early maturity 7 promotes early flowering by controlling the light input into the circadian clock in barley
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
Deutsche Forschungsgemeinschaft
PubMed
37951242
PubMed Central
PMC10828213
DOI
10.1093/plphys/kiad551
PII: 7406703
Knihovny.cz E-zdroje
- MeSH
- cirkadiánní hodiny * genetika MeSH
- cirkadiánní rytmus genetika MeSH
- fotoperioda MeSH
- ječmen (rod) * genetika MeSH
- květy fyziologie MeSH
- regulace genové exprese u rostlin MeSH
- šlechtění rostlin MeSH
- Publikační typ
- časopisecké články MeSH
Breeding for variation in photoperiod response is crucial to adapt crop plants to various environments. Plants measure changes in day length by the circadian clock, an endogenous timekeeper that allows plants to anticipate changes in diurnal and seasonal light-dark cycles. Here, we describe the early maturity 7 (eam7) locus in barley (Hordeum vulgare), which interacts with PHOTOPERIOD 1 (Ppd-H1) to cause early flowering under non-inductive short days. We identify LIGHT-REGULATED WD 1 (LWD1) as a putative candidate to underlie the eam7 locus in barley as supported by genetic mapping and CRISPR-Cas9-generated lwd1 mutants. Mutations in eam7 cause a significant phase advance and a misregulation of core clock and clock output genes under diurnal conditions. Early flowering was linked to an upregulation of Ppd-H1 during the night and consequent induction of the florigen FLOWERING LOCUS T1 under short days. We propose that EAM7 controls photoperiodic flowering in barley by controlling the light input into the clock and diurnal expression patterns of the major photoperiod response gene Ppd-H1.
Cluster of Excellence on Plant Sciences SMART Plants for Tomorrow's Needs 40223 Düsseldorf Germany
Institute of Plant Genetics Heinrich Heine Universität Düsseldorf 40223 Düsseldorf Germany
Zobrazit více v PubMed
Alvarez MA, Li C, Lin H, Joe A, Padilla M, Woods DP, Dubcovsky J. Early FLOWERING 3 interactions with PHYTOCHROME B and PHOTOPERIOD1 are critical for the photoperiodic regulation of wheat heading time. PLoS Genet. 2023:19(5):e1010655. 10.1371/journal.pgen.1010655 PubMed DOI PMC
Andrade L, Lu Y, Cordeiro A, Costa JMF, Wigge PA, Saibo NJM, Jaeger KE. The evening complex integrates photoperiod signals to control flowering in rice. Proc Natl Acad Sci U S A. 2022:119(26):e2122582119. 10.1073/pnas.2122582119 PubMed DOI PMC
Bae S, Park J, Kim J-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 2014:30(10):1473–1475. 10.1093/bioinformatics/btu048 PubMed DOI PMC
Bayer MM, Rapazote-Flores P, Ganal M, Hedley PE, Macaulay M, Plieske J, Ramsay L, Russell J, Shaw PD, Thomas W, et al. . Development and evaluation of a barley 50k iSelect SNP array. Front Plant Sci. 2017:8:1792. 10.3389/fpls.2017.01792 PubMed DOI PMC
Bolser D, Staines DM, Pritchard E, Kersey P. Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. Methods Mol Biol. 2016:1374:115–140. 10.1007/978-1-4939-3167-5_6 PubMed DOI
Bustos-Korts D, Dawson IK, Russell J, Tondelli A, Guerra D, Ferrandi C, Strozzi F, Nicolazzi EL, Molnar-Lang M, Ozkan H, et al. . Exome sequences and multi-environment field trials elucidate the genetic basis of adaptation in barley. Plant J. 2019:99(6):1172–1191. 10.1111/tpj.14414 PubMed DOI PMC
Campoli C, Pankin A, Drosse B, Casao CM, Davis SJ, von Korff M. Hvlux1 is a candidate gene underlying the early maturity 10 locus in barley: phylogeny, diversity, and interactions with the circadian clock and photoperiodic pathways. New Phytol. 2013:199(4):1045–1059. 10.1111/nph.12346 PubMed DOI PMC
Campoli C, Shtaya M, Davis SJ, von Korff M. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs. BMC Plant Biol. 2012:12(1):97. 10.1186/1471-2229-12-97 PubMed DOI PMC
Chen A, Li C, Hu W, Lau MY, Lin H, Rockwell NC, Martin SS, Jernstedt JA, Lagarias JC, Dubcovsky J. Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proc Natl Acad Sci U S A. 2014:111(28):10037–10044. 10.1073/pnas.1409795111 PubMed DOI PMC
Cheng C-Y, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017:89(4):789–804. 10.1111/tpj.13415 PubMed DOI
Cockram J, Jones H, Leigh FJ, O'Sullivan D, Powell W, Laurie DA, Greenland AJ. Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot. 2007:58(6):1231–1244. 10.1093/jxb/erm042 PubMed DOI
Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, et al. . Ft protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science. 2007:316(5827):1030–1033. 10.1126/science.1141752 PubMed DOI
Crooks GE, Hon G, Chandonia J-M, Brenner SE. Weblogo: a sequence logo generator. Genome Res. 2004:14(6):1188–1190. 10.1101/gr.849004 PubMed DOI PMC
Digel B, Pankin A, von Korff M. Global transcriptome profiling of developing leaf and shoot apices reveals distinct genetic and environmental control of floral transition and inflorescence development in barley. Plant Cell. 2015:27(9):2318–2334. 10.1105/tpc.15.00203 PubMed DOI PMC
Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M, et al. . Genetic dissection of barley morphology and development. Plant Physiol. 2011:155(2):617–627. 10.1104/pp.110.166249 PubMed DOI PMC
Farré EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol. 2005:15(1):47–54. 10.1016/j.cub.2004.12.067 PubMed DOI
Faure S, Turner AS, Gruszka D, Christodoulou V, Davis SJ, von Korff M, Laurie DA. Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. Proc Natl Acad Sci U S A. 2012:109(21):8328–8333. 10.1073/pnas.1120496109 PubMed DOI PMC
Franckowiak JD, Lundqvist U. Description of stock number BGS252 (Early maturity 7). Barley Genet Newslett. 2015:45:118–119.
Gallagher LW, Soliman KM, Vivar H. Interactions among loci conferring photoperiod insensitivity for heading time in spring barley. Crop Sci. 1991:31(2):256–261. 10.2135/cropsci1991.0011183X003100020003x DOI
Gao M, Geng F, Klose C, Staudt A-M, Huang H, Nguyen D, Lan H, Mockler TC, Nusinow DA, Hiltbrunner A, et al. . Phytochromes measure photoperiod in Brachypodium. bioRxiv. 10.1101/697169, 9 July 2019, preprint: not peer reviewed. DOI
Gol L, Haraldsson EB, von Korff M. Ppd-H1 integrates drought stress signals to control spike development and flowering time in barley. J Exp Bot. 2021:72(1):122–136. 10.1093/jxb/eraa261 PubMed DOI PMC
He T, Angessa T, Hill CB, Zhang X-Q, Telfer P, Westcott S, Li C. Genetic solutions through breeding counteract climate change and secure barley production in Australia. Crop Des. 2022:1(1):100001. 10.1016/j.cropd.2021.12.001 DOI
Hensel G, Kastner C, Oleszczuk S, Riechen J, Kumlehn J. Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. Int J Plant Genomics. 2009:2009:835608. 10.1155/2009/835608 PubMed DOI PMC
Hodgens C, Nimchuk ZL, Kieber JJ. Indcaps: a tool for designing screening primers for CRISPR/Cas9 mutagenesis events. PLoS One. 2017:12(11):e0188406. 10.1371/journal.pone.0188406 PubMed DOI PMC
Huang W, Pérez-García P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, Mas P. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science. 2012:336(6077):75–79. 10.1126/science.1219075 PubMed DOI
Jang S, Marchal V, Panigrahi KCS, Wenkel S, Soppe W, Deng X-W, Valverde F, Coupland G. Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J. 2008:27(8):1277–1288. 10.1038/emboj.2008.68 PubMed DOI PMC
Jones H, Leigh FJ, Mackay I, Bower MA, Smith LMJ, Charles MP, Jones G, Jones MK, Brown TA, Powell W. Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the Fertile Crescent. Mol Biol Evol. 2008:25(10):2211–2219. 10.1093/molbev/msn167 PubMed DOI
Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D. Activation tagging of the floral inducer FT. Science. 1999:286(5446):1962–1965. 10.1126/science.286.5446.1962 PubMed DOI
Katoh K, Rozewicki J, Yamada KD. Mafft online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019:20(4):1160–1166. 10.1093/bib/bbx108 PubMed DOI PMC
Kikis EA, Khanna R, Quail PH. Elf4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. Plant J. 2005:44(2):300–313. 10.1111/j.1365-313X.2005.02531.x PubMed DOI
Kippes N, VanGessel C, Hamilton J, Akpinar A, Budak H, Dubcovsky J, Pearce S. Effect of phyB and phyC loss-of-function mutations on the wheat transcriptome under short and long day photoperiods. BMC Plant Biol. 2020:20(1):297. 10.1186/s12870-020-02506-0 PubMed DOI PMC
Kumar N, Galli M, Ordon J, Stuttmann J, Kogel K-H, Imani J. Further analysis of barley MORC1 using a highly efficient RNA-guided Cas9 gene-editing system. Plant Biotechnol J. 2018:16(11):1892–1903. 10.1111/pbi.12924 PubMed DOI PMC
Laurie DA, Pratchett N, Snape JW, Bezant JH. RFLP Mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome. 1995:38(3):575–585. 10.1139/g95-074 PubMed DOI
Lundqvist U. Eighty years of Scandinavian barley mutation genetics and breeding. In: Shu QY, editor. Joint FAO/IAEA Programme. Induced plant mutations in the genomics era. Rome: FAO; 2009. p. 39–43.
Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, Madhusoodanan N, Kolesnikov A, Lopez R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022:50(W1):W276–W279. 10.1093/nar/gkac240 PubMed DOI PMC
Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. . CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017:45(D1):D200–D203. 10.1093/nar/gkw1129 PubMed DOI PMC
Mascher M, Wicker T, Jenkins J, Plott C, Lux T, Koh CS, Ens J, Gundlach H, Boston LB, Tulpová Z, et al. . Long-read sequence assembly: a technical evaluation in barley. Plant Cell. 2021:33(6):1888–1906. 10.1093/plcell/koab077 PubMed DOI PMC
McClung CR. Circadian clock components offer targets for crop domestication and improvement. Genes (Basel). 2021:12(3):374. 10.3390/genes12030374 PubMed DOI PMC
Mizuno T, Nomoto Y, Oka H, Kitayama M, Takeuchi A, Tsubouchi M, Yamashino T. Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana. Plant Cell Physiol. 2014:55(5):958–976. 10.1093/pcp/pcu030 PubMed DOI
Muggeo VMR. Segmented: an R package to fit regression models with broken-line relationships. R News. 2008:8(1):20–25.
Müller LM, Mombaerts L, Pankin A, Davis SJ, Webb AAR, Goncalves J, von Korff M. Differential effects of day/night cues and the circadian clock on the barley transcriptome. Plant Physiol. 2020:183(2):765–779. 10.1104/pp.19.01411 PubMed DOI PMC
Müller NA, Wijnen CL, Srinivasan A, Ryngajllo M, Ofner I, Lin T, Ranjan A, West D, Maloof JN, Sinha NR, et al. . Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat Genet. 2016:48(1):89–93. 10.1038/ng.3447 PubMed DOI
Pankin A, Campoli C, Dong X, Kilian B, Sharma R, Himmelbach A, Saini R, Davis SJ, Stein N, Schneeberger K, et al. . Mapping-by-sequencing identifies HvPHYTOCHROME C as a candidate gene for the early maturity 5 locus modulating the circadian clock and photoperiodic flowering in barley. Genetics. 2014:198(1):383–396. 10.1534/genetics.114.165613 PubMed DOI PMC
Park J, Bae S, Kim J-S. Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics. 2015:31(24):4014–4016. 10.1093/bioinformatics/btv537 PubMed DOI
Pearce S, Shaw LM, Lin H, Cotter JD, Li C, Dubcovsky J. Night-break experiments shed light on the photoperiod1-mediated flowering. Plant Physiol. 2017:174(2):1139–1150. 10.1104/pp.17.00361 PubMed DOI PMC
RStudio Team . RStudio: Integrated Development for R. RStudio [Computer software]. Boston, MA: PBC; 2022.http://www.rstudio.com/.
Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths T, Heinen S, et al. . Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet. 2016:48(9):1024–1030. 10.1038/ng.3612 PubMed DOI
Sawa M, Nusinow DA, Kay SA, Imaizumi T. Fkf1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science. 2007:318(5848):261–265. 10.1126/science.1146994 PubMed DOI PMC
Shaw LM, Li C, Woods DP, Alvarez MA, Lin H, Lau MY, Chen A, Dubcovsky J. Epistatic interactions between PHOTOPERIOD1, CONSTANS1 and CONSTANS2 modulate the photoperiodic response in wheat. PLoS Genet. 2020:16(7):e1008812. 10.1371/journal.pgen.1008812 PubMed DOI PMC
Shaw LM, Turner AS, Laurie DA. The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum). Plant J. 2012:71(1):71–84. 10.1111/j.1365-313X.2012.04971.x PubMed DOI
Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. Sift web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012:40(W1):W452–W457. 10.1093/nar/gks539 PubMed DOI PMC
Song YH, Ito S, Imaizumi T. Similarities in the circadian clock and photoperiodism in plants. Curr Opin Plant Biol. 2010:13(5):594–603. 10.1016/j.pbi.2010.05.004 PubMed DOI PMC
Stracke S, Börner A. Molecular mapping of the photoperiod response gene ea7 in barley. Theor Appl Genet. 1998:97(5–6):797–800. 10.1007/s001220050958 DOI
Strygina KV, Khlestkina EK. Structural and functional organization and evolution of the WD40 genes involved in the regulation of flavonoid biosynthesis in the Triticeae tribe. Russian J Genet. 2019:55(11):1398–1405. 10.1134/S1022795419110152 DOI
Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G. Constans mediates between the circadian clock and the control of flowering in Arabidopsis. Nature. 2001:410(6832):1116–1120. 10.1038/35074138 PubMed DOI
Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science. 2007:316(5827):1033–1036. 10.1126/science.1141753 PubMed DOI
Tewolde H, Fernandez CJ, Erickson CA. Wheat cultivars adapted to post-heading high temperature stress. J Agron Crop Sci. 2006:192(2):111–120. 10.1111/j.1439-037X.2006.00189.x DOI
Turner A, Beales J, Faure S, Dunford RP, Laurie DA. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science. 2005:310(5750):1031–1034. 10.1126/science.1117619 PubMed DOI
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM. Primer3plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007:35(Web Server):W71–W74. 10.1093/nar/gkm306 PubMed DOI PMC
Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science. 2004:303(5660):1003–1006. 10.1126/science.1091761 PubMed DOI
Van Nocker S, Ludwig P. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genomics. 2003:4(1):50. 10.1186/1471-2164-4-50 PubMed DOI PMC
Von Korff M, Grando S, Del Greco A, This D, Baum M, Ceccarelli S. Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theor Appl Genet. 2008:117(5):653–669. 10.1007/s00122-008-0787-2 PubMed DOI
Waddington SR, Cartwright PM, Wall PC. A quantitative scale of spike initial and pistil development in barley and wheat. Ann Bot. 1983:51(1):119–130. 10.1093/oxfordjournals.aob.a086434 DOI
Walla A, van Wilma Esse G, Kirschner GK, Guo G, Brünje A, Finkemeier I, Simon R, von Korff M. An acyl-CoA N-acyltransferase regulates meristem phase change and plant architecture in barley. Plant Physiol. 2020:183(3):1088–1109. 10.1104/pp.20.00087 PubMed DOI PMC
Wang Y, Wu J-F, Nakamichi N, Sakakibara H, Nam H-G, Wu S-H. Light-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 form a positive feedback regulatory loop in the Arabidopsis circadian clock. Plant Cell. 2011:23(2):486–498. 10.1105/tpc.110.081661 PubMed DOI PMC
Woods DP, Li W, Sibout R, Shao M, Laudencia-Chingcuanco D, Vogel JP, Dubcovsky J, Amasino RM. Phytochrome C regulation of photoperiodic flowering via PHOTOPERIOD1 is mediated by EARLY FLOWERING 3 in Brachypodium distachyon. PLoS Genet. 2023:19(5):e1010706. 10.1371/journal.pgen.1010706 PubMed DOI PMC
Wu J-F, Wang Y, Wu S-H. Two new clock proteins, LWD1 and LWD2, regulate Arabidopsis photoperiodic flowering. Plant Physiol. 2008:148(2):948–959. 10.1104/pp.108.124917 PubMed DOI PMC
Zadoks JC, Chang TT, Konzak CF. A decimal code for the growth stages of cereals. Weed Res. 1974:14(6):415–421. 10.1111/j.1365-3180.1974.tb01084.x DOI
Zakhrabekova S, Gough SP, Braumann I, Müller AH, Lundqvist J, Ahmann K, Dockter C, Matyszczak I, Kurowska M, Druka A, et al. . Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. Proc Natl Acad Sci U S A. 2012:109(11):4326–4331. 10.1073/pnas.1113009109 PubMed DOI PMC