Microstructure, hardness and wear behavior of ZrC particle reinforced AZ31 surface composites synthesized via friction stir processing
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
37974019
PubMed Central
PMC10654654
DOI
10.1038/s41598-023-47381-5
PII: 10.1038/s41598-023-47381-5
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Dry sliding wear behaviour of friction stir processed (FSP) AZ31 and AZ31/ZrC particles (5, 10, and 15 vol%) reinforced surface composite was investigated at different sliding speeds and loads. The samples were tested using a pin-on-disc apparatus with EN31 steel as the counter body to determine the role of FSP and ZrC reinforcement on the microstructure, hardness, and wear behaviour of AZ31. Base metal AZ31 alloy exhibits a hardness of 60 HV, whereas the 15 vol% ZrC-reinforced composites had the highest hardness of 108 HV. It was also identified that 15 vol% ZrC-reinforced composites exhibited lowest wear rate and friction coefficient under all testing conditions. Abrasion, delamination, oxidation, material softening, and plastic deformation are the primary wear mechanisms viewed from the wear tracks of the samples. Higher volume fraction of ZrC particles exhibited better wear resistance at all speeds and loads than AZ31 alloy. A wear map has been generated for different material compositions and wear conditions to identify the main wear mechanisms easily.
Department of Mechanical Engineering Karpagam College of Engineering Coimbatore India
Department of Physics PSG Polytechnic College Coimbatore Tamil Nadu India
University Centre for Research and Development Chandigarh University Mohali 140413 India
Zobrazit více v PubMed
Bharathi BM, Vignesh RV, Padmanaban R, Govindaraju M. Effect of friction stir processing and heat treatment on the corrosion properties of AZ31 alloy. Aust. J. Mech. Eng. 2022;20:1479–1488. doi: 10.1080/14484846.2020.1815999. DOI
Muralimanokar M, Vaira VR, Padmanaban R, Suganya PG. Characterization of AZ31-NbC surface composite fabricated by friction stir processing. Koroze a Ochr. Mater. 2020;64:29–37. doi: 10.2478/kom-2020-0005. DOI
Manroo SA, Khan NZ, Ahmad B. Development of nano-composites on rare-earth Mg-ZE41 alloy via friction stir processing (FSP): Microstructure, mechanical, and tribological properties. Jom. 2022;74:2047–2062. doi: 10.1007/s11837-022-05211-5. DOI
Wang W, Han P, Peng P, Zhang T, Liu Q, Yuan SN, et al. Friction stir processing of magnesium alloys: A review. Acta Metall. Sin. 2020;33:43–57. doi: 10.1007/s40195-019-00971-7. DOI
Nasiri Z, SarkariKhorrami M, Mirzadeh H, Emamy M. Enhanced mechanical properties of as-cast Mg–Al–Ca magnesium alloys by friction stir processing. Mater. Lett. 2021;296:129880. doi: 10.1016/j.matlet.2021.129880. DOI
Govindaraju M, Vignesh RV, Padmanaban R. Effect of heat treatment on the microstructure and mechanical properties of the friction stir processed AZ91D magnesium alloy. Met. Sci. Heat Treat. 2019;61:311–317. doi: 10.1007/s11041-019-00422-1. DOI
Eivani AR, Mehdizade M, Chabok S, Zhou J. Applying multi-pass friction stir processing to refine the microstructure and enhance the strength, ductility and corrosion resistance of WE43 magnesium alloy. J. Mater. Res. Technol. 2021;12:1946–1957. doi: 10.1016/j.jmrt.2021.03.021. DOI
VairaVignesh R, Padmanaban R, Govindaraju M. Synthesis and characterization of magnesium alloy surface composite (AZ91D—SiO2) by friction stir processing for bioimplants. Silicon. 2020;12(5):1085–1102. doi: 10.1007/s12633-019-00194-6. DOI
Jalilvand MM, Mazaheri Y, Jahani AR. Effect of FSP pass number on the tribological behavior of AZ31 magnesium alloy article info. J. Stress Anal. 2019;4:2588–2597.
Mishra M, Iqbal MM, Arka GN, Singh S. Microstructural and mechanical studies of multi-walled CNTs/Mg composite fabricated through FSP. J. Compos. Mater. 2021;55:3023–3033. doi: 10.1177/00219983211007545. DOI
Singh B, Singh J, Joshi RS. Effect of tic reinforcement on wear resistance of magnesium matrix composite by Fsp. Arch. Metall. Mater. 2022;67:293–302. doi: 10.24425/amm.2022.137505. DOI
Liu Z, Cai Y, Chen J, Han J, Mao Z, Chen M. Fabrication and characterization of friction stir–processed Mg–Zn–Ca biomaterials strengthened with MgO particles. Int. J. Adv. Manuf. Technol. 2021;117:919–932. doi: 10.1007/s00170-021-07814-9. DOI
Sagar P, Handa A. Role of tool rotational speed on the tribological characteristics of magnesium based az61a/tic composite developed via friction stir processing route. J. Achiev. Mater. Manuf. Eng. 2020;101:60–75. doi: 10.5604/01.3001.0014.4921. DOI
Moustafa EB, Melaibari A, Basha M. Wear and microhardness behaviors of AA7075/SiC-BN hybrid nanocomposite surfaces fabricated by friction stir processing. Ceram. Int. 2020;46:16938–16943. doi: 10.1016/j.ceramint.2020.03.274. DOI
Barmouz M, Asadi P, BesharatiGivi MK, Taherishargh M. Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles’ size and volume fraction. Mater. Sci. Eng. A. 2011;528:1740–1749. doi: 10.1016/j.msea.2010.11.006. DOI
Sithole LM, Madushele N. Surface treatment of magnesium AZ61 alloy with stainless steel powder by friction stir processing. Procedia Manuf. 2019;35:1047–1053. doi: 10.1016/j.promfg.2019.06.055. DOI
Qiao K, Zhang T, Wang K, Yuan S, Zhang S, Wang L, et al. Mg/ZrO2 metal matrix nanocomposites fabricated by friction stir processing: Microstructure, mechanical properties, and corrosion behavior. Front. Bioeng. Biotechnol. 2021;9:1–16. doi: 10.3389/fbioe.2021.605171. PubMed DOI PMC
Jin Y, Wang K, Wang W, Peng P, Zhou S, Huang L, et al. Microstructure and mechanical properties of AE42 rare earth-containing magnesium alloy prepared by friction stir processing. Mater. Charact. 2019;150:52–61. doi: 10.1016/j.matchar.2019.02.008. DOI
Luo XC, Kang LM, Liu HL, Li ZJ, Liu YF, Zhang DT, et al. Enhancing mechanical properties of AZ61 magnesium alloy via friction stir processing: Effect of processing parameters. Mater. Sci. Eng. A. 2020;797:139945. doi: 10.1016/j.msea.2020.139945. DOI
Vedabouriswaran G, Aravindan S. Wear characteristics of friction stir processed magnesium RZ 5 composites. J. Tribol. 2019;141:42039. doi: 10.1115/1.4042039. DOI
Ram B, Deepak D, Bala N. Microstructural refinement and enhancement in mechanical properties of magnesium/SiC as-cast composites via friction stir processing route. Trans. Indian Inst. Met. 2019 doi: 10.1007/s12666-019-01627-x. DOI
SuganyaPriyadharshini G, Satish Kumar T, Anbuchezhian N, VairaVignesh R, Subramanian R, Velmurugan T, Kamal Basha K. Influence of tool traverse speed on microstructure and mechanical properties of CuNi/B4C surface composites. Trans. IMF. 2021;99:38–45. doi: 10.1080/00202967.2020.1846360. DOI
Hosseinzadeh A, Yapici GG. On the high-temperature flow response of friction stir processed magnesium metal matrix composites. J. Eng. Mater. Technol. Trans. ASME. 2021;143:966. doi: 10.1115/1.4047966. DOI
Raja R, Jannet S, Thankachan T. Investigation of hybrid copper surface composite synthesized via FSP. Mater. Manuf. Process. 2021;36:1377–1383. doi: 10.1080/10426914.2021.1914841. DOI
Kumar TS, Shalini S, Ramu M, Thankachan T. Characterization of ZrC reinforced AA6061 alloy composites produced using stir casting process. J. Mech. Sci. Technol. 2020;34:143–147. doi: 10.1007/s12206-019-1214-0. DOI
Shyam Kumar CN, Bauri R, Yadav D. Wear properties of 5083 Al–W surface composite fabricated by friction stir processing. Tribol. Int. 2016;101:284–290. doi: 10.1016/j.triboint.2016.04.033. DOI
Zhu J, Jiang W, Li G, Guan F, Yu Y, Fan Z. Microstructure and mechanical properties of SiCnp/Al6082 aluminum matrix composites prepared by squeeze casting combined with stir casting. J. Mater. Process. Technol. 2020;283:116699. doi: 10.1016/j.jmatprotec.2020.116699. DOI
Kiliçkap E, Cakir O, Aksoy M, Inan A. Study of tool wear and surface roughness in machining of homogenised SiC-p reinforced aluminium metal matrix composite. J. Mater. Process. Technol. 2005;164–165:862–867. doi: 10.1016/j.jmatprotec.2005.02.109. DOI
Zhang Z, Du Y, Huang S, Meng F, Chen L, Xie W, Chang K, Zhang C, Lu Y, Lin CT, Li S. Macroscale superlubricity enabled by graphene-coated surfaces. Adv. Sci. 2020;7(4):1903239. doi: 10.1002/advs.201903239. PubMed DOI PMC
Zhang Z, Wang B, Kang R, Zhang B, Guo D. Changes in surface layer of silicon wafers from diamond scratching. CIRP Ann. 2015;64(1):349–352. doi: 10.1016/j.cirp.2015.04.005. DOI
Zhang Z, Wang X, Meng F, Liu D, Huang S, Cui J, Wang J, Wen W. Origin and evolution of a crack in silicon induced by a single grain grinding. J. Manuf. Process. 2022;75:617–626. doi: 10.1016/j.jmapro.2022.01.037. DOI
Wang B, Zhang Z, Chang K, Cui J, Rosenkranz A, Yu J, Lin CT, Chen G, Zang K, Luo J, Jiang N. New deformation-induced nanostructure in silicon. Nano Lett. 2018;18(7):4611–4617. doi: 10.1021/acs.nanolett.8b01910. PubMed DOI
Zhang Z, Huo F, Zhang X, Guo D. Fabrication and size prediction of crystalline nanoparticles of silicon induced by nanogrinding with ultrafine diamond grits. Scr. Mater. 2012;67(7–8):657–660. doi: 10.1016/j.scriptamat.2012.07.016. DOI
Zhang Z, Cui J, Wang B, Wang Z, Kang R, Guo D. A novel approach of mechanical chemical grinding. J. Alloys Compd. 2017;726:514–524. doi: 10.1016/j.jallcom.2017.08.024. DOI