Microstructure, hardness and wear behavior of ZrC particle reinforced AZ31 surface composites synthesized via friction stir processing

. 2023 Nov 16 ; 13 (1) : 20089. [epub] 20231116

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37974019
Odkazy

PubMed 37974019
PubMed Central PMC10654654
DOI 10.1038/s41598-023-47381-5
PII: 10.1038/s41598-023-47381-5
Knihovny.cz E-zdroje

Dry sliding wear behaviour of friction stir processed (FSP) AZ31 and AZ31/ZrC particles (5, 10, and 15 vol%) reinforced surface composite was investigated at different sliding speeds and loads. The samples were tested using a pin-on-disc apparatus with EN31 steel as the counter body to determine the role of FSP and ZrC reinforcement on the microstructure, hardness, and wear behaviour of AZ31. Base metal AZ31 alloy exhibits a hardness of 60 HV, whereas the 15 vol% ZrC-reinforced composites had the highest hardness of 108 HV. It was also identified that 15 vol% ZrC-reinforced composites exhibited lowest wear rate and friction coefficient under all testing conditions. Abrasion, delamination, oxidation, material softening, and plastic deformation are the primary wear mechanisms viewed from the wear tracks of the samples. Higher volume fraction of ZrC particles exhibited better wear resistance at all speeds and loads than AZ31 alloy. A wear map has been generated for different material compositions and wear conditions to identify the main wear mechanisms easily.

Zobrazit více v PubMed

Bharathi BM, Vignesh RV, Padmanaban R, Govindaraju M. Effect of friction stir processing and heat treatment on the corrosion properties of AZ31 alloy. Aust. J. Mech. Eng. 2022;20:1479–1488. doi: 10.1080/14484846.2020.1815999. DOI

Muralimanokar M, Vaira VR, Padmanaban R, Suganya PG. Characterization of AZ31-NbC surface composite fabricated by friction stir processing. Koroze a Ochr. Mater. 2020;64:29–37. doi: 10.2478/kom-2020-0005. DOI

Manroo SA, Khan NZ, Ahmad B. Development of nano-composites on rare-earth Mg-ZE41 alloy via friction stir processing (FSP): Microstructure, mechanical, and tribological properties. Jom. 2022;74:2047–2062. doi: 10.1007/s11837-022-05211-5. DOI

Wang W, Han P, Peng P, Zhang T, Liu Q, Yuan SN, et al. Friction stir processing of magnesium alloys: A review. Acta Metall. Sin. 2020;33:43–57. doi: 10.1007/s40195-019-00971-7. DOI

Nasiri Z, SarkariKhorrami M, Mirzadeh H, Emamy M. Enhanced mechanical properties of as-cast Mg–Al–Ca magnesium alloys by friction stir processing. Mater. Lett. 2021;296:129880. doi: 10.1016/j.matlet.2021.129880. DOI

Govindaraju M, Vignesh RV, Padmanaban R. Effect of heat treatment on the microstructure and mechanical properties of the friction stir processed AZ91D magnesium alloy. Met. Sci. Heat Treat. 2019;61:311–317. doi: 10.1007/s11041-019-00422-1. DOI

Eivani AR, Mehdizade M, Chabok S, Zhou J. Applying multi-pass friction stir processing to refine the microstructure and enhance the strength, ductility and corrosion resistance of WE43 magnesium alloy. J. Mater. Res. Technol. 2021;12:1946–1957. doi: 10.1016/j.jmrt.2021.03.021. DOI

VairaVignesh R, Padmanaban R, Govindaraju M. Synthesis and characterization of magnesium alloy surface composite (AZ91D—SiO2) by friction stir processing for bioimplants. Silicon. 2020;12(5):1085–1102. doi: 10.1007/s12633-019-00194-6. DOI

Jalilvand MM, Mazaheri Y, Jahani AR. Effect of FSP pass number on the tribological behavior of AZ31 magnesium alloy article info. J. Stress Anal. 2019;4:2588–2597.

Mishra M, Iqbal MM, Arka GN, Singh S. Microstructural and mechanical studies of multi-walled CNTs/Mg composite fabricated through FSP. J. Compos. Mater. 2021;55:3023–3033. doi: 10.1177/00219983211007545. DOI

Singh B, Singh J, Joshi RS. Effect of tic reinforcement on wear resistance of magnesium matrix composite by Fsp. Arch. Metall. Mater. 2022;67:293–302. doi: 10.24425/amm.2022.137505. DOI

Liu Z, Cai Y, Chen J, Han J, Mao Z, Chen M. Fabrication and characterization of friction stir–processed Mg–Zn–Ca biomaterials strengthened with MgO particles. Int. J. Adv. Manuf. Technol. 2021;117:919–932. doi: 10.1007/s00170-021-07814-9. DOI

Sagar P, Handa A. Role of tool rotational speed on the tribological characteristics of magnesium based az61a/tic composite developed via friction stir processing route. J. Achiev. Mater. Manuf. Eng. 2020;101:60–75. doi: 10.5604/01.3001.0014.4921. DOI

Moustafa EB, Melaibari A, Basha M. Wear and microhardness behaviors of AA7075/SiC-BN hybrid nanocomposite surfaces fabricated by friction stir processing. Ceram. Int. 2020;46:16938–16943. doi: 10.1016/j.ceramint.2020.03.274. DOI

Barmouz M, Asadi P, BesharatiGivi MK, Taherishargh M. Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles’ size and volume fraction. Mater. Sci. Eng. A. 2011;528:1740–1749. doi: 10.1016/j.msea.2010.11.006. DOI

Sithole LM, Madushele N. Surface treatment of magnesium AZ61 alloy with stainless steel powder by friction stir processing. Procedia Manuf. 2019;35:1047–1053. doi: 10.1016/j.promfg.2019.06.055. DOI

Qiao K, Zhang T, Wang K, Yuan S, Zhang S, Wang L, et al. Mg/ZrO2 metal matrix nanocomposites fabricated by friction stir processing: Microstructure, mechanical properties, and corrosion behavior. Front. Bioeng. Biotechnol. 2021;9:1–16. doi: 10.3389/fbioe.2021.605171. PubMed DOI PMC

Jin Y, Wang K, Wang W, Peng P, Zhou S, Huang L, et al. Microstructure and mechanical properties of AE42 rare earth-containing magnesium alloy prepared by friction stir processing. Mater. Charact. 2019;150:52–61. doi: 10.1016/j.matchar.2019.02.008. DOI

Luo XC, Kang LM, Liu HL, Li ZJ, Liu YF, Zhang DT, et al. Enhancing mechanical properties of AZ61 magnesium alloy via friction stir processing: Effect of processing parameters. Mater. Sci. Eng. A. 2020;797:139945. doi: 10.1016/j.msea.2020.139945. DOI

Vedabouriswaran G, Aravindan S. Wear characteristics of friction stir processed magnesium RZ 5 composites. J. Tribol. 2019;141:42039. doi: 10.1115/1.4042039. DOI

Ram B, Deepak D, Bala N. Microstructural refinement and enhancement in mechanical properties of magnesium/SiC as-cast composites via friction stir processing route. Trans. Indian Inst. Met. 2019 doi: 10.1007/s12666-019-01627-x. DOI

SuganyaPriyadharshini G, Satish Kumar T, Anbuchezhian N, VairaVignesh R, Subramanian R, Velmurugan T, Kamal Basha K. Influence of tool traverse speed on microstructure and mechanical properties of CuNi/B4C surface composites. Trans. IMF. 2021;99:38–45. doi: 10.1080/00202967.2020.1846360. DOI

Hosseinzadeh A, Yapici GG. On the high-temperature flow response of friction stir processed magnesium metal matrix composites. J. Eng. Mater. Technol. Trans. ASME. 2021;143:966. doi: 10.1115/1.4047966. DOI

Raja R, Jannet S, Thankachan T. Investigation of hybrid copper surface composite synthesized via FSP. Mater. Manuf. Process. 2021;36:1377–1383. doi: 10.1080/10426914.2021.1914841. DOI

Kumar TS, Shalini S, Ramu M, Thankachan T. Characterization of ZrC reinforced AA6061 alloy composites produced using stir casting process. J. Mech. Sci. Technol. 2020;34:143–147. doi: 10.1007/s12206-019-1214-0. DOI

Shyam Kumar CN, Bauri R, Yadav D. Wear properties of 5083 Al–W surface composite fabricated by friction stir processing. Tribol. Int. 2016;101:284–290. doi: 10.1016/j.triboint.2016.04.033. DOI

Zhu J, Jiang W, Li G, Guan F, Yu Y, Fan Z. Microstructure and mechanical properties of SiCnp/Al6082 aluminum matrix composites prepared by squeeze casting combined with stir casting. J. Mater. Process. Technol. 2020;283:116699. doi: 10.1016/j.jmatprotec.2020.116699. DOI

Kiliçkap E, Cakir O, Aksoy M, Inan A. Study of tool wear and surface roughness in machining of homogenised SiC-p reinforced aluminium metal matrix composite. J. Mater. Process. Technol. 2005;164–165:862–867. doi: 10.1016/j.jmatprotec.2005.02.109. DOI

Zhang Z, Du Y, Huang S, Meng F, Chen L, Xie W, Chang K, Zhang C, Lu Y, Lin CT, Li S. Macroscale superlubricity enabled by graphene-coated surfaces. Adv. Sci. 2020;7(4):1903239. doi: 10.1002/advs.201903239. PubMed DOI PMC

Zhang Z, Wang B, Kang R, Zhang B, Guo D. Changes in surface layer of silicon wafers from diamond scratching. CIRP Ann. 2015;64(1):349–352. doi: 10.1016/j.cirp.2015.04.005. DOI

Zhang Z, Wang X, Meng F, Liu D, Huang S, Cui J, Wang J, Wen W. Origin and evolution of a crack in silicon induced by a single grain grinding. J. Manuf. Process. 2022;75:617–626. doi: 10.1016/j.jmapro.2022.01.037. DOI

Wang B, Zhang Z, Chang K, Cui J, Rosenkranz A, Yu J, Lin CT, Chen G, Zang K, Luo J, Jiang N. New deformation-induced nanostructure in silicon. Nano Lett. 2018;18(7):4611–4617. doi: 10.1021/acs.nanolett.8b01910. PubMed DOI

Zhang Z, Huo F, Zhang X, Guo D. Fabrication and size prediction of crystalline nanoparticles of silicon induced by nanogrinding with ultrafine diamond grits. Scr. Mater. 2012;67(7–8):657–660. doi: 10.1016/j.scriptamat.2012.07.016. DOI

Zhang Z, Cui J, Wang B, Wang Z, Kang R, Guo D. A novel approach of mechanical chemical grinding. J. Alloys Compd. 2017;726:514–524. doi: 10.1016/j.jallcom.2017.08.024. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Characterisation of AZ31/TiC composites fabricated via ultrasonic vibration assisted friction stir processing

. 2024 Nov 04 ; 14 (1) : 26686. [epub] 20241104

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace