Mononuclear or Coordination Polymer Complexes? Both Are Possible for 3,6,9-Trioxaundecanedioic Acid
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
37959829
PubMed Central
PMC10650274
DOI
10.3390/molecules28217410
PII: molecules28217410
Knihovny.cz E-resources
- Keywords
- metal complexes, polymers, self-assembly, supramolecular chemistry,
- Publication type
- Journal Article MeSH
Investigating the driving forces leading to the formation of a specific supramolecular architecture among a wide spectrum of all the possibly obtainable structures is not an easy task. The contemporary literature provides several models for correctly predicting the thermodynamically accessible structures that can originate from a library of building blocks. Definitions are rigid by their very nature, so their application may sometimes require a shift in perspective. In the study presented herein, we describe the crystal structures of three metallo-supramolecular architectures assembled from deprotonated derivatives of 3,6,9-trioxaundecanedioic acid and Mn(II), Co(II) and Zn(II). In the Mn(II) case, the complexation resulted in a complex of a discrete/heptacoordinated nature, whereas the other two structures appeared as helical polymers. To explain such an anomaly, in this work, we describe how the interplay between the flexibility of the ligand spacer and the number of coordinating atoms involved determines the divergent or convergent organisation of the final coordination architecture.
See more in PubMed
Trapani M., Castriciano M.A., Collini E., Bella G., Cordaro M. Supramolecular BODIPY based dimers: Synthesis, computational and spectroscopic studies. Org. Biomol. Chem. 2021;19:8118–8127. doi: 10.1039/D1OB01433A. PubMed DOI
Bella G., Santoro A., Nicolò F., Bruno G., Cordaro M. Do Secondary Electrostatic Interactions Influence Multiple Dihydrogen Bonds? AA−DD Array on an Amine-Borane Aza-Coronand: Theoretical Studies and Synthesis. ChemPhysChem. 2021;22:593–605. doi: 10.1002/cphc.202000906. PubMed DOI
Neidle S. Principles of Nucleic Acid Structure. Elsevier Science; Amsterdam, The Netherlands: 2008.
Geim A.K., Grigorieva I.V. Van der Waals heterostructures. Nature. 2013;499:419–425. doi: 10.1038/nature12385. PubMed DOI
Giannetto A., Nastasi F., Puntoriero F., Bella G., Campagna S., Lanza S. Fast transport of HCl across a hydrophobic layer over macroscopic distances by using a Pt(ii) compound as the transporter: Micro- and nanometric aggregates as effective transporters. Dalton Trans. 2021;50:1422–1433. doi: 10.1039/D0DT03600E. PubMed DOI
Bella G., Milone M., Bruno G., Santoro A. Which DFT factors influence the accuracy of 1H, 13C and 195Pt NMR chemical shift predictions in organopolymetallic square-planar complexes? New scaling parameters for homo- and hetero-multimetallic compounds and their direct applications. Phys. Chem. Chem. Phys. 2022;24:26642–26658. doi: 10.1039/D2CP02773A. PubMed DOI
Lehn J.M. Supramolecular Chemistry. Wiley-VCH GmbH; Weinheim, Germany: 1995. Self-Processes—Programmed Supramolecular Systems; pp. 139–197.
Lehn J.M. Toward self-organization and complex matter. Science. 2002;295:2400–2403. doi: 10.1126/science.1071063. PubMed DOI
Rowan S.J., Cantrill S.J., Cousins G.R., Sanders J.K., Stoddart J.F. Dynamic covalent chemistry. Angew. Chem. (Int. Ed. Engl.) 2002;41:898–952. doi: 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E. PubMed DOI
Santoro A., Bella G., Bruno G., Neri G., Akbari Z., Nicolò F. Cocrystal versus salt, a matter of hydrogen bonds in two benzoic acid crystals. J. Mol. Struct. 2021;1229:129801. doi: 10.1016/j.molstruc.2020.129801. DOI
Ayme J.-F., Lehn J.-M. Chapter One—From Coordination Chemistry to Adaptive Chemistry. In: van Eldik R., Puchta R., editors. Advances in Inorganic Chemistry. Volume 71. Academic Press; Cambridge, MA, USA: 2018. pp. 3–78.
Machado V.G., Baxter P.N.W., Lehn J.-M. Self-assembly in self-organized inorganic systems: A view of programmed metallosupramolecular architectures. J. Braz. Chem. Soc. 2001;12:431–462. doi: 10.1590/S0103-50532001000400002. DOI
Northrop B.H., Zheng Y.-R., Chi K.-W., Stang P.J. Self-Organization in Coordination-Driven Self-Assembly. Acc. Chem. Res. 2009;42:1554–1563. doi: 10.1021/ar900077c. PubMed DOI PMC
Lawrence D.S., Jiang T., Levett M. Self-Assembling Supramolecular Complexes. Chem. Rev. 1995;95:2229–2260. doi: 10.1021/cr00038a018. DOI
Leininger S., Olenyuk B., Stang P.J. Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals. Chem. Rev. 2000;100:853–908. doi: 10.1021/cr9601324. PubMed DOI
Swiegers G.F., Malefetse T.J. New Self-Assembled Structural Motifs in Coordination Chemistry. Chem. Rev. 2000;100:3483–3538. doi: 10.1021/cr990110s. PubMed DOI
Lehn J.-M. Programmed Chemical Systems: Multiple Subprograms and Multiple Processing/Expression of Molecular Information. Chem. Eur. J. 2000;6:2097–2102. doi: 10.1002/1521-3765(20000616)6:12<2097::AID-CHEM2097>3.0.CO;2-T. PubMed DOI
Masood M.A., Enemark E.J., Stack T.D.P. Ligand Self-Recognition in the Self-Assembly of a [{Cu(L)}2]2+ Complex: The Role of Chirality. Angew. Chem. Int. Ed. Engl. 1998;37:928–932. doi: 10.1002/(SICI)1521-3773(19980420)37:7<928::AID-ANIE928>3.0.CO;2-T. PubMed DOI
Ahmedova A. Biomedical Applications of Metallosupramolecular Assemblies—Structural Aspects of the Anticancer Activity. Front. Chem. 2018;6:620. doi: 10.3389/fchem.2018.00620. PubMed DOI PMC
Sosa-Vargas L., Kim E., Attias A.-J. Beyond “decorative” 2D supramolecular self-assembly: Strategies towards functional surfaces for nanotechnology. Mater. Horiz. 2017;4:570–583. doi: 10.1039/C7MH00127D. DOI
Wang H., Li Y., Li N., Filosa A., Li X. Increasing the size and complexity of discrete 2D metallosupramolecules. Nat. Rev. Mater. 2021;6:145–167. doi: 10.1038/s41578-020-00257-w. DOI
Sylvain R., Vendier L., Bijani C., Santoro A., Puntoriero F., Campagna S., Sutra P., Igau A. Evidence of the unprecedented conversion of intermolecular proton to water bridging of two phosphoryl ruthenium complexes. New J. Chem. 2013;37:3543–3548. doi: 10.1039/c3nj00522d. DOI
Crea F., De Stefano C., Irto A., Lando G., Materazzi S., Milea D., Pettignano A., Sammartano S. Understanding the Solution Behavior of Epinephrine in the Presence of Toxic Cations: A Thermodynamic Investigation in Different Experimental Conditions. Molecules. 2020;25:511. doi: 10.3390/molecules25030511. PubMed DOI PMC
Bretti C., Cigala R.M., Crea F., De Stefano C., Gattuso G., Irto A., Lando G., Milea D., Sammartano S. Thermodynamic Properties of O-Donor Polyelectrolytes: Determination of the Acid–Base and Complexing Parameters in Different Ionic Media at Different Temperatures. J. Chem. Eng. Data. 2017;62:2676–2688. doi: 10.1021/acs.jced.7b00101. DOI
Santoro A., Bella G., Cancelliere A.M., Serroni S., Lazzaro G., Campagna S. Photoinduced Electron Transfer in Organized Assemblies-Case Studies. Molecules. 2022;27:2713. doi: 10.3390/molecules27092713. PubMed DOI PMC
Foti C., Mineo P.G., Nicosia A., Scala A., Neri G., Piperno A. Recent Advances of Graphene-Based Strategies for Arsenic Remediation. Front. Chem. 2020;8:608236. doi: 10.3389/fchem.2020.608236. PubMed DOI PMC
Steed J.W., Atwood J.L. Supramolecular Chemistry. Wiley; Hoboken, NJ, USA: 2013.
Holub J., Santoro A., Stadler M.-A., Lehn J.-M. Peripherally multi-functionalised metallosupramolecular grids: Assembly, decoration, building blocks for dynamic covalent architectures. Inorg. Chem. Front. 2021;8:5054–5064. doi: 10.1039/D1QI01084K. DOI
Holub J., Santoro A., Lehn J.-M. Electronic absorption and emission properties of bishydrazone [2 × 2] metallosupramolecular grid-type architectures. Inorganica Chim. Acta. 2019;494:223–231. doi: 10.1016/j.ica.2019.05.017. DOI
Ruben M., Rojo J., Romero-Salguero F.J., Uppadine L.H., Lehn J.M. Grid-type metal ion architectures: Functional metallosupramolecular arrays. Angew. Chem. (Int. Ed. Engl.) 2004;43:3644–3662. doi: 10.1002/anie.200300636. PubMed DOI
Hardy J.G. Metallosupramolecular grid complexes: Towards nanostructured materials with high-tech applications. Chem. Soc. Rev. 2013;42:7881–7899. doi: 10.1039/c3cs60061k. PubMed DOI
Stadler A.-M. Grids with Unusual, High Nuclearity—A Structural Approach. Eur. J. Inorg. Chem. 2009;2009:4751–4770. doi: 10.1002/ejic.200900761. DOI
Piguet C., Bernardinelli G., Hopfgartner G. Helicates as Versatile Supramolecular Complexes. Chem. Rev. 1997;97:2005–2062. doi: 10.1021/cr960053s. PubMed DOI
Bell T.W., Jousselin H. Self-assembly of a double-helical complex of sodium. Nature. 1994;367:441–444. doi: 10.1038/367441a0. PubMed DOI
Albrecht M. “Let’s Twist Again” Double-Stranded, Triple-Stranded, and Circular Helicates. Chem. Rev. 2001;101:3457–3498. doi: 10.1021/cr0103672. PubMed DOI
Hannon M.J., Childs L.J. Helices and helicates: Beautiful supramolecular motifs with emerging applications. Supramol. Chem. 2004;16:7–22. doi: 10.1080/10610270310001632386. DOI
Santoro A., Holub J., Fik-Jaskółka M.A., Vantomme G., Lehn J.-M. Dynamic Helicates Self-Assembly from Homo- and Heterotopic Dynamic Covalent Ligand Strands. Chem. Eur. J. 2020;26:15664–15671. doi: 10.1002/chem.202003496. PubMed DOI
Ayme J.-F., Beves J.E., Campbell C.J., Leigh D.A. Template synthesis of molecular knots. Chem. Soc. Rev. 2013;42:1700–1712. doi: 10.1039/C2CS35229J. PubMed DOI
Sauvage J.P., Amabilino D.B. The beauty of knots at the molecular level. Top. Curr. Chem. 2012;323:107–125. PubMed
Beves J.E., Blight B.A., Campbell C.J., Leigh D.A., McBurney R.T. Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. Angew. Chem. (Int. Ed. Engl.) 2011;50:9260–9327. doi: 10.1002/anie.201007963. PubMed DOI
Ayme J.-F., Beves J.E., Leigh D.A., McBurney R.T., Rissanen K., Schultz D. Pentameric Circular Iron(II) Double Helicates and a Molecular Pentafoil Knot. J. Am. Chem. Soc. 2012;134:9488–9497. doi: 10.1021/ja303355v. PubMed DOI
Leigh D.A., Danon J.J., Fielden S.D.P., Lemonnier J.-F., Whitehead G.F.S., Woltering S.L. A molecular endless (74) knot. Nat. Chem. 2021;13:117–122. doi: 10.1038/s41557-020-00594-x. PubMed DOI
McCann S., McCann M., Casey M.T., Devereux M., McKee V., McMichael P., McCrea J.G. Manganese(II) complexes of 3,6,9-trioxaundecanedioic acid (3,6,9-tddaH2): X-ray crystal structures of [Mn(3,6,9-tdda) (H2O)2]·2H2O and {[Mn(3,6,9-tdda)(phen)2·3H2O]·EtOH}n. Polyhedron. 1997;16:4247–4252. doi: 10.1016/S0277-5387(97)00233-7. DOI
Sakshi, Khullar S. Anion-directed structural diversification in four new Cd(II) compounds of a flexible polyether-based dicarboxylic acid. Inorg. Chem. Commun. 2022;146:110109. doi: 10.1016/j.inoche.2022.110109. DOI
Bahl A.M., Krishnaswamy S., Massand N.G., Burkey D.J., Hanusa T.P. Heavy Alkaline-Earth Polyether Carboxylates. The Crystal Structure of {Ca[OOC(CH2)O(CH2)2]2O(H2O)2}21. Inorg. Chem. 1997;36:5413–5415. doi: 10.1021/ic970617q. DOI
Reid H.O.N., Kahwa I.A., White A.J.P., Williams D.J. Seven-coordinate Mn2+ ions in [Mn(15-crown-5)(H2O)2]2+ as luminescent probes for dynamic supramolecular events. Chem. Commun. 1999:1565–1566. doi: 10.1039/a903808f. DOI
Hao X., Parkin S., Brock C.P. Three modulation patterns in four related [M(H2O)2(15-crown-5)](NO3)2 structures. Acta Crystallogr. 2005;B61:675–688. doi: 10.1107/S0108768105026662. PubMed DOI
Atwood J.L., Junk P.C. Formation and Crystal Structures of Novel Sevencoordinate 15-crown-5 Complexes of Manganese(II), Iron(II) and Cobalt(II) Polyhedron. 2000;19:85. doi: 10.1016/S0277-5387(99)00328-9. DOI
Fewings K.R., Junk P.C., Georganopoulou D., Prince P.D., Steed J.W. Supramolecular interactions in metal tosylated complexes. Polyhedron. 2001;20:643–649. doi: 10.1016/S0277-5387(01)00712-4. DOI
Kyba E.P., Helgeson R.C., Madan K., Gokel G.W., Tarnowski T.L., Moore S.S., Cram D.J. Host-guest complexation. 1. Concept and illustration. J. Am. Chem. Soc. 1977;99:2564–2571. doi: 10.1021/ja00450a026. DOI
Swiegers G.F., Malefetse T.J. Classification of coordination polygons and polyhedra according to their mode of self-assembly. Chemistry. 2001;7:3637–3643. doi: 10.1002/1521-3765(20010903)7:17<3636::AID-CHEM3636>3.0.CO;2-#. PubMed DOI
Fujita M., Oguro D., Miyazawa M., Oka H., Yamaguchi K., Ogura K. Self-assembly of ten molecules into nanometre-sized organic host frameworks. Nature. 1995;378:469–471. doi: 10.1038/378469a0. DOI
Roche S., Haslam C., Heath S.L., Thomas J.A. Self-assembly of a supramolecular cube. Chem. Commun. 1998;16:1681–1682. doi: 10.1039/a803318h. DOI
Fujita M., Yazaki J., Ogura K. Preparation of a macrocyclic polynuclear complex, [(en)Pd(4,4’-bpy)]4(NO3)8 (en = ethylenediamine, bpy = bipyridine), which recognizes an organic molecule in aqueous media. J. Am. Chem. Soc. 1990;112:5645–5647. doi: 10.1021/ja00170a042. DOI
Winter A., Schubert U.S. Synthesis and characterization of metallo-supramolecular polymers. Chem. Soc. Rev. 2016;45:5311–5357. doi: 10.1039/C6CS00182C. PubMed DOI
Mondal S., Chandra Santra D., Ninomiya Y., Yoshida T., Higuchi M. Dual-Redox System of Metallo-Supramolecular Polymers for Visible-to-Near-IR Modulable Electrochromism and Durable Device Fabrication. ACS Appl. Mater. Interfaces. 2020;12:58277–58286. doi: 10.1021/acsami.0c18109. PubMed DOI
Casanova D., Alemany P., Bofill J.M., Alvarez S. Shape and Symmetry of Heptacoordinate Transition-Metal Complexes: Structural Trends. Chem. Eur. J. 2003;9:1281–1295. doi: 10.1002/chem.200390145. PubMed DOI
Regueiro-Figueroa M., Lima L.M.P., Blanco V., Esteban-Gomez D., de Blas A., Rodriguez-Blas T., Delgado R., Platas-Iglesias C. Reasons behind the Relative Abundances of HeptacoordinateComplexes along the Late First-Row Transition Metal Series. Inorg. Chem. 2014;53:12859–12869. doi: 10.1021/ic501869y. PubMed DOI
Bruker . APEX2. Bruker AXS Inc.; Madison, WI, USA: 2012.
Bruker . SADABS and SAINT. Bruker AXS Inc.; Madison, WI, USA: 2017.
Sheldrick G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A., Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI