Synergistic effect of the verapamil and amphotericin B against Cryptococcus neoformans
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37950840
DOI
10.1007/s12223-023-01104-5
PII: 10.1007/s12223-023-01104-5
Knihovny.cz E-zdroje
- Klíčová slova
- Antifungal, Capsule, Cryptococcus neoformans, Synergism, Verapamil,
- MeSH
- amfotericin B farmakologie terapeutické užití MeSH
- antifungální látky farmakologie terapeutické užití MeSH
- Cryptococcus neoformans * MeSH
- flucytosin farmakologie terapeutické užití MeSH
- kryptokokóza * farmakoterapie mikrobiologie MeSH
- mikrobiální testy citlivosti MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amfotericin B MeSH
- antifungální látky MeSH
- flucytosin MeSH
Cryptococcus neoformans is an encapsulated yeast that can cause cryptococcosis and cryptococcal meningitis, which conventional treatment involves antifungal drugs such as polyenes, flucytosine, azoles, and their combinations. However, the high cost, toxicity, and increase in fungi resistance to antifungal agents stimulate the search for therapeutic strategies such as drug repurposing and combination therapy. This study evaluated the activity of the antihypertensive verapamil (VEH) alone and combined with amphotericin B (AmB) against C. neoformans. VEH exhibited antifungal activity against C. neoformans with minimum inhibitory concentration and minimum fungicidal concentration of 118 µg per mL. The combination of VEH and AmB exhibited synergism, reducing at least eightfold both drugs' concentrations. Moreover, the combination decreased the size and glucuronoxylomannnan content of C. neoformans capsule. However, no difference was observed in ergosterol levels of C. neoformans after treatment with VEH and AmB in combination. Altogether, VEH in combination with AmB exhibits potential as a candidate as for the development of anti-cryptococcal drug.
Instituto Carlos Chagas Fundação Oswaldo Cruz Curitiba Brazil
Universidade de Guarulhos Programa de Pós Graduação em Enfermagem Guarulhos SP Brazil
Zobrazit více v PubMed
Alnajjar LM, Bulatova NR, Darwish RM (2018) Evaluation of four calcium channel blockers as fluconazole resistance inhibitors in Candida glabrata. J Glob Antimicrob Resist 14:185–189. https://doi.org/10.1016/j.jgar.2018.04.004 PubMed
Arendrup MC, Meletiadis J, Mouton JW et al (2017) EUCAST DEFINITIVE DOCUMENT E.DEF 7.3.1. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts. 1–21
Basso LR, Gast CE, Bruzual I, Wong B (2015) Identification and properties of plasma membrane azole efflux pumps from the pathogenic fungi Cryptococcus gattii and Cryptococcus neoformans. J Antimicrob Chemother 70:1396–1407. https://doi.org/10.1093/jac/dku554 PubMed PMC
Campitelli M, Zeineddine N, Samaha G, Maslak S (2017) Combination antifungal therapy: a review of current data. J Clin Med Res 9:451–456. https://doi.org/10.14740/jocmr2992w
Carneiro HCS, Bastos RW, Ribeiro NQ et al (2020) Hypervirulence and cross-resistance to a clinical antifungal are induced by an environmental fungicide in Cryptococcus gattii. Sci Total Environ 740:140135. https://doi.org/10.1016/j.scitotenv.2020.140135 PubMed
Casadevall A, Mukherjee J, Scharff MD (1992) Monoclonal antibody based ELISAs for cryptococcal polysaccharide. J Immunol Methods 154:27–35. https://doi.org/10.1016/0022-1759(92)90209-C
De Jesus M, Nicola AM, Rodrigues ML et al (2009) Capsular localization of the Cryptococcus neoformans polysaccharide component galactoxylomannan. Eukaryot Cell 8:96–103. https://doi.org/10.1128/EC.00331-08 PubMed
de Oliveira HC, Joffe LS, Simon KS et al (2020) Fenbendazole controls in vitro growth, virulence potential, and animal infection in the Cryptococcus model. Antimicrob Agents Chemother 64. https://doi.org/10.1128/AAC.00286-20
Ferreira GF, de Baltazar L, M, Santos JRA et al (2013) The role of oxidative and nitrosative bursts caused by azoles and amphotericin B against the fungal pathogen Cryptococcus gattii. J Antimicrob Chemother 68:1801–1811 PubMed
Góralska K, Blaszkowska J, Dzikowiec M (2018) Neuroinfections caused by fungi. Infection 46:443–459. https://doi.org/10.1007/s15010-018-1152-2 PubMed PMC
Gouveia-Eufrasio L, Ribeiro NQ, Santos JRA et al (2021) Randomized, phase 1/2, double-blind pioglitazone repositioning trial combined with antifungals for the treatment of cryptococcal meningitis - PIO study. Contemp Clin Trials Commun 22:100745. https://doi.org/10.1016/j.conctc.2021.100745 PubMed PMC
Gupta P, Chanda R, Rai N et al (2016) Antihypertensive, amlodipine besilate inhibits growth and biofilm of human fungal pathogen Candida. Assay Drug Dev Technol 14:291–297. https://doi.org/10.1089/adt.2016.714 PubMed
Joffe LS, Schneider R, Lopes W et al (2017) The anti-helminthic compound mebendazole has multiple antifungal effects against Cryptococcus neoformans. Front Microbiol 8:535. https://doi.org/10.3389/fmicb.2017.00535 PubMed PMC
Kaplan NM (1989) Calcium entry blockers in the treatment of hypertension. Current Status and Future Prospects JAMA 262:817–823 PubMed
Liu S, Hou Y, Chen X et al (2014) Combination of fluconazole with non-antifungal agents: a promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int J Antimicrob Agents 43:395–402. https://doi.org/10.1016/j.ijantimicag.2013.12.009 PubMed
Liu S, Yue L, Gu W et al (2016) Synergistic effect of fluconazole and calcium channel blockers against resistant Candida albicans. PLoS ONE 11:e0150859. https://doi.org/10.1371/journal.pone.0150859 PubMed PMC
Mourad A, Perfect JR (2018) Present and future therapy of Cryptococcus infections. J Fungi 4. https://doi.org/10.3390/jof4030079
Nazik H, Choudhary V, Stevens D (2017a) Verapamil inhibits Aspergillus biofilm, but antagonizes voriconazole. J Fungi 3:50. https://doi.org/10.3390/jof3030050
Nazik H, Choudhary V, Stevens DA (2017b) Verapamil inhibits Aspergillus biofilm, but antagonizes voriconazole. J Fungi 3. https://doi.org/10.3390/jof3030050
Odds FC (2003) Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52:1 PubMed
Pereira TC, de Menezes RT, de Oliveira HC et al (2021) In vitro synergistic effects of fluoxetine and paroxetine in combination with amphotericin B against Cryptococcus neoformans. Pathog Dis 79. https://doi.org/10.1093/femspd/ftab001
Pushpakom S, Iorio F, Eyers PA et al (2019) Drug repurposing: progress, challenges and recommendations. Nat Re Drug Discov 18:41–58. https://doi.org/10.1038/nrd.2018.168
Rajasingham R, Smith RM, Park BJ et al (2017) Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 17:873–881. https://doi.org/10.1016/S1473-3099(17)30243-8 PubMed PMC
Rodrigues AAG, Pina-Vaz C, Mårdh P-A et al (2000) Inhibition of germ tube formation by Candida albicans by local anesthetics: an effect related to ionic channel blockade. Curr Microbiol 40:145–148. https://doi.org/10.1007/s002849910030 PubMed
Rossato L, Loreto ÉS, Zanette RA et al (2016) In vitro synergistic effects of chlorpromazine and sertraline in combination with amphotericin B against Cryptococcus neoformans var. grubii. Folia Microbiol 61:399–403. https://doi.org/10.1007/s12223-016-0449-8
Rueden CT, Hiner MC, Eliceiri KW (2016) ImageJ: image analysis interoperability for the next generation of biological image data. Microsc Microanal 22:2066–2067. https://doi.org/10.1017/S143192761601117X
Scorzoni L, de Paula E, Silva ACA, Marcos CM et al (2017) Antifungal therapy: new advances in the understanding and treatment of mycosis. Front Microbiol 8:36. https://doi.org/10.3389/fmicb.2017.00036 PubMed PMC
Scorzoni L, Menezes RTDE, Pereira TC et al (2020) Antifungal and anti-biofilm effect of the calcium channel blocker verapamil on non-albicans Candida species. An Acad Bras Cienc 92:e20200703. https://doi.org/10.1590/0001-3765202020200703 PubMed
Stylianou M, Kulesskiy E, Lopes JP et al (2014) Antifungal application of nonantifungal drugs. Antimicrob Agents Chemother 58:1055–1062. https://doi.org/10.1128/AAC.01087-13 PubMed PMC
Winski CJ, Qian Y, Mobashery S, Santiago-Tirado FH (2022) An atypical ABC transporter is involved in antifungal resistance and host interactions in the pathogenic fungus Cryptococcus neoformans. mBio 13. https://doi.org/10.1128/mbio.01539-22
Wu C-P, Calcagno A, Ambudkar S (2008) Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies. Curr Mol Pharmacol 1:93–105. https://doi.org/10.2174/1874467210801020093 PubMed PMC
Yu Q, Ding X, Xu N et al (2013) In vitro activity of verapamil alone and in combination with fluconazole or tunicamycin against Candida albicans biofilms. Int J Antimicrob Agents 41:179–182. https://doi.org/10.1016/j.ijantimicag.2012.10.009
Zafar H, Altamirano S, Ballou ER, Nielsen K (2019) A titanic drug resistance threat in Cryptococcus neoformans. Curr Opin Microbiol 52:158–164. https://doi.org/10.1016/j.mib.2019.11.001 PubMed PMC
Zaragoza O (2019) Basic principles of the virulence of Cryptococcus. Virulence 10:490–501. https://doi.org/10.1080/21505594.2019.1614383 PubMed PMC
Zaragoza O, Casadevall A (2004) Experimental modulation of capsule size in Cryptococcus neoformans. Biol Proced Online 6:10–15. https://doi.org/10.1251/bpo68 PubMed PMC
Zaragoza O, Rodrigues ML, De Jesus M et al (2009) Chapter 4 The capsule of the fungal pathogen Cryptococcus neoformans. In Laskin A. Sariaslani S, Gadd G (Eds.) Adv Appl Microbiol (pp. 133–216). Adv Appl Microbiol 68. https://doi.org/10.1016/S0065-2164(09)01204-0
Zeng Q, Zhang Z, Chen P et al (2019) In vitro and in vivo efficacy of a synergistic combination of itraconazole and verapamil against Aspergillus fumigatus. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.01266