early maturity 7 promotes early flowering by controlling the light input into the circadian clock in barley

. 2024 Jan 31 ; 194 (2) : 849-866.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37951242

Grantová podpora
Deutsche Forschungsgemeinschaft

Breeding for variation in photoperiod response is crucial to adapt crop plants to various environments. Plants measure changes in day length by the circadian clock, an endogenous timekeeper that allows plants to anticipate changes in diurnal and seasonal light-dark cycles. Here, we describe the early maturity 7 (eam7) locus in barley (Hordeum vulgare), which interacts with PHOTOPERIOD 1 (Ppd-H1) to cause early flowering under non-inductive short days. We identify LIGHT-REGULATED WD 1 (LWD1) as a putative candidate to underlie the eam7 locus in barley as supported by genetic mapping and CRISPR-Cas9-generated lwd1 mutants. Mutations in eam7 cause a significant phase advance and a misregulation of core clock and clock output genes under diurnal conditions. Early flowering was linked to an upregulation of Ppd-H1 during the night and consequent induction of the florigen FLOWERING LOCUS T1 under short days. We propose that EAM7 controls photoperiodic flowering in barley by controlling the light input into the clock and diurnal expression patterns of the major photoperiod response gene Ppd-H1.

Zobrazit více v PubMed

Alvarez MA, Li C, Lin H, Joe A, Padilla M, Woods DP, Dubcovsky J. Early FLOWERING 3 interactions with PHYTOCHROME B and PHOTOPERIOD1 are critical for the photoperiodic regulation of wheat heading time. PLoS Genet. 2023:19(5):e1010655. 10.1371/journal.pgen.1010655 PubMed DOI PMC

Andrade L, Lu Y, Cordeiro A, Costa JMF, Wigge PA, Saibo NJM, Jaeger KE. The evening complex integrates photoperiod signals to control flowering in rice. Proc Natl Acad Sci U S A. 2022:119(26):e2122582119. 10.1073/pnas.2122582119 PubMed DOI PMC

Bae S, Park J, Kim J-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014:30(10):1473–1475. 10.1093/bioinformatics/btu048 PubMed DOI PMC

Bayer MM, Rapazote-Flores P, Ganal M, Hedley PE, Macaulay M, Plieske J, Ramsay L, Russell J, Shaw PD, Thomas W, et al. . Development and evaluation of a barley 50k iSelect SNP array. Front Plant Sci. 2017:8:1792. 10.3389/fpls.2017.01792 PubMed DOI PMC

Bolser D, Staines DM, Pritchard E, Kersey P. Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. Methods Mol Biol. 2016:1374:115–140. 10.1007/978-1-4939-3167-5_6 PubMed DOI

Bustos-Korts D, Dawson IK, Russell J, Tondelli A, Guerra D, Ferrandi C, Strozzi F, Nicolazzi EL, Molnar-Lang M, Ozkan H, et al. . Exome sequences and multi-environment field trials elucidate the genetic basis of adaptation in barley. Plant J. 2019:99(6):1172–1191. 10.1111/tpj.14414 PubMed DOI PMC

Campoli C, Pankin A, Drosse B, Casao CM, Davis SJ, von Korff M. Hvlux1 is a candidate gene underlying the early maturity 10 locus in barley: phylogeny, diversity, and interactions with the circadian clock and photoperiodic pathways. New Phytol. 2013:199(4):1045–1059. 10.1111/nph.12346 PubMed DOI PMC

Campoli C, Shtaya M, Davis SJ, von Korff M. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs. BMC Plant Biol. 2012:12(1):97. 10.1186/1471-2229-12-97 PubMed DOI PMC

Chen A, Li C, Hu W, Lau MY, Lin H, Rockwell NC, Martin SS, Jernstedt JA, Lagarias JC, Dubcovsky J. Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc Natl Acad Sci U S A. 2014:111(28):10037–10044. 10.1073/pnas.1409795111 PubMed DOI PMC

Cheng C-Y, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017:89(4):789–804. 10.1111/tpj.13415 PubMed DOI

Cockram J, Jones H, Leigh FJ, O'Sullivan D, Powell W, Laurie DA, Greenland AJ. Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot. 2007:58(6):1231–1244. 10.1093/jxb/erm042 PubMed DOI

Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, et al. . Ft protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science. 2007:316(5827):1030–1033. 10.1126/science.1141752 PubMed DOI

Crooks GE, Hon G, Chandonia J-M, Brenner SE. Weblogo: a sequence logo generator. Genome Res. 2004:14(6):1188–1190. 10.1101/gr.849004 PubMed DOI PMC

Digel B, Pankin A, von Korff M. Global transcriptome profiling of developing leaf and shoot apices reveals distinct genetic and environmental control of floral transition and inflorescence development in barley. Plant Cell. 2015:27(9):2318–2334. 10.1105/tpc.15.00203 PubMed DOI PMC

Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M, et al. . Genetic dissection of barley morphology and development. Plant Physiol. 2011:155(2):617–627. 10.1104/pp.110.166249 PubMed DOI PMC

Farré EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol. 2005:15(1):47–54. 10.1016/j.cub.2004.12.067 PubMed DOI

Faure S, Turner AS, Gruszka D, Christodoulou V, Davis SJ, von Korff M, Laurie DA. Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. Proc Natl Acad Sci U S A. 2012:109(21):8328–8333. 10.1073/pnas.1120496109 PubMed DOI PMC

Franckowiak JD, Lundqvist U. Description of stock number BGS252 (Early maturity 7). Barley Genet Newslett. 2015:45:118–119.

Gallagher LW, Soliman KM, Vivar H. Interactions among loci conferring photoperiod insensitivity for heading time in spring barley. Crop Sci. 1991:31(2):256–261. 10.2135/cropsci1991.0011183X003100020003x DOI

Gao M, Geng F, Klose C, Staudt A-M, Huang H, Nguyen D, Lan H, Mockler TC, Nusinow DA, Hiltbrunner A, et al. . Phytochromes measure photoperiod in Brachypodium. bioRxiv. 10.1101/697169, 9 July 2019, preprint: not peer reviewed. DOI

Gol L, Haraldsson EB, von Korff M. Ppd-H1 integrates drought stress signals to control spike development and flowering time in barley. J Exp Bot. 2021:72(1):122–136. 10.1093/jxb/eraa261 PubMed DOI PMC

He T, Angessa T, Hill CB, Zhang X-Q, Telfer P, Westcott S, Li C. Genetic solutions through breeding counteract climate change and secure barley production in Australia. Crop Des. 2022:1(1):100001. 10.1016/j.cropd.2021.12.001 DOI

Hensel G, Kastner C, Oleszczuk S, Riechen J, Kumlehn J. Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. Int J Plant Genomics. 2009:2009:835608. 10.1155/2009/835608 PubMed DOI PMC

Hodgens C, Nimchuk ZL, Kieber JJ. Indcaps: a tool for designing screening primers for CRISPR/Cas9 mutagenesis events. PLoS One. 2017:12(11):e0188406. 10.1371/journal.pone.0188406 PubMed DOI PMC

Huang W, Pérez-García P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, Mas P. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science. 2012:336(6077):75–79. 10.1126/science.1219075 PubMed DOI

Jang S, Marchal V, Panigrahi KCS, Wenkel S, Soppe W, Deng X-W, Valverde F, Coupland G. Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J. 2008:27(8):1277–1288. 10.1038/emboj.2008.68 PubMed DOI PMC

Jones H, Leigh FJ, Mackay I, Bower MA, Smith LMJ, Charles MP, Jones G, Jones MK, Brown TA, Powell W. Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the Fertile Crescent. Mol Biol Evol. 2008:25(10):2211–2219. 10.1093/molbev/msn167 PubMed DOI

Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D. Activation tagging of the floral inducer FT. Science. 1999:286(5446):1962–1965. 10.1126/science.286.5446.1962 PubMed DOI

Katoh K, Rozewicki J, Yamada KD. Mafft online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019:20(4):1160–1166. 10.1093/bib/bbx108 PubMed DOI PMC

Kikis EA, Khanna R, Quail PH. Elf4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. Plant J. 2005:44(2):300–313. 10.1111/j.1365-313X.2005.02531.x PubMed DOI

Kippes N, VanGessel C, Hamilton J, Akpinar A, Budak H, Dubcovsky J, Pearce S. Effect of phyB and phyC loss-of-function mutations on the wheat transcriptome under short and long day photoperiods. BMC Plant Biol. 2020:20(1):297. 10.1186/s12870-020-02506-0 PubMed DOI PMC

Kumar N, Galli M, Ordon J, Stuttmann J, Kogel K-H, Imani J. Further analysis of barley MORC1 using a highly efficient RNA-guided Cas9 gene-editing system. Plant Biotechnol J. 2018:16(11):1892–1903. 10.1111/pbi.12924 PubMed DOI PMC

Laurie DA, Pratchett N, Snape JW, Bezant JH. RFLP Mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome. 1995:38(3):575–585. 10.1139/g95-074 PubMed DOI

Lundqvist U. Eighty years of Scandinavian barley mutation genetics and breeding. In: Shu QY, editor. Joint FAO/IAEA Programme. Induced plant mutations in the genomics era. Rome: FAO; 2009. p. 39–43.

Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, Madhusoodanan N, Kolesnikov A, Lopez R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022:50(W1):W276–W279. 10.1093/nar/gkac240 PubMed DOI PMC

Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. . CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017:45(D1):D200–D203. 10.1093/nar/gkw1129 PubMed DOI PMC

Mascher M, Wicker T, Jenkins J, Plott C, Lux T, Koh CS, Ens J, Gundlach H, Boston LB, Tulpová Z, et al. . Long-read sequence assembly: a technical evaluation in barley. Plant Cell. 2021:33(6):1888–1906. 10.1093/plcell/koab077 PubMed DOI PMC

McClung CR. Circadian clock components offer targets for crop domestication and improvement. Genes (Basel). 2021:12(3):374. 10.3390/genes12030374 PubMed DOI PMC

Mizuno T, Nomoto Y, Oka H, Kitayama M, Takeuchi A, Tsubouchi M, Yamashino T. Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana. Plant Cell Physiol. 2014:55(5):958–976. 10.1093/pcp/pcu030 PubMed DOI

Muggeo VMR. Segmented: an R package to fit regression models with broken-line relationships. R News. 2008:8(1):20–25.

Müller LM, Mombaerts L, Pankin A, Davis SJ, Webb AAR, Goncalves J, von Korff M. Differential effects of day/night cues and the circadian clock on the barley transcriptome. Plant Physiol. 2020:183(2):765–779. 10.1104/pp.19.01411 PubMed DOI PMC

Müller NA, Wijnen CL, Srinivasan A, Ryngajllo M, Ofner I, Lin T, Ranjan A, West D, Maloof JN, Sinha NR, et al. . Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat Genet. 2016:48(1):89–93. 10.1038/ng.3447 PubMed DOI

Pankin A, Campoli C, Dong X, Kilian B, Sharma R, Himmelbach A, Saini R, Davis SJ, Stein N, Schneeberger K, et al. . Mapping-by-sequencing identifies HvPHYTOCHROME C as a candidate gene for the early maturity 5 locus modulating the circadian clock and photoperiodic flowering in barley. Genetics. 2014:198(1):383–396. 10.1534/genetics.114.165613 PubMed DOI PMC

Park J, Bae S, Kim J-S. Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics. 2015:31(24):4014–4016. 10.1093/bioinformatics/btv537 PubMed DOI

Pearce S, Shaw LM, Lin H, Cotter JD, Li C, Dubcovsky J. Night-break experiments shed light on the photoperiod1-mediated flowering. Plant Physiol. 2017:174(2):1139–1150. 10.1104/pp.17.00361 PubMed DOI PMC

RStudio Team . RStudio: Integrated Development for R. RStudio [Computer software]. Boston, MA: PBC; 2022.http://www.rstudio.com/.

Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths T, Heinen S, et al. . Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet. 2016:48(9):1024–1030. 10.1038/ng.3612 PubMed DOI

Sawa M, Nusinow DA, Kay SA, Imaizumi T. Fkf1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science. 2007:318(5848):261–265. 10.1126/science.1146994 PubMed DOI PMC

Shaw LM, Li C, Woods DP, Alvarez MA, Lin H, Lau MY, Chen A, Dubcovsky J. Epistatic interactions between PHOTOPERIOD1, CONSTANS1 and CONSTANS2 modulate the photoperiodic response in wheat. PLoS Genet. 2020:16(7):e1008812. 10.1371/journal.pgen.1008812 PubMed DOI PMC

Shaw LM, Turner AS, Laurie DA. The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum). Plant J. 2012:71(1):71–84. 10.1111/j.1365-313X.2012.04971.x PubMed DOI

Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. Sift web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012:40(W1):W452–W457. 10.1093/nar/gks539 PubMed DOI PMC

Song YH, Ito S, Imaizumi T. Similarities in the circadian clock and photoperiodism in plants. Curr Opin Plant Biol. 2010:13(5):594–603. 10.1016/j.pbi.2010.05.004 PubMed DOI PMC

Stracke S, Börner A. Molecular mapping of the photoperiod response gene ea7 in barley. Theor Appl Genet. 1998:97(5–6):797–800. 10.1007/s001220050958 DOI

Strygina KV, Khlestkina EK. Structural and functional organization and evolution of the WD40 genes involved in the regulation of flavonoid biosynthesis in the Triticeae tribe. Russian J Genet. 2019:55(11):1398–1405. 10.1134/S1022795419110152 DOI

Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. Constans mediates between the circadian clock and the control of flowering in Arabidopsis. Nature. 2001:410(6832):1116–1120. 10.1038/35074138 PubMed DOI

Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science. 2007:316(5827):1033–1036. 10.1126/science.1141753 PubMed DOI

Tewolde H, Fernandez CJ, Erickson CA. Wheat cultivars adapted to post-heading high temperature stress. J Agron Crop Sci. 2006:192(2):111–120. 10.1111/j.1439-037X.2006.00189.x DOI

Turner A, Beales J, Faure S, Dunford RP, Laurie DA. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science. 2005:310(5750):1031–1034. 10.1126/science.1117619 PubMed DOI

Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM. Primer3plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007:35(Web Server):W71–W74. 10.1093/nar/gkm306 PubMed DOI PMC

Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science. 2004:303(5660):1003–1006. 10.1126/science.1091761 PubMed DOI

Van Nocker S, Ludwig P. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genomics. 2003:4(1):50. 10.1186/1471-2164-4-50 PubMed DOI PMC

Von Korff M, Grando S, Del Greco A, This D, Baum M, Ceccarelli S. Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theor Appl Genet. 2008:117(5):653–669. 10.1007/s00122-008-0787-2 PubMed DOI

Waddington SR, Cartwright PM, Wall PC. A quantitative scale of spike initial and pistil development in barley and wheat. Ann Bot. 1983:51(1):119–130. 10.1093/oxfordjournals.aob.a086434 DOI

Walla A, van Wilma Esse G, Kirschner GK, Guo G, Brünje A, Finkemeier I, Simon R, von Korff M. An acyl-CoA N-acyltransferase regulates meristem phase change and plant architecture in barley. Plant Physiol. 2020:183(3):1088–1109. 10.1104/pp.20.00087 PubMed DOI PMC

Wang Y, Wu J-F, Nakamichi N, Sakakibara H, Nam H-G, Wu S-H. Light-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 form a positive feedback regulatory loop in the Arabidopsis circadian clock. Plant Cell. 2011:23(2):486–498. 10.1105/tpc.110.081661 PubMed DOI PMC

Woods DP, Li W, Sibout R, Shao M, Laudencia-Chingcuanco D, Vogel JP, Dubcovsky J, Amasino RM. Phytochrome C regulation of photoperiodic flowering via PHOTOPERIOD1 is mediated by EARLY FLOWERING 3 in Brachypodium distachyon. PLoS Genet. 2023:19(5):e1010706. 10.1371/journal.pgen.1010706 PubMed DOI PMC

Wu J-F, Wang Y, Wu S-H. Two new clock proteins, LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering. Plant Physiol. 2008:148(2):948–959. 10.1104/pp.108.124917 PubMed DOI PMC

Zadoks JC, Chang TT, Konzak CF. A decimal code for the growth stages of cereals. Weed Res. 1974:14(6):415–421. 10.1111/j.1365-3180.1974.tb01084.x DOI

Zakhrabekova S, Gough SP, Braumann I, Müller AH, Lundqvist J, Ahmann K, Dockter C, Matyszczak I, Kurowska M, Druka A, et al. . Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. Proc Natl Acad Sci U S A. 2012:109(11):4326–4331. 10.1073/pnas.1113009109 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace