Early mobilisation in critically ill COVID-19 patients: a subanalysis of the ESICM-initiated UNITE-COVID observational study
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
PubMed
37962748
PubMed Central
PMC10645963
DOI
10.1186/s13613-023-01201-1
PII: 10.1186/s13613-023-01201-1
Knihovny.cz E-zdroje
- Klíčová slova
- Bed rest, COVID-19, Critical care, Early ambulation, Intensive care units, Mobilisation, Physical therapy specialty, SARS-CoV-2,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Early mobilisation (EM) is an intervention that may improve the outcome of critically ill patients. There is limited data on EM in COVID-19 patients and its use during the first pandemic wave. METHODS: This is a pre-planned subanalysis of the ESICM UNITE-COVID, an international multicenter observational study involving critically ill COVID-19 patients in the ICU between February 15th and May 15th, 2020. We analysed variables associated with the initiation of EM (within 72 h of ICU admission) and explored the impact of EM on mortality, ICU and hospital length of stay, as well as discharge location. Statistical analyses were done using (generalised) linear mixed-effect models and ANOVAs. RESULTS: Mobilisation data from 4190 patients from 280 ICUs in 45 countries were analysed. 1114 (26.6%) of these patients received mobilisation within 72 h after ICU admission; 3076 (73.4%) did not. In our analysis of factors associated with EM, mechanical ventilation at admission (OR 0.29; 95% CI 0.25, 0.35; p = 0.001), higher age (OR 0.99; 95% CI 0.98, 1.00; p ≤ 0.001), pre-existing asthma (OR 0.84; 95% CI 0.73, 0.98; p = 0.028), and pre-existing kidney disease (OR 0.84; 95% CI 0.71, 0.99; p = 0.036) were negatively associated with the initiation of EM. EM was associated with a higher chance of being discharged home (OR 1.31; 95% CI 1.08, 1.58; p = 0.007) but was not associated with length of stay in ICU (adj. difference 0.91 days; 95% CI - 0.47, 1.37, p = 0.34) and hospital (adj. difference 1.4 days; 95% CI - 0.62, 2.35, p = 0.24) or mortality (OR 0.88; 95% CI 0.7, 1.09, p = 0.24) when adjusted for covariates. CONCLUSIONS: Our findings demonstrate that a quarter of COVID-19 patients received EM. There was no association found between EM in COVID-19 patients' ICU and hospital length of stay or mortality. However, EM in COVID-19 patients was associated with increased odds of being discharged home rather than to a care facility. Trial registration ClinicalTrials.gov: NCT04836065 (retrospectively registered April 8th 2021).
Department Neuroscience Neurointensive Care IRCCS Fondazione San Gerardo dei Tintori Monza Italy
Department of Critical Care King's College Hospital London UK
Department of Critical Care King's College London Guy's and St Thomas' Hospital London UK
Department of Intensive Care Medicine Ghent University Hospital Ghent Belgium
FNKV University Hospital Prague Prague Czech Republic
Hedenstierna Laboratory Department of Surgical Science Uppsala University Uppsala Sweden
Intensive Care Unit AnOpIVA Akademiska Sjukhuset Uppsala Sweden
Intensive Care Unit Hospital General Universitario de Castellón Castellón de La Plana Spain
IRCCS Humanitas Research Hospital Via Manzoni 56 Rozzano 20089 Milan Italy
Médecine Intensive et Réanimation APHP Saint Louis Hospital Paris University Paris France
School of Medicine and Surgery University of Milano Bicocca Milan Italy
School of Sports and Health Sciences University of Brighton Brighton UK
Zobrazit více v PubMed
Lamontagne F, Agarwal A, Rochwerg B, Siemieniuk RA, Agoritsas T, Askie L, et al. A living WHO guideline on drugs for covid-19. BMJ. 2020;370:m3379. PubMed
Fazzini B, Märkl T, Costas C, Blobner M, Schaller SJ, Prowle J, et al. The rate and assessment of muscle wasting during critical illness: a systematic review and meta-analysis. Crit Care. 2023;27(1):2. doi: 10.1186/s13054-022-04253-0. PubMed DOI PMC
Schefold JC, Wollersheim T, Grunow JJ, Luedi MM, Z'Graggen WJ, Weber-Carstens S. Muscular weakness and muscle wasting in the critically ill. J Cachexia Sarcopenia Muscle. 2020;11(6):1399–1412. doi: 10.1002/jcsm.12620. PubMed DOI PMC
Jolley SE, Bunnell AE, Hough CL. ICU-acquired weakness. Chest. 2016;150(5):1129–1140. doi: 10.1016/j.chest.2016.03.045. PubMed DOI PMC
Hermans G, Van den Berghe G. Clinical review: intensive care unit acquired weakness. Crit Care. 2015;19(1):274. doi: 10.1186/s13054-015-0993-7. PubMed DOI PMC
Van Aerde N, Van den Berghe G, Wilmer A, Gosselink R, Hermans G. Intensive care unit acquired muscle weakness in COVID-19 patients. Intensive Care Med. 2020;46(11):2083–2085. doi: 10.1007/s00134-020-06244-7. PubMed DOI PMC
Musheyev B, Borg L, Janowicz R, Matarlo M, Boyle H, Singh G, et al. Functional status of mechanically ventilated COVID-19 survivors at ICU and hospital discharge. J Intensive Care. 2021;9(1):31. doi: 10.1186/s40560-021-00542-y. PubMed DOI PMC
Herridge MS, Tansey CM, Matté A, Tomlinson G, Diaz-Granados N, Cooper A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364(14):1293–1304. doi: 10.1056/NEJMoa1011802. PubMed DOI
Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373(9678):1874–1882. doi: 10.1016/S0140-6736(09)60658-9. PubMed DOI PMC
Schaller SJ, Anstey M, Blobner M, Edrich T, Grabitz SD, Gradwohl-Matis I, et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet. 2016;388(10052):1377–1388. doi: 10.1016/S0140-6736(16)31637-3. PubMed DOI
Patel BK, Wolfe KS, Patel SB, Dugan KC, Esbrook CL, Pawlik AJ, et al. Effect of early mobilisation on long-term cognitive impairment in critical illness in the USA: a randomised controlled trial. Lancet Respir Med. 2023 doi: 10.1016/S2213-2600(22)00489-1. PubMed DOI PMC
Bein T, Bischoff M, Brückner U, Gebhardt K, Henzler D, Hermes C, et al. S2e guideline: positioning and early mobilisation in prophylaxis or therapy of pulmonary disorders: revision 2015: S2e guideline of the German society of anaesthesiology and intensive care medicine (DGAI) Anaesthesist. 2015;64(Suppl 1):1–26. doi: 10.1007/s00101-015-0071-1. PubMed DOI PMC
Gosselink R, Bott J, Johnson M, Dean E, Nava S, Norrenberg M, et al. Physiotherapy for adult patients with critical illness: recommendations of the European respiratory society and European society of intensive care medicine task force on physiotherapy for critically Ill patients. Intensive Care Med. 2008;34(7):1188–1199. doi: 10.1007/s00134-008-1026-7. PubMed DOI
Berry A BK, Bennett J, Chaseling W, Cross Y, Cushway S, Hassan A, Jones S, Longhurst E, Moore R, Phillips D, Plowman E, Scott J, Smith K, Thomas L, Elliott D Physical activity and movement: a guideline for critically Ill adults: agency for clinical innovation NSW government. 2017. https://aci.health.nsw.gov.au/networks/icnsw/clinicians/physical-activity-and-movement.
Hodgson CL, Bailey M, Bellomo R, Brickell K, Broadley T, Buhr H, et al. Early active mobilization during mechanical ventilation in the ICU. N Engl J Med. 2022;387(19):1747–1758. doi: 10.1056/NEJMoa2209083. PubMed DOI
Hodgson C, Bellomo R, Berney S, Bailey M, Buhr H, Denehy L, et al. Early mobilization and recovery in mechanically ventilated patients in the ICU: a bi-national, multi-centre, prospective cohort study. Crit Care. 2015;19(1):81. doi: 10.1186/s13054-015-0765-4. PubMed DOI PMC
Nydahl P, Ruhl AP, Bartoszek G, Dubb R, Filipovic S, Flohr HJ, et al. Early mobilization of mechanically ventilated patients: a 1-day point-prevalence study in Germany. Crit Care Med. 2014;42(5):1178–1186. doi: 10.1097/CCM.0000000000000149. PubMed DOI
Sibilla A, Nydahl P, Greco N, Mungo G, Ott N, Unger I, et al. Mobilization of mechanically ventilated patients in Switzerland. J Intensive Care Med. 2020;35(1):55–62. doi: 10.1177/0885066617728486. PubMed DOI
Jolley SE, Moss M, Needham DM, Caldwell E, Morris PE, Miller RR, et al. Point prevalence study of mobilization practices for acute respiratory failure patients in the United States. Crit Care Med. 2017;45(2):205–215. doi: 10.1097/CCM.0000000000002058. PubMed DOI PMC
Berney SC, Harrold M, Webb SA, Seppelt I, Patman S, Thomas PJ, et al. Intensive care unit mobility practices in Australia and New Zealand: a point prevalence study. Crit Care Resusc. 2013;15(4):260–265. PubMed
Harrold ME, Salisbury LG, Webb SA, Allison GT. Early mobilisation in intensive care units in Australia and Scotland: a prospective, observational cohort study examining mobilisation practises and barriers. Crit Care. 2015;19(1):336. doi: 10.1186/s13054-015-1033-3. PubMed DOI PMC
Liu K, Nakamura K, Katsukawa H, Elhadi M, Nydahl P, Ely EW, et al. ABCDEF bundle and supportive ICU practices for patients with coronavirus disease 2019 infection: an international point prevalence study. Crit Care Explor. 2021;3(3):e0353. doi: 10.1097/CCE.0000000000000353. PubMed DOI PMC
McWilliams D, Weblin J, Hodson J, Veenith T, Whitehouse T, Snelson C. Rehabilitation levels in patients with COVID-19 admitted to intensive care requiring invasive ventilation. An observational study. Ann Am Thorac Soc. 2021;18(1):122–129. doi: 10.1513/AnnalsATS.202005-560OC. PubMed DOI PMC
Agarwal A, Rochwerg B, Lamontagne F, Siemieniuk RA, Agoritsas T, Askie L, et al. A living WHO guideline on drugs for covid-19. BMJ. 2020;370:m3379. doi: 10.1136/bmj.m3379. PubMed DOI
Greco M, De Corte T, Ercole A, Antonelli M, Azoulay E, Citerio G, et al. Clinical and organizational factors associated with mortality during the peak of first COVID-19 wave: the global UNITE-COVID study. Intensive Care Med. 2022;48:690. doi: 10.1007/s00134-022-06705-1. PubMed DOI PMC
Conway Morris A, Kohler K, De Corte T, Ercole A, De Grooth HJ, Elbers PWG, et al. Co-infection and ICU-acquired infection in COIVD-19 ICU patients: a secondary analysis of the UNITE-COVID data set. Crit Care. 2022;26(1):236. doi: 10.1186/s13054-022-04108-8. PubMed DOI PMC
Ercole AE, Paul W, de Grooth, Harm-Jan; De Corte, Thomas; Greco, Massimiliano. ariercole/UNITE-COVID: Version 3.1.0 release curation pipeline (v3.0.1). Zenodo. 2021.
Ding N, Zhang Z, Zhang C, Yao L, Yang L, Jiang B, et al. What is the optimum time for initiation of early mobilization in mechanically ventilated patients? A network meta-analysis. PLoS ONE. 2019;14(10):e0223151. doi: 10.1371/journal.pone.0223151. PubMed DOI PMC
Hodgson C, Needham D, Haines K, Bailey M, Ward A, Harrold M, et al. Feasibility and inter-rater reliability of the ICU Mobility Scale. Heart Lung. 2014;43(1):19–24. doi: 10.1016/j.hrtlng.2013.11.003. PubMed DOI
Yoshida KB, Alexander; Chipman, Jonathan; Bohn, Justin; DAgostino McGowan, Lucy; Barrett, Malcom; Haubo B Christensen, Rune; gbouzill. tableone. 2022.
Fox J, Weisberg S. An R Companion to Applied Regression. Third edition ed. Sage: Thousand Oaks CA; 2019.
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48. doi: 10.18637/jss.v067.i01. DOI
Lang JK, Paykel MS, Haines KJ, Hodgson CL. Clinical practice guidelines for early mobilization in the ICU: a systematic review. Crit Care Med. 2020;48(11):e1121–e1128. doi: 10.1097/CCM.0000000000004574. PubMed DOI
Grasselli G, Greco M, Zanella A, Albano G, Antonelli M, Bellani G, et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy. Italy JAMA Intern Med. 2020;180(10):1345–1355. doi: 10.1001/jamainternmed.2020.3539. PubMed DOI PMC
Pijls BG, Jolani S, Atherley A, Derckx RT, Dijkstra JIR, Franssen GHL, et al. Demographic risk factors for COVID-19 infection, severity, ICU admission and death: a meta-analysis of 59 studies. BMJ Open. 2021;11(1):e044640. doi: 10.1136/bmjopen-2020-044640. PubMed DOI PMC
Günster C, Busse R, Spoden M, Rombey T, Schillinger G, Hoffmann W, et al. 6-month mortality and readmissions of hospitalized COVID-19 patients: a nationwide cohort study of 8,679 patients in Germany. PLoS ONE. 2021;16(8):e0255427. doi: 10.1371/journal.pone.0255427. PubMed DOI PMC
Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region. Italy Jama. 2020;323(16):1574–1581. doi: 10.1001/jama.2020.5394. PubMed DOI PMC
Pun BT, Badenes R, Heras La Calle G, Orun OM, Chen W, Raman R, et al. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study. Lancet Respir Med. 2021;9(3):239–250. doi: 10.1016/S2213-2600(20)30552-X. PubMed DOI PMC
Wollersheim T, Grunow JJ, Carbon NM, Haas K, Malleike J, Ramme SF, et al. Muscle wasting and function after muscle activation and early protocol-based physiotherapy: an explorative trial. J Cachexia Sarcopenia Muscle. 2019;10(4):734–747. doi: 10.1002/jcsm.12428. PubMed DOI PMC
Stripari Schujmann D, Claudia Lunardi A, Neri Peso C, Pompeu JE, Annoni R, Miura MC, et al. Functional recovery groups in critically Ill COVID-19 patients and their associated factors: from ICU to hospital discharge. Crit Care Med. 2022;50(12):1799–1808. doi: 10.1097/CCM.0000000000005685. PubMed DOI PMC
Bakhru RN, McWilliams DJ, Wiebe DJ, Spuhler VJ, Schweickert WD. Intensive care unit structure variation and implications for early mobilization practices. An international survey. Ann Am Thorac Soc. 2016;13(9):1527–1537. doi: 10.1513/AnnalsATS.201601-078OC. PubMed DOI PMC
Dubb R, Nydahl P, Hermes C, Schwabbauer N, Toonstra A, Parker AM, et al. Barriers and strategies for early mobilization of patients in intensive care units. Ann Am Thorac Soc. 2016;13(5):724–730. doi: 10.1513/AnnalsATS.201509-586CME. PubMed DOI
Woolf SH, Grol R, Hutchinson A, Eccles M, Grimshaw J. Clinical guidelines: potential benefits, limitations, and harms of clinical guidelines. BMJ. 1999;318(7182):527–530. doi: 10.1136/bmj.318.7182.527. PubMed DOI PMC
Hermes C, Nydahl P, Blobner M, Dubb R, Filipovic S, Kaltwasser A, et al. Assessment of mobilization capacity in 10 different ICU scenarios by different professions. PLoS ONE. 2020;15(10):e0239853. doi: 10.1371/journal.pone.0239853. PubMed DOI PMC
Liu K, Nakamura K, Kudchadkar SR, Katsukawa H, Nydahl P, Ely EW, et al. Mobilization and rehabilitation practice in ICUs during the COVID-19 pandemic. J Intensive Care Med. 2022 doi: 10.1177/08850666221097644. PubMed DOI PMC
Schellenberg CM, Lindholz M, Grunow JJ, Boie S, Bald A, Warner LO, et al. Mobilisation practices during the SARS-CoV-2 pandemic: a retrospective analysis (MobiCOVID) Anaesth Crit Care Pain Med. 2023;42(5):101255. doi: 10.1016/j.accpm.2023.101255. PubMed DOI PMC
Hodgson CL, Stiller K, Needham DM, Tipping CJ, Harrold M, Baldwin CE, et al. Expert consensus and recommendations on safety criteria for active mobilization of mechanically ventilated critically ill adults. Crit Care. 2014;18(6):658. doi: 10.1186/s13054-014-0658-y. PubMed DOI PMC
Schaller SJ, Stäuble CG, Suemasa M, Heim M, Duarte IM, Mensch O, et al. The German validation study of the surgical intensive care unit optimal mobility score. J Crit Care. 2016;32:201–206. doi: 10.1016/j.jcrc.2015.12.020. PubMed DOI
Waldauf P, Jiroutková K, Krajčová A, Puthucheary Z, Duška F. Effects of rehabilitation interventions on clinical outcomes in critically Ill patients: systematic review and meta-analysis of randomized controlled trials. Crit Care Med. 2020;48(7):1055–1065. doi: 10.1097/CCM.0000000000004382. PubMed DOI
Kayambu G, Boots R, Paratz J. Physical therapy for the critically ill in the ICU: a systematic review and meta-analysis. Crit Care Med. 2013;41(6):1543–1554. doi: 10.1097/CCM.0b013e31827ca637. PubMed DOI
Tipping CJ, Harrold M, Holland A, Romero L, Nisbet T, Hodgson CL. The effects of active mobilisation and rehabilitation in ICU on mortality and function: a systematic review. Intensive Care Med. 2017;43(2):171–183. doi: 10.1007/s00134-016-4612-0. PubMed DOI
Gehlbach BK, Salamanca VR, Levitt JE, Sachs GA, Sweeney MK, Pohlman AS, et al. Patient-related factors associated with hospital discharge to a care facility after critical illness. Am J Crit Care. 2011;20(5):378–386. doi: 10.4037/ajcc2011827. PubMed DOI PMC
Zhang L, Hu W, Cai Z, Liu J, Wu J, Deng Y, et al. Early mobilization of critically ill patients in the intensive care unit: a systematic review and meta-analysis. PLoS ONE. 2019;14(10):e0223185. doi: 10.1371/journal.pone.0223185. PubMed DOI PMC
Scheffenbichler FT, Teja B, Wongtangman K, Mazwi N, Waak K, Schaller SJ, et al. Effects of the level and duration of mobilization therapy in the surgical ICU on the loss of the ability to live independently: an international prospective cohort study. Crit Care Med. 2021;49(3):e247–e257. doi: 10.1097/CCM.0000000000004808. PubMed DOI PMC
Clarissa C, Salisbury L, Rodgers S, Kean S. Early mobilisation in mechanically ventilated patients: a systematic integrative review of definitions and activities. J Intensive Care. 2019;7:3. doi: 10.1186/s40560-018-0355-z. PubMed DOI PMC
ClinicalTrials.gov
NCT04836065