Mannich-type modifications of (-)-cannabidiol and (-)-cannabigerol leading to new, bioactive derivatives
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37949940
PubMed Central
PMC10638401
DOI
10.1038/s41598-023-45565-7
PII: 10.1038/s41598-023-45565-7
Knihovny.cz E-resources
- MeSH
- Antiviral Agents pharmacology MeSH
- Biological Availability MeSH
- Cannabidiol * pharmacology MeSH
- Cannabinoids * pharmacology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antiviral Agents MeSH
- cannabigerol MeSH Browser
- Cannabidiol * MeSH
- Cannabinoids * MeSH
(-)-Cannabidiol (CBD) and (-)-cannabigerol (CBG) are two major non-psychotropic phytocannabinoids that have many beneficial biological properties. However, due to their low water solubility and prominent first-pass metabolism, their oral bioavailability is moderate, which is unfavorable for medicinal use. Therefore, there is a great need for appropriate chemical modifications to improve their physicochemical and biological properties. In this study, Mannich-type reaction was used for the synthetic modification of CBD and CBG for the first time, and thus fifteen new cannabinoid derivatives containing one or two tertiary amino groups were prepared. Thereafter the antiviral, antiproliferative and antibacterial properties of the derivatives and their effects on certain skin cells were investigated. Some modified CBD derivatives showed remarkable antiviral activity against SARS-CoV-2 without cytotoxic effect, while synthetic modifications on CBG resulted in a significant increase in antiproliferative activity in some cases compared to the parent compound.
Department of Applied Chemistry University of Debrecen Debrecen 4032 Hungary
Department of Medical Microbiology Semmelweis University Budapest 1089 Hungary
Department of Pharmaceutical Chemistry University of Debrecen Debrecen 4032 Hungary
Department of Pharmaceutical Technology University of Debrecen Debrecen 4032 Hungary
Department of Physiology Faculty of Medicine University of Debrecen Debrecen 4032 Hungary
Doctoral School of Molecular Medicine University of Debrecen Debrecen 4032 Hungary
Doctoral School of Pharmaceutical Sciences University of Debrecen Debrecen 4032 Hungary
HUN REN UD Pharmamodul Research Group University of Debrecen Debrecen 4032 Hungary
Institute of Pharmacodynamics and Biopharmacy University of Szeged Szeged 6720 Hungary
National Laboratory of Virology Szentágothai Research Centre Pécs 7624 Hungary
See more in PubMed
Walsh KB, McKinney AE, Holmes AE. Minor cannabinoids: Biosynthesis, molecular pharmacology and potential therapeutic uses. Front. Pharmacol. 2021;12:777804. doi: 10.3389/fphar.2021.777804. PubMed DOI PMC
Solymosi K, Kofalvi A. Cannabis: A treasure trove or pandora’s box? Mini-Rev. Med. Chem. 2017;17:1223–1291. doi: 10.2174/1389557516666161004162133. PubMed DOI
Abu-Sawwa R, Scutt B, Park Y. Emerging use of epidiolex (cannabidiol) in epilepsy. J. Pediatr. Pharmacol. Ther. 2020;25:485–499. doi: 10.5863/1551-6776-25.6.485. PubMed DOI PMC
Hilliard A, Stott C, Wright S, Guy G, Pryce G, Al-Izki S, Bolton C, Giovannoni G. Evaluation of the effects of sativex (THC BDS: CBD BDS) on inhibition of spasticity in a chronic relapsing experimental allergic autoimmune encephalomyelitis: A model of multiple sclerosis. ISRN Neurol. 2012;2012:802649. doi: 10.5402/2012/802649. PubMed DOI PMC
Nachnani R, Raup-Konsavage WM, Vrana KE. The pharmacological case for cannabigerol. J. Pharmacol. Exp. Ther. 2021;376:204–212. doi: 10.1124/jpet.120.000340. PubMed DOI
Zagzoog A, Mohamed KA, Kim HJ, Kim ED, Frank CS, Black T, Jadhav PD, Holbrook LA, Laprairie RB. In vitro and in vivo pharmacological activity of minor cannabinoids isolated from Cannabis sativa. Sci. Rep. 2020;10:20405. doi: 10.1038/s41598-020-77175-y. PubMed DOI PMC
O'Sullivan SE. An update on PPAR activation by cannabinoids. Br. J. Pharmacol. 2016;173:1899–1910. doi: 10.1111/bph.13497. PubMed DOI PMC
Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J. Adv. Pharm. Technol. Res. 2011;2:236–240. doi: 10.4103/2231-4040.90879. PubMed DOI PMC
Lah TT, Novak M, Pena Almidon MA, Marinelli O, Žvar Baškovič B, Majc B, Mlinar M, Bošnjak R, Breznik B, Zomer R, Nabissi M. Cannabigerol is a potential therapeutic agent in a novel combined therapy for glioblastoma. Cells. 2021;10:340. doi: 10.3390/cells10020340. PubMed DOI PMC
Solinas M, Massi P, Cinquina V, Valenti M, Bolognini D, Gariboldi M, Monti E, Rubino T, Parolaro D. Cannabidiol, a non-psychoactive cannabinoid compound, inhibits proliferation and invasion in U87-MG and T98G glioma cells through a multitarget effect. PLoS ONE. 2013;8:e76918. doi: 10.1371/journal.pone.0076918. PubMed DOI PMC
Shrivastava A, Kuzontkoski PM, Groopman JE, Prasad A. Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy. Mol. Cancer Ther. 2011;10:1161–1172. doi: 10.1158/1535-7163.MCT-10-1100. PubMed DOI
Dariš B, Tancer Verboten M, Knez Ž, Ferk P. Cannabinoids in cancer treatment: Therapeutic potential and legislation. Bosn. J. Basic. Med. Sci. 2019;19:14–23. doi: 10.17305/bjbms.2018.3532. PubMed DOI PMC
Cridge BJ, Rosengren RJ. Critical appraisal of the potential use of cannabinoids in cancer management. Cancer Manag. Res. 2013;5:301–313. doi: 10.2147/CMAR.S36105. PubMed DOI PMC
Oláh A, Szekanecz Z, Bíró T. Targeting cannabinoid signaling in the immune system: “High”-ly exciting questions, possibilities, and challenges. Front. Immunol. 2017;8:1487. doi: 10.3389/fimmu.2017.01487. PubMed DOI PMC
Eagleston LR, Kalani NK, Patel RR, Flaten HK, Dunnick CA, Dellavalle RP. Cannabinoids in dermatology: A scoping review. Dermatol. Online J. 2018 doi: 10.5070/D3246040706. PubMed DOI
Tóth KF, Ádám D, Bíró T, Oláh A. Cannabinoid signaling in the skin: Therapeutic potential of the “C(ut)annabinoid” system. Molecules. 2019;24:918. doi: 10.3390/molecules24050918. PubMed DOI PMC
Oláh A, Bíró T. Targeting cutaneous cannabinoid signaling in inflammation—A "high"-way to heal? EBioMedicine. 2017;16:3–5. doi: 10.1016/j.ebiom.2017.01.003. PubMed DOI PMC
Grotenhermen, F. & Oláh, A. Case in context: Acne inversa (Hidradenitis suppurativa). Cannabis Cannabinoid Res. 10.1089/can.2023.0026 (online ahead of print) (2023). PubMed
https://botanixpharma.com/pipeline/ (2023.)
Nguyen LC, Yang D, Nicolaescu V, Best TJ, Ohtsuki T, Chen S-N, Friesen JB, Drayman N, Mohamed A, Dann C, Silva D, Gula H, Jones KA, Millis JM, Dickinson BC, Tay S, Oakes SA, Pauli GF, Meltzer DO, Randall G, Rosner MR. Cannabidiol inhibits SARS-CoV-2 replication and promotes the host innate immune response. bioRxiv. 2021 doi: 10.1101/2021.03.10.432967. PubMed DOI PMC
Blaskovich MAT, Kavanagh AM, Elliott AG, Zhang B, Ramu S, Amado M, Lowe GJ, Hinton AO, Pham DMT, Zuegg J, Beare N, Quach D, Sharp MD, Pogliano J, Rogers AP, Lyras D, Tan L, West NP, Crawford DW, Peterson ML, Callahan M, Thurn M. The antimicrobial potential of cannabidiol. Commun. Biol. 2021;4:7. doi: 10.1038/s42003-020-01530-y. PubMed DOI PMC
Caprioglio D, Mattoteia D, Muñoz E, Taglialatela-Scafati O, Appendino G. One-pot oxidative heterofunctionalization of resorcinolic cannabinoids to non-thiophilic aminocannabinoquinones. Eur. J. Org. Chem. 2022 doi: 10.1002/ejoc.202101410. DOI
Caprioglio D, Mattoteia D, Pollastro F, Negri R, Lopatriello A, Chianese G, Minassi A, Collado JA, Munoz E, Taglialatela-Scafati O, Appendino G. The oxidation of phytocannabinoids to cannabinoquinoids. J. Nat. Prod. 2020;83:1711–1715. doi: 10.1021/acs.jnatprod.9b01284. PubMed DOI PMC
Ziegler T, Cosky E. Mitsonobu reaction of cannabidiol. Synthesis of water-soluble cannabidiol derivatives. Arkivoc. 2021;part iv:198–205. doi: 10.24820/ark.5550190.p011.347. DOI
Jiang X, Zhang Z, Zuo J, Wu C, Zha L, Xu Y, Wang S, Shi J, Liu X-H, Zhang J, Tang W. Novel cannabidiol−carbamate hybrids as selective BuChE inhibitors: Docking-based fragment reassembly for the development of potential therapeutic agents against Alzheimer's disease. Eur. J. Med. Chem. 2021;223:113735. doi: 10.1016/j.ejmech.2021.113735. PubMed DOI
Smith BR, Eastman CM, Njardarson JT. Beyond C, H, O, and N! Analysis of the elemental composition of U.S. FDA approved drug architectures. J. Med. Chem. 2014;57:9764–9773. doi: 10.1021/jm501105n. PubMed DOI
Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules. 2020;25:1909. doi: 10.3390/molecules25081909. PubMed DOI PMC
Fraguas-Sánchez AI, Fernández-Carballido A, Martin-Sabroso C, Torres-Suárez AI. Stability characteristics of cannabidiol for the design of pharmacological, biochemical and pharmaceutical studies. J. Chromatogr. B. 2020;1150:122188. doi: 10.1016/j.jchromb.2020.122188. PubMed DOI
Vacek J, Vostalova J, Papouskova B, Skarupova D, Kos M, Kabelac M, Storch J. Antioxidant function of phytocannabinoids: Molecular basis of their stability and cytoprotective properties under UV-irradiation. Free Radic. Biol. Med. 2021;164:258–270. doi: 10.1016/j.freeradbiomed.2021.01.012. PubMed DOI
Blicke FF. The Mannich reaction. Org. React. 2011 doi: 10.1002/0471264180.or001.10. DOI
Tyman JHP, Patel M. Phenolic structure and colour in mannich reaction products. J. Chem. Res. 2007 doi: 10.3184/030823407780199586. DOI
Omura Y, Taruno Y, Irisa Y, Morimoto M, Saimoto H, Shigemasa Y. Regioselective Mannich reaction of phenolic compounds and its application to the synthesis of new chitosan derivatives. Tetrahedron Lett. 2001;42:7273–7275. doi: 10.1016/S0040-4039(01)01491-5. DOI
Burke WJ, Kolbezen MJ, Stephens CW. Condensation of naphthols with formaldehyde and primary amines. J. Am. Chem. Soc. 1952;74:3601–3605. doi: 10.1021/ja01134a039. DOI
Burke WJ, Murdock KC, Ec G. Condensation of hydroxyaromatic compounds with formaldehyde and primary aromatic amines. J. Am. Chem. Soc. 1954;76:1677–1679. doi: 10.1021/ja01635a065. DOI
Betti, M. On the addition of benzyl amine to naphthol. Gazz. Chim. Ital. 30II301–309, (1900).
Betti, M. General condensation reaction between β-naphthol, aldehydes and amines. Gazz. Chim. Ital. 30II310–316, (1900).
Szőke K, Kajtár R, Gyöngyösi A, Czompa A, Fésüs A, Lőrincz EB, Petróczi FD, Herczegh P, Bak I, Borbás A, Bereczki I, Lekli I. Pharmacological evaluation of newly synthesized cannabidiol derivates on H9c2 cells. Antioxidants. 2023;12:1714. doi: 10.3390/antiox12091714. PubMed DOI PMC
Munch JH, Gutsche CD. p-tert-Butylcalix[8]arene. Org. Synth. 1990;68:243. doi: 10.15227/orgsyn.068.0243. DOI
Urbaniak M, Iwanek W. Synthesis of alkoxymethyl derivatives of resorcinarene via the Mannich reaction catalysed with iminodiacetic acid. Tetrahedron. 2006;62:1508–1511. doi: 10.1016/j.tet.2005.11.017. DOI
Urbaniak M, Pedrycz A, Gawdzik B, Wzorek A. Preparation of partially functionalised resorcinarene derivatives. Supramol. Chem. 2013;25:777–781. doi: 10.1080/10610278.2013.803108. DOI
Nummelin S, Falabu D, Shivanyuk A, Rissanen K. Alkoxy-, acyloxy-, and bromomethylation of resorcinarenes. Org. Lett. 2004;6:2869–2872. doi: 10.1021/ol049179z. PubMed DOI
Hidalgo FJ, Aguilar I, Zamora R. Model studies on the effect of aldehyde structure on their selective trapping by phenolic compounds. J. Agric. Food Chem. 2017;65:4736–4743. doi: 10.1021/acs.jafc.7b01081. PubMed DOI
Debreczeni N, Bege M, Borbás A. Synthesis of potential glycosyl transferase inhibitors by thio-click reactions. Eur. J. Org. Chem. 2021 doi: 10.1002/ejoc.202101220. DOI
Oláh A, Tóth BI, Borbíró I, Sugawara K, Szöllõsi AG, Czifra G, Pál B, Ambrus L, Kloepper J, Camera E, Ludovici M, Picardo M, Voets T, Zouboulis CC, Paus R, Bíró T. Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. J. Clin. Investig. 2014;124:3713–3724. doi: 10.1172/JCI64628. PubMed DOI PMC
Oláh A, Markovics A, Szabó-Papp J, Szabó PT, Stott C, Zouboulis CC, Bíró T. Differential effectiveness of selected non-psychotropic phytocannabinoids on human sebocyte functions implicates their introduction in dry/seborrhoeic skin and acne treatment. Exp. Dermatol. 2016;25:701–707. doi: 10.1111/exd.13042. PubMed DOI
Di Meo C, Tortolani D, Standoli S, Angelucci CB, Fanti F, Leuti A, Sergi M, Kadhim S, Hsu E, Rapino C, Maccarrone M. Effects of rare phytocannabinoids on the endocannabinoid system of human keratinocytes. Int. J. Mol. Sci. 2022;23:5430. doi: 10.3390/ijms23105430. PubMed DOI PMC
Jiang Z, Jin S, Fan X, Cao K, Liu Y, Wang X, Ma Y, Xiang L. Cannabidiol inhibits inflammation induced by Cutibacterium acnes-derived extracellular vesicles via activation of CB2 receptor in keratinocytes. J. Inflamm. Res. 2022;15:4573–4583. doi: 10.2147/JIR.S374692. PubMed DOI PMC
Zouboulis CC, Coenye T, He L, Kabashima K, Kobayashi T, Niemann C, Nomura T, Oláh A, Picardo M, Quist SR, Sasano H, Schneider MR, Törőcsik D, Wong SY. Sebaceous immunobiology—Skin homeostasis, pathophysiology, coordination of innate immunity and inflammatory response and disease associations. Front. Immunol. 2022;13:1029818. doi: 10.3389/fimmu.2022.1029818. PubMed DOI PMC
Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell. Biol. 1988;106:761–771. doi: 10.1083/jcb.106.3.761. PubMed DOI PMC
Zouboulis CC, Seltmann H, Neitzel H, Orfanos CE. Establishment and characterization of an immortalized human sebaceous gland cell line (SZ95) J. Investig. Dermatol. 1999;113:1011–1020. doi: 10.1046/j.1523-1747.1999.00771.x. PubMed DOI
Kurokawa I, Danby FW, Ju Q, Wang X, Xiang LF, Xia L, Chen W, Nagy I, Picardo M, Suh DH, Ganceviciene R, Schagen S, Tsatsou F, Zouboulis CC. New developments in our understanding of acne pathogenesis and treatment. Exp. Dermatol. 2009;18:821–832. doi: 10.1111/j.1600-0625.2009.00890.x. PubMed DOI
Millar SA, Stone NL, Yates AS, O'Sullivan SE. A systematic review on the pharmacokinetics of cannabidiol in humans. Front. Pharmacol. 2018;9:1365. doi: 10.3389/fphar.2018.01365. PubMed DOI PMC
Liu J, Yuan G. The modified-Mannich reaction: Conversion of arylboronic acids and subsequent coupling with paraformaldehyde and amines toward the one-pot synthesis of Mannich bases and benzoxazines. Tetrahedron Lett. 2017;58:1470–1473. doi: 10.1016/j.tetlet.2017.02.081. DOI
Wang B, Kovalchuk A, Li D, Rodriguez-Juarez R, Ilnytskyy Y, Kovalchuk I, Kovalchuk O. In search of preventive strategies: Novel high-CBD Cannabis sativa extracts modulate ACE2 expression in COVID-19 gateway tissues. Aging. 2020;12:22425–22444. doi: 10.18632/aging.202225. PubMed DOI PMC
Raj V, Park JG, Cho KH, Choi P, Kim T, Ham J, Lee J. Assessment of antiviral potencies of cannabinoids against SARS-CoV-2 using computational and in vitro approaches. Int. J. Biol. Macromol. 2020;168:474–485. doi: 10.1016/j.ijbiomac.2020.12.020. PubMed DOI PMC
Anil SM, Shalev N, Vinayaka AC, Nadarajan S, Namdar D, Belausov E, Shoval I, Mani KA, Mechrez G, Koltai H. Cannabis compounds exhibit anti-inflammatory activity in vitro in COVID-19-related inflammation in lung epithelial cells and pro-inflammatory activity in macrophages. Sci. Rep. 2021;11:1462. doi: 10.1038/s41598-021-81049-2. PubMed DOI PMC
Nguyen LC, Yang D, Nicolaescu V, Best TJ, Gula H, Saxena D, Gabbard JD, Chen S-N, Ohtsuki T, Friesen JB, Drayman N, Mohamed A, Dann C, Silva D, Robinson-Mailman L, Valdespino A, Stock L, Suárez E, Jones KA, Azizi S-A, Demarco JK, Severson WE, Anderson CD, Millis JM, Dickinson BC, Tay S, Oakes SA, Pauli GF, Palmer KE, The National COVID Cohort Collaborative Consortium. Meltzer DO, Randall G, Rosner MR. Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses. Sci. Adv. 2022;8:eabi6110. doi: 10.1126/sciadv.abi6110. PubMed DOI PMC
Markovics A, Angyal Á, Tóth KF, Ádám D, Pénzes Z, Magi J, Pór Á, Kovács I, Törőcsik D, Zouboulis CC, Bíró T, Oláh A. GPR119 is a potent regulator of human sebocyte biology. J. Investig. Dermatol. 2020;140:1909–1918.e8. doi: 10.1016/j.jid.2020.02.011. PubMed DOI
Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 11th ed Approved standard M07-A11 Clinical and Laboratory Standards Institute, Wayne, PA (2018).
Bereczki I, Vimberg V, Lőrincz E, Papp H, Nagy L, Kéki S, Batta G, Mitrović A, Kos J, Zsigmond Á, Hajdú I, Lőrincz Z, Bajusz D, Petri L, Hodek J, Jakab F, Keserű GM, Weber J, Naesens L, Herczegh P, Borbás A. Semisynthetic teicoplanin derivatives with dual antimicrobial activity against SARS-CoV-2 and multiresistant bacteria. Sci. Rep. 2022;12:16001. doi: 10.1038/s41598-022-20182-y. PubMed DOI PMC