A, Kuzontkoski PM, Groopman JE, Prasad A. Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy. Mol. Cancer Ther. 2011;10:1161–1172. doi: 10.1158/1535-7163.MCT-10-1100. PubMed DOI

Dariš B, Tancer Verboten M, Knez Ž, Ferk P. Cannabinoids in cancer treatment: Therapeutic potential and legislation. Bosn. J. Basic. Med. Sci. 2019;19:14–23. doi: 10.17305/bjbms.2018.3532. PubMed DOI PMC

Cridge BJ, Rosengren RJ. Critical appraisal of the potential use of cannabinoids in cancer management. Cancer Manag. Res. 2013;5:301–313. doi: 10.2147/CMAR.S36105. PubMed DOI PMC

Oláh A, Szekanecz Z, Bíró T. Targeting cannabinoid signaling in the immune system: “High”-ly exciting questions, possibilities, and challenges. Front. Immunol. 2017;8:1487. doi: 10.3389/fimmu.2017.01487. PubMed DOI PMC

Eagleston LR, Kalani NK, Patel RR, Flaten HK, Dunnick CA, Dellavalle RP. Cannabinoids in dermatology: A scoping review. Dermatol. Online J. 2018 doi: 10.5070/D3246040706. PubMed DOI

Tóth KF, Ádám D, Bíró T, Oláh A. Cannabinoid signaling in the skin: Therapeutic potential of the “C(ut)annabinoid” system. Molecules. 2019;24:918. doi: 10.3390/molecules24050918. PubMed DOI PMC

Oláh A, Bíró T. Targeting cutaneous cannabinoid signaling in inflammation—A "high"-way to heal? EBioMedicine. 2017;16:3–5. doi: 10.1016/j.ebiom.2017.01.003. PubMed DOI PMC

Grotenhermen, F. & Oláh, A. Case in context: Acne inversa (Hidradenitis suppurativa). Cannabis Cannabinoid Res. 10.1089/can.2023.0026 (online ahead of print) (2023). PubMed

https://botanixpharma.com/pipeline/ (2023.)

Nguyen LC, Yang D, Nicolaescu V, Best TJ, Ohtsuki T, Chen S-N, Friesen JB, Drayman N, Mohamed A, Dann C, Silva D, Gula H, Jones KA, Millis JM, Dickinson BC, Tay S, Oakes SA, Pauli GF, Meltzer DO, Randall G, Rosner MR. Cannabidiol inhibits SARS-CoV-2 replication and promotes the host innate immune response. bioRxiv. 2021 doi: 10.1101/2021.03.10.432967. PubMed DOI PMC

Blaskovich MAT, Kavanagh AM, Elliott AG, Zhang B, Ramu S, Amado M, Lowe GJ, Hinton AO, Pham DMT, Zuegg J, Beare N, Quach D, Sharp MD, Pogliano J, Rogers AP, Lyras D, Tan L, West NP, Crawford DW, Peterson ML, Callahan M, Thurn M. The antimicrobial potential of cannabidiol. Commun. Biol. 2021;4:7. doi: 10.1038/s42003-020-01530-y. PubMed DOI PMC

Caprioglio D, Mattoteia D, Muñoz E, Taglialatela-Scafati O, Appendino G. One-pot oxidative heterofunctionalization of resorcinolic cannabinoids to non-thiophilic aminocannabinoquinones. Eur. J. Org. Chem. 2022 doi: 10.1002/ejoc.202101410. DOI

Caprioglio D, Mattoteia D, Pollastro F, Negri R, Lopatriello A, Chianese G, Minassi A, Collado JA, Munoz E, Taglialatela-Scafati O, Appendino G. The oxidation of phytocannabinoids to cannabinoquinoids. J. Nat. Prod. 2020;83:1711–1715. doi: 10.1021/acs.jnatprod.9b01284. PubMed DOI PMC

Ziegler T, Cosky E. Mitsonobu reaction of cannabidiol. Synthesis of water-soluble cannabidiol derivatives. Arkivoc. 2021;part iv:198–205. doi: 10.24820/ark.5550190.p011.347. DOI

Jiang X, Zhang Z, Zuo J, Wu C, Zha L, Xu Y, Wang S, Shi J, Liu X-H, Zhang J, Tang W. Novel cannabidiol−carbamate hybrids as selective BuChE inhibitors: Docking-based fragment reassembly for the development of potential therapeutic agents against Alzheimer's disease. Eur. J. Med. Chem. 2021;223:113735. doi: 10.1016/j.ejmech.2021.113735. PubMed DOI

Smith BR, Eastman CM, Njardarson JT. Beyond C, H, O, and N! Analysis of the elemental composition of U.S. FDA approved drug architectures. J. Med. Chem. 2014;57:9764–9773. doi: 10.1021/jm501105n. PubMed DOI

Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules. 2020;25:1909. doi: 10.3390/molecules25081909. PubMed DOI PMC

Fraguas-Sánchez AI, Fernández-Carballido A, Martin-Sabroso C, Torres-Suárez AI. Stability characteristics of cannabidiol for the design of pharmacological, biochemical and pharmaceutical studies. J. Chromatogr. B. 2020;1150:122188. doi: 10.1016/j.jchromb.2020.122188. PubMed DOI

Vacek J, Vostalova J, Papouskova B, Skarupova D, Kos M, Kabelac M, Storch J. Antioxidant function of phytocannabinoids: Molecular basis of their stability and cytoprotective properties under UV-irradiation. Free Radic. Biol. Med. 2021;164:258–270. doi: 10.1016/j.freeradbiomed.2021.01.012. PubMed DOI

Blicke FF. The Mannich reaction. Org. React. 2011 doi: 10.1002/0471264180.or001.10. DOI

Tyman JHP, Patel M. Phenolic structure and colour in mannich reaction products. J. Chem. Res. 2007 doi: 10.3184/030823407780199586. DOI

Omura Y, Taruno Y, Irisa Y, Morimoto M, Saimoto H, Shigemasa Y. Regioselective Mannich reaction of phenolic compounds and its application to the synthesis of new chitosan derivatives. Tetrahedron Lett. 2001;42:7273–7275. doi: 10.1016/S0040-4039(01)01491-5. DOI

Burke WJ, Kolbezen MJ, Stephens CW. Condensation of naphthols with formaldehyde and primary amines. J. Am. Chem. Soc. 1952;74:3601–3605. doi: 10.1021/ja01134a039. DOI

Burke WJ, Murdock KC, Ec G. Condensation of hydroxyaromatic compounds with formaldehyde and primary aromatic amines. J. Am. Chem. Soc. 1954;76:1677–1679. doi: 10.1021/ja01635a065. DOI

Betti, M. On the addition of benzyl amine to naphthol. Gazz. Chim. Ital. 30II301–309, (1900).

Betti, M. General condensation reaction between β-naphthol, aldehydes and amines. Gazz. Chim. Ital. 30II310–316, (1900).

Szőke K, Kajtár R, Gyöngyösi A, Czompa A, Fésüs A, Lőrincz EB, Petróczi FD, Herczegh P, Bak I, Borbás A, Bereczki I, Lekli I. Pharmacological evaluation of newly synthesized cannabidiol derivates on H9c2 cells. Antioxidants. 2023;12:1714. doi: 10.3390/antiox12091714. PubMed DOI PMC

Munch JH, Gutsche CD. p-tert-Butylcalix[8]arene. Org. Synth. 1990;68:243. doi: 10.15227/orgsyn.068.0243. DOI

Urbaniak M, Iwanek W. Synthesis of alkoxymethyl derivatives of resorcinarene via the Mannich reaction catalysed with iminodiacetic acid. Tetrahedron. 2006;62:1508–1511. doi: 10.1016/j.tet.2005.11.017. DOI

Urbaniak M, Pedrycz A, Gawdzik B, Wzorek A. Preparation of partially functionalised resorcinarene derivatives. Supramol. Chem. 2013;25:777–781. doi: 10.1080/10610278.2013.803108. DOI

Nummelin S, Falabu D, Shivanyuk A, Rissanen K. Alkoxy-, acyloxy-, and bromomethylation of resorcinarenes. Org. Lett. 2004;6:2869–2872. doi: 10.1021/ol049179z. PubMed DOI

Hidalgo FJ, Aguilar I, Zamora R. Model studies on the effect of aldehyde structure on their selective trapping by phenolic compounds. J. Agric. Food Chem. 2017;65:4736–4743. doi: 10.1021/acs.jafc.7b01081. PubMed DOI

Debreczeni N, Bege M, Borbás A. Synthesis of potential glycosyl transferase inhibitors by thio-click reactions. Eur. J. Org. Chem. 2021 doi: 10.1002/ejoc.202101220. DOI

Oláh A, Tóth BI, Borbíró I, Sugawara K, Szöllõsi AG, Czifra G, Pál B, Ambrus L, Kloepper J, Camera E, Ludovici M, Picardo M, Voets T, Zouboulis CC, Paus R, Bíró T. Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. J. Clin. Investig. 2014;124:3713–3724. doi: 10.1172/JCI64628. PubMed DOI PMC

Oláh A, Markovics A, Szabó-Papp J, Szabó PT, Stott C, Zouboulis CC, Bíró T. Differential effectiveness of selected non-psychotropic phytocannabinoids on human sebocyte functions implicates their introduction in dry/seborrhoeic skin and acne treatment. Exp. Dermatol. 2016;25:701–707. doi: 10.1111/exd.13042. PubMed DOI

Di Meo C, Tortolani D, Standoli S, Angelucci CB, Fanti F, Leuti A, Sergi M, Kadhim S, Hsu E, Rapino C, Maccarrone M. Effects of rare phytocannabinoids on the endocannabinoid system of human keratinocytes. Int. J. Mol. Sci. 2022;23:5430. doi: 10.3390/ijms23105430. PubMed DOI PMC

Jiang Z, Jin S, Fan X, Cao K, Liu Y, Wang X, Ma Y, Xiang L. Cannabidiol inhibits inflammation induced by Cutibacterium acnes-derived extracellular vesicles via activation of CB2 receptor in keratinocytes. J. Inflamm. Res. 2022;15:4573–4583. doi: 10.2147/JIR.S374692. PubMed DOI PMC

Zouboulis CC, Coenye T, He L, Kabashima K, Kobayashi T, Niemann C, Nomura T, Oláh A, Picardo M, Quist SR, Sasano H, Schneider MR, Törőcsik D, Wong SY. Sebaceous immunobiology—Skin homeostasis, pathophysiology, coordination of innate immunity and inflammatory response and disease associations. Front. Immunol. 2022;13:1029818. doi: 10.3389/fimmu.2022.1029818. PubMed DOI PMC

Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell. Biol. 1988;106:761–771. doi: 10.1083/jcb.106.3.761. PubMed DOI PMC

Zouboulis CC, Seltmann H, Neitzel H, Orfanos CE. Establishment and characterization of an immortalized human sebaceous gland cell line (SZ95) J. Investig. Dermatol. 1999;113:1011–1020. doi: 10.1046/j.1523-1747.1999.00771.x. PubMed DOI

Kurokawa I, Danby FW, Ju Q, Wang X, Xiang LF, Xia L, Chen W, Nagy I, Picardo M, Suh DH, Ganceviciene R, Schagen S, Tsatsou F, Zouboulis CC. New developments in our understanding of acne pathogenesis and treatment. Exp. Dermatol. 2009;18:821–832. doi: 10.1111/j.1600-0625.2009.00890.x. PubMed DOI

Millar SA, Stone NL, Yates AS, O'Sullivan SE. A systematic review on the pharmacokinetics of cannabidiol in humans. Front. Pharmacol. 2018;9:1365. doi: 10.3389/fphar.2018.01365. PubMed DOI PMC

Liu J, Yuan G. The modified-Mannich reaction: Conversion of arylboronic acids and subsequent coupling with paraformaldehyde and amines toward the one-pot synthesis of Mannich bases and benzoxazines. Tetrahedron Lett. 2017;58:1470–1473. doi: 10.1016/j.tetlet.2017.02.081. DOI

Wang B, Kovalchuk A, Li D, Rodriguez-Juarez R, Ilnytskyy Y, Kovalchuk I, Kovalchuk O. In search of preventive strategies: Novel high-CBD Cannabis sativa extracts modulate ACE2 expression in COVID-19 gateway tissues. Aging. 2020;12:22425–22444. doi: 10.18632/aging.202225. PubMed DOI PMC

Raj V, Park JG, Cho KH, Choi P, Kim T, Ham J, Lee J. Assessment of antiviral potencies of cannabinoids against SARS-CoV-2 using computational and in vitro approaches. Int. J. Biol. Macromol. 2020;168:474–485. doi: 10.1016/j.ijbiomac.2020.12.020. PubMed DOI PMC

Anil SM, Shalev N, Vinayaka AC, Nadarajan S, Namdar D, Belausov E, Shoval I, Mani KA, Mechrez G, Koltai H. Cannabis compounds exhibit anti-inflammatory activity in vitro in COVID-19-related inflammation in lung epithelial cells and pro-inflammatory activity in macrophages. Sci. Rep. 2021;11:1462. doi: 10.1038/s41598-021-81049-2. PubMed DOI PMC

Nguyen LC, Yang D, Nicolaescu V, Best TJ, Gula H, Saxena D, Gabbard JD, Chen S-N, Ohtsuki T, Friesen JB, Drayman N, Mohamed A, Dann C, Silva D, Robinson-Mailman L, Valdespino A, Stock L, Suárez E, Jones KA, Azizi S-A, Demarco JK, Severson WE, Anderson CD, Millis JM, Dickinson BC, Tay S, Oakes SA, Pauli GF, Palmer KE, The National COVID Cohort Collaborative Consortium. Meltzer DO, Randall G, Rosner MR. Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses. Sci. Adv. 2022;8:eabi6110. doi: 10.1126/sciadv.abi6110. PubMed DOI PMC

Markovics A, Angyal Á, Tóth KF, Ádám D, Pénzes Z, Magi J, Pór Á, Kovács I, Törőcsik D, Zouboulis CC, Bíró T, Oláh A. GPR119 is a potent regulator of human sebocyte biology. J. Investig. Dermatol. 2020;140:1909–1918.e8. doi: 10.1016/j.jid.2020.02.011. PubMed DOI

Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 11th ed Approved standard M07-A11 Clinical and Laboratory Standards Institute, Wayne, PA (2018).

Bereczki I, Vimberg V, Lőrincz E, Papp H, Nagy L, Kéki S, Batta G, Mitrović A, Kos J, Zsigmond Á, Hajdú I, Lőrincz Z, Bajusz D, Petri L, Hodek J, Jakab F, Keserű GM, Weber J, Naesens L, Herczegh P, Borbás A. Semisynthetic teicoplanin derivatives with dual antimicrobial activity against SARS-CoV-2 and multiresistant bacteria. Sci. Rep. 2022;12:16001. doi: 10.1038/s41598-022-20182-y. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...