Long read sequencing characterises a novel structural variant, revealing underactive AKR1C1 with overactive AKR1C2 as a possible cause of severe chronic fatigue
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
37978513
PubMed Central
PMC10655400
DOI
10.1186/s12967-023-04711-5
PII: 10.1186/s12967-023-04711-5
Knihovny.cz E-zdroje
- Klíčová slova
- AKR1C1, AKR1C2, Allopregnanolone, Fatigue, Long read sequencing, ME/CFS diagnosis, Neurosteroids, Structural variants,
- MeSH
- biologické markery MeSH
- hydroxysteroiddehydrogenasy MeSH
- lidé MeSH
- syndrom chronické únavy * MeSH
- tandemová hmotnostní spektrometrie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AKR1C2 protein, human MeSH Prohlížeč
- biologické markery MeSH
- hydroxysteroiddehydrogenasy MeSH
BACKGROUND: Causative genetic variants cannot yet be found for many disorders with a clear heritable component, including chronic fatigue disorders like myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). These conditions may involve genes in difficult-to-align genomic regions that are refractory to short read approaches. Structural variants in these regions can be particularly hard to detect or define with short reads, yet may account for a significant number of cases. Long read sequencing can overcome these difficulties but so far little data is available regarding the specific analytical challenges inherent in such regions, which need to be taken into account to ensure that variants are correctly identified. Research into chronic fatigue disorders faces the additional challenge that the heterogeneous patient populations likely encompass multiple aetiologies with overlapping symptoms, rather than a single disease entity, such that each individual abnormality may lack statistical significance within a larger sample. Better delineation of patient subgroups is needed to target research and treatment. METHODS: We use nanopore sequencing in a case of unexplained severe fatigue to identify and fully characterise a large inversion in a highly homologous region spanning the AKR1C gene locus, which was indicated but could not be resolved by short-read sequencing. We then use GC-MS/MS serum steroid analysis to investigate the functional consequences. RESULTS: Several commonly used bioinformatics tools are confounded by the homology but a combined approach including visual inspection allows the variant to be accurately resolved. The DNA inversion appears to increase the expression of AKR1C2 while limiting AKR1C1 activity, resulting in a relative increase of inhibitory GABAergic neurosteroids and impaired progesterone metabolism which could suppress neuronal activity and interfere with cellular function in a wide range of tissues. CONCLUSIONS: This study provides an example of how long read sequencing can improve diagnostic yield in research and clinical care, and highlights some of the analytical challenges presented by regions containing tandem arrays of genes. It also proposes a novel gene associated with a novel disease aetiology that may be an underlying cause of complex chronic fatigue. It reveals biomarkers that could now be assessed in a larger cohort, potentially identifying a subset of patients who might respond to treatments suggested by the aetiology.
Zobrazit více v PubMed
100,000 Genomes pilot on rare-disease diagnosis in health care—preliminary report. N Engl J Med 2021;385:1868–1880. 10.1056/NEJMoa2035790 PubMed PMC
Das S, Taylor K, Kozubek J, Sardell J, Gardner S. Genetic risk factors for ME/CFS identified using combinatorial analysis. J Transl Med. 2022;20:598. doi: 10.1186/s12967-022-03815-8. PubMed DOI PMC
Dibble JJ, McGrath SJ, Ponting CP. Genetic risk factors of ME/CFS: a critical review. Hum Mol Genet. 2020;29:R117–R124. doi: 10.1093/hmg/ddaa169. PubMed DOI PMC
Montoya JG, Dowell TG, Mooney AE, Dimmock ME, Chu L. Caring for the patient with severe or very severe myalgic encephalomyelitis/chronic fatigue syndrome. Healthcare. 2021;9:1331. doi: 10.3390/healthcare9101331. PubMed DOI PMC
Mastrorosa FK, Miller DE, Eichler EE. Applications of long-read sequencing to Mendelian genetics. Genome Med. 2023;15:42. doi: 10.1186/s13073-023-01194-3. PubMed DOI PMC
Sanford Kobayashi E, Batalov S, Wenger AM, et al. Approaches to long-read sequencing in a clinical setting to improve diagnostic rate. Sci Rep. 2022;12:16945. doi: 10.1038/s41598-022-20113-x. PubMed DOI PMC
Penning TM, Wangtrakuldee P, Auchus RJ. Structural and functional biology of aldo-keto reductase steroid-transforming enzymes. Endocr Rev. 2019;40:447–475. doi: 10.1210/er.2018-00089. PubMed DOI PMC
Rogawski MA, Loya CM, Reddy K, Zolkowska D, Lossin C. Neuroactive steroids for the treatment of status epilepticus. Epilepsia. 2013;54:93–98. doi: 10.1111/epi.12289. PubMed DOI PMC
Azeez JM, Susmi TR, Remadevi V, Ravindran V, Sasikumar Sujatha A, Ayswarya R, et al. New insights into the functions of progesterone receptor (PR) isoforms and progesterone signaling. Am J Cancer Res. 2021;11:5214–5232. PubMed PMC
Bäckström T, Das R, Bixo M. Positive GABA A receptor modulating steroids and their antagonists: Implications for clinical treatments. J Neuroendocrinol. 2022 doi: 10.1111/jne.13013. PubMed DOI
Detlefsen AJ, Paulukinas RD, Penning TM. Germline mutations in steroid metabolizing enzymes: a focus on steroid transforming aldo-keto reductases. Int J Mol Sci. 2023;24:1873. doi: 10.3390/ijms24031873. PubMed DOI PMC
Oehler JB, Wright H, Stark Z, Mallett AJ, Schmitz U. The application of long-read sequencing in clinical settings. Hum Genomics. 2023;17:73. doi: 10.1186/s40246-023-00522-3. PubMed DOI PMC
Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, Cox AJ, Kruglyak S, Saunders CT. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32:1220–1222. doi: 10.1093/bioinformatics/btv710. PubMed DOI
Roller E, Ivakhno S, Lee S, Royce T, Tanner S. Canvas: versatile and scalable detection of copy number variants. Bioinformatics. 2016;32:2375–2377. doi: 10.1093/bioinformatics/btw163. PubMed DOI
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC
De Coster W, Rademakers R. NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics. 2023;39:btad311. doi: 10.1093/bioinformatics/btad311. PubMed DOI PMC
Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, Von Haeseler A, Schatz MC. Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods. 2018;15:461–468. doi: 10.1038/s41592-018-0001-7. PubMed DOI PMC
Pais LS, Snow H, Weisburd B, et al. seqr : A web-based analysis and collaboration tool for rare disease genomics. Hum Mutat Hum. 2022 doi: 10.1002/humu.24366. PubMed DOI PMC
Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–192. doi: 10.1093/bib/bbs017. PubMed DOI PMC
Danecek P, Bonfield JK, Liddle J, et al. Twelve years of SAMtools and BCFtools. GigaScience. 2021;10:giab008. doi: 10.1093/gigascience/giab008. PubMed DOI PMC
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37:540–546. doi: 10.1038/s41587-019-0072-8. PubMed DOI
Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–746. doi: 10.1101/gr.214270.116. PubMed DOI PMC
Shumate A, Salzberg SL. Liftoff: accurate mapping of gene annotations. Bioinformatics. 2021;37:1639–1643. doi: 10.1093/bioinformatics/btaa1016. PubMed DOI PMC
Hill M, Hána V, Velíková M, et al. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol Res. 2019 doi: 10.33549/physiolres.934124. PubMed DOI
Kulakovskiy IV, Vorontsov IE, Yevshin IS, et al. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res. 2018;46:D252–D259. doi: 10.1093/nar/gkx1106. PubMed DOI PMC
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler AD. The Human Genome Browser at UCSC. Genome Res. 2002;12:996–1006. doi: 10.1101/gr.229102. PubMed DOI PMC
Ostinelli G, Vijay J, Vohl M-C, Grundberg E, Tchernof A. AKR1C2 and AKR1C3 expression in adipose tissue: Association with body fat distribution and regulatory variants. Mol Cell Endocrinol. 2021;527:111220. doi: 10.1016/j.mce.2021.111220. PubMed DOI PMC
Penning TM, Chen M, Jin Y. Promiscuity and diversity in 3-ketosteroid reductases. J Steroid Biochem Mol Biol. 2015;151:93–101. doi: 10.1016/j.jsbmb.2014.12.003. PubMed DOI PMC
Ghit A, Assal D, Al-Shami AS, Hussein DEE. GABAA receptors: structure, function, pharmacology, and related disorders. J Genet Eng Biotechnol. 2021;19:123. doi: 10.1186/s43141-021-00224-0. PubMed DOI PMC
Liang JJ, Rasmusson AM. Overview of the molecular steps in steroidogenesis of the GABAergic neurosteroids allopregnanolone and pregnanolone. Chronic Stress. 2018;2:247054701881855. doi: 10.1177/2470547018818555. PubMed DOI PMC
Steckelbroeck S, Jin Y, Gopishetty S, Oyesanmi B, Penning TM. Human cytosolic 3α-hydroxysteroid dehydrogenases of the aldo-keto reductase superfamily display significant 3β-hydroxysteroid dehydrogenase activity. J Biol Chem. 2004;279:10784–10795. doi: 10.1074/jbc.M313308200. PubMed DOI
Bixo M, Andersson A, Winblad B, Purdy RH, Bäckström T. Progesterone, 5α-pregnane-3,20-dione and 3α-hydroxy-5α-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res. 1997;764:173–178. doi: 10.1016/S0006-8993(97)00455-1. PubMed DOI
Kancheva R, Hill M, Novák Z, Chrastina J, Kancheva L, Stárka L. Neuroactive steroids in periphery and cerebrospinal fluid. Neuroscience. 2011;191:22–27. doi: 10.1016/j.neuroscience.2011.05.054. PubMed DOI
Kancheva R, Hill M, Cibula D, Včeláková H, Kancheva L, Vrbíková J, Fait T, Pařízek A, Stárka L. Relationships of circulating pregnanolone isomers and their polar conjugates to the status of sex, menstrual cycle, and pregnancy. J Endocrinol. 2007;195:67–78. doi: 10.1677/JOE-06-0192. PubMed DOI
Mody I, Maguire J. The reciprocal regulation of stress hormones and GABAA receptors. Front Cell Neurosci. 2012 doi: 10.3389/fncel.2012.00004. PubMed DOI PMC
Korpal AK, Han SY, Schwenke DO, Brown CH. A switch from GABA inhibition to excitation of vasopressin neurones exacerbates the development of angiotensin II-dependent hypertension. J Neuroendocrinol. 2018;30:e12564. doi: 10.1111/jne.12564. PubMed DOI
The Human Protein Atlas - Tissue expression of AKR1C1. https://www.proteinatlas.org/ENSG00000187134-AKR1C1/tissue. Accessed 11 Feb 2023
The Human Protein Atlas - Tissue expression of AKR1C2. https://www.proteinatlas.org/ENSG00000151632-AKR1C2/tissue. Accessed 11 Feb 2023
Quinkler M, Bumke-Vogt C, Meyer B, Bähr V, Oelkers W, Diederich S. The human kidney is a progesterone-metabolizing and androgen-producing organ. J Clin Endocrinol Metab. 2003;88:2803–2809. doi: 10.1210/jc.2002-021970. PubMed DOI
Salyer SA, Parks J, Barati MT, Lederer ED, Clark BJ, Klein JD, Khundmiri SJ. Aldosterone regulates Na+, K+ ATPase activity in human renal proximal tubule cells through mineralocorticoid receptor. Biochim Biophys Acta BBA - Mol Cell Res. 2013;1833:2143–2152. doi: 10.1016/j.bbamcr.2013.05.009. PubMed DOI
Auteri M, Zizzo M, Serio R. The GABAergic system and the gastrointestinal physiopathology. Curr Pharm Des. 2015;21:4996–5016. doi: 10.2174/1381612821666150914121518. PubMed DOI
Natelson BH. Myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia: definitions, similarities and differences. Clin Ther. 2019;41:612–618. doi: 10.1016/j.clinthera.2018.12.016. PubMed DOI PMC
Lin Y-J, Ko Y-C, Chow L-H, Hsiao F-J, Liu H-Y, Wang P-N, Chen W-T. Salivary cortisol is associated with cognitive changes in patients with fibromyalgia. Sci Rep. 2021;11:1311. doi: 10.1038/s41598-020-79349-0. PubMed DOI PMC
Komaroff AL, Lipkin WI. ME/CFS and long COVID share similar symptoms and biological abnormalities: road map to the literature. Front Med. 2023 doi: 10.3389/fmed.2023.1187163. PubMed DOI PMC
GABAA receptors modulate sympathetic vasomotor outflow and the pressor response to skeletal muscle metaboreflex activation in humans. 10.1113/JP277929 PubMed
Hamidovic A, Davis J, Soumare F, Naveed A, Ghani Y, Semiz S, Khalil D, Wardle M. Allopregnanolone is associated with a stress-induced reduction of heart rate variability in premenstrual dysphoric disorder. J Clin Med. 2023;12:1553. doi: 10.3390/jcm12041553. PubMed DOI PMC
Pollack B, von Saltza E, McCorkell L, Santos L, Hultman A, Cohen AK, Soares L. Female reproductive health impacts of Long COVID and associated illnesses including ME/CFS, POTS, and connective tissue disorders: a literature review. Front Rehabil Sci. 2023;4:1122673. doi: 10.3389/fresc.2023.1122673. PubMed DOI PMC
Arout CA, Sofuoglu M, Bastian LA, Rosenheck RA. Gender differences in the prevalence of fibromyalgia and in concomitant medical and psychiatric disorders: a national veterans health administration study. J Womens Health. 2018;27:1035–1044. doi: 10.1089/jwh.2017.6622. PubMed DOI PMC
DecodeME. https://www.decodeme.org.uk. Accessed 17 Aug 2023
Hara A, Matsuura K, Tamada Y, Sato K, Miyabe Y, Deyashiki Y, Ishida N. Relationship of human liver dihydrodiol dehydrogenases to hepatic bile-acid-binding protein and an oxidoreductase of human colon cells. Biochem J. 1996;313:373–376. doi: 10.1042/bj3130373. PubMed DOI PMC
Parry GJ, Rodrigues CMP, Aranha MM, Hilbert SJ, Davey C, Kelkar P, Low WC, Steer CJ. Safety, tolerability, and cerebrospinal fluid penetration of ursodeoxycholic acid in patients with amyotrophic lateral sclerosis. Clin Neuropharmacol. 2010;33:17–21. doi: 10.1097/WNF.0b013e3181c47569. PubMed DOI