Brain Metabolism of Allopregnanolone and Isoallopregnanolone in Male Rat Brain

. 2025 Sep 03 ; 26 (17) : . [epub] 20250903

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40943479

Allopregnanolone (allo) and isoallopregnanolone (isoallo) are neuroactive steroid epimers that differ in hydroxyl orientation at carbon three. Allo is a potent GABA-A receptor agonist, while isoallo acts as an antagonist, influencing brain function through their interconversion. Their metabolism varies across brain regions due to enzyme distribution, with AKR1C1-AKR1C3 active in the brain and AKR1C4 restricted to the liver. In rats, AKR1C9 (liver) and AKR1C14 (intestine) perform similar roles. Beyond AKR1Cs, HSD17Bs regulate steroid balance, with HSD17B6 active in the liver, thyroid, and lung, while HSD17B10, a mitochondrial enzyme, influences metabolism in high-energy tissues. Our current data obtained using the GC-MS/MS platform show that allo and isoallo in rats undergo significant metabolic conversion, suggesting a regulatory role in neurosteroid action. High allo levels following isoallo injection indicate brain interconversion, while isoallo clears more slowly from blood and undergoes extensive conjugation. Metabolite patterns differ between brain and plasma-allo injection leads to 5α-DHP and isoallo production, whereas isoallo treatment primarily yields allo. Human plasma contains mostly sulfate/glucuronided steroids (2.4-6% non-sulfate/glucuronided), whereas male rats exhibit much higher free steroid levels (29-56%), likely due to the absence of zona reticularis. These findings highlight tissue-specific enzymatic differences, which may impact neurosteroid regulation and CNS disorders.

Zobrazit více v PubMed

Ebner M.J., Corol D.I., Havlikova H., Honour J.W., Fry J.P. Identification of neuroactive steroids and their precursors and metabolites in adult male rat brain. Endocrinology. 2006;147:179–190. doi: 10.1210/en.2005-1065. PubMed DOI

Mathur C., Prasad V.V., Raju V.S., Welch M., Lieberman S. Steroids and their conjugates in the mammalian brain. Proc. Natl. Acad. Sci. USA. 1993;90:85–88. doi: 10.1073/pnas.90.1.85. PubMed DOI PMC

Saalmann Y.B., Kirkcaldie M.T., Waldron S., Calford M.B. Cellular distribution of the GABAA receptor-modulating 3alpha-hydroxy, 5alpha-reduced pregnane steroids in the adult rat brain. J. Neuroendocrinol. 2007;19:272–284. doi: 10.1111/j.1365-2826.2006.01527.x. PubMed DOI

Majewska M.D., Harrison N.L., Schwartz R.D., Barker J.L., Paul S.M. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986;232:1004–1007. doi: 10.1126/science.2422758. PubMed DOI

Havlikova H., Hill M., Kancheva L., Vrbikova J., Pouzar V., Cerny I., Kancheva R., Starka L. Serum profiles of free and conjugated neuroactive pregnanolone isomers in nonpregnant women of fertile age. J. Clin. Endocrinol. Metab. 2006;91:3092–3099. doi: 10.1210/jc.2005-2785. PubMed DOI

Backstrom T., Andersson A., Andree L., Birzniece V., Bixo M., Bjorn I., Haage D., Isaksson M., Johansson I.M., Lindblad C., et al. Pathogenesis in menstrual cycle-linked CNS disorders. Ann. N. Y. Acad. Sci. 2003;1007:42–53. doi: 10.1196/annals.1286.005. PubMed DOI

Lundgren P., Stromberg J., Backstrom T., Wang M. Allopregnanolone-stimulated GABA-mediated chloride ion flux is inhibited by 3β-hydroxy-5α-pregnan-20-one (isoallopregnanolone) Brain Res. 2003;982:45–53. doi: 10.1016/S0006-8993(03)02939-1. PubMed DOI

Stromberg J., Haage D., Taube M., Backstrom T., Lundgren P. Neurosteroid modulation of allopregnanolone and GABA effect on the GABA-A receptor. Neuroscience. 2006;143:73–81. doi: 10.1016/j.neuroscience.2006.07.031. PubMed DOI

Backstrom T., Wahlstrom G., Wahlstrom K., Zhu D., Wang M.D. Isoallopregnanolone; an antagonist to the anaesthetic effect of allopregnanolone in male rats. Eur. J. Pharmacol. 2005;512:15–21. doi: 10.1016/j.ejphar.2005.01.049. PubMed DOI

Bengtsson S.K., Nyberg S., Hedstrom H., Zingmark E., Jonsson B., Backstrom T., Bixo M. Isoallopregnanolone antagonize allopregnanolone-induced effects on saccadic eye velocity and self-reported sedation in humans. Psychoneuroendocrinology. 2015;52:22–31. doi: 10.1016/j.psyneuen.2014.10.025. PubMed DOI

Wang M., He Y., Eisenman L.N., Fields C., Zeng C.M., Mathews J., Benz A., Fu T., Zorumski E., Steinbach J.H., et al. 3beta -hydroxypregnane steroids are pregnenolone sulfate-like GABA(A) receptor antagonists. J. Neurosci. 2002;22:3366–3375. doi: 10.1523/JNEUROSCI.22-09-03366.2002. PubMed DOI PMC

Huang X.F., Luu-The V. Molecular characterization of a first human 3(α→β)-hydroxysteroid epimerase. J. Biol. Chem. 2000;275:29452–29457. doi: 10.1074/jbc.M000562200. PubMed DOI

Huang X.F., Luu-The V. Gene structure, chromosomal localization and analysis of 3-ketosteroid reductase activity of the human 3(α→β)-hydroxysteroid epimerase. Biochim. Biophys. Acta. 2001;1520:124–130. doi: 10.1016/S0167-4781(01)00247-0. PubMed DOI

Hung C.F., Penning T.M. Members of the nuclear factor 1 transcription factor family regulate rat 3α-hydroxysteroid/dihydrodiol dehydrogenase (3α-HSD/DD AKR1C9) gene expression: A member of the aldo-keto reductase superfamily. Mol. Endocrinol. 1999;13:1704–1717. doi: 10.1210/mend.13.10.0363. PubMed DOI

Dam P.T.M., Jang Y.J., Kim J.Y., Choi S.G., Park J.I., Seo Y.W., Chun S.Y. Expression of aldo-keto reductase family 1, member C14 during ovulation in the rat. Endocr. J. 2017;64:797–805. doi: 10.1507/endocrj.EJ17-0038. PubMed DOI

Epperson C.N., Rubinow D.R., Meltzer-Brody S., Deligiannidis K.M., Riesenberg R., Krystal A.D., Bankole K., Huang M.Y., Li H., Brown C., et al. Effect of brexanolone on depressive symptoms, anxiety, and insomnia in women with postpartum depression: Pooled analyses from 3 double-blind, randomized, placebo-controlled clinical trials in the HUMMINGBIRD clinical program. J. Affect. Disord. 2023;320:353–359. doi: 10.1016/j.jad.2022.09.143. PubMed DOI

Bixo M., Ekberg K., Poromaa I.S., Hirschberg A.L., Jonasson A.F., Andreen L., Timby E., Wulff M., Ehrenborg A., Backstrom T. Treatment of premenstrual dysphoric disorder with the GABA(A) receptor modulating steroid antagonist Sepranolone (UC1010)-A randomized controlled trial. Psychoneuroendocrinology. 2017;80:46–55. doi: 10.1016/j.psyneuen.2017.02.031. PubMed DOI

Backstrom T., Ekberg K., Hirschberg A.L., Bixo M., Epperson C.N., Briggs P., Panay N., O’Brien S. A randomized, double-blind study on efficacy and safety of sepranolone in premenstrual dysphoric disorder. Psychoneuroendocrinology. 2021;133:105426. doi: 10.1016/j.psyneuen.2021.105426. PubMed DOI

Hill M., Parizek A., Kancheva R., Duskova M., Velikova M., Kriz L., Klimkova M., Paskova A., Zizka Z., Matucha P., et al. Steroid metabolome in plasma from the umbilical artery, umbilical vein, maternal cubital vein and in amniotic fluid in normal and preterm labor. J. Steroid Biochem. Mol. Biol. 2010;121:594–610. doi: 10.1016/j.jsbmb.2009.10.012. PubMed DOI

Osborne L.M., Etyemez S., Pinna G., Alemani R., Standeven L.R., Wang X.Q., Payne J.L. Neuroactive steroid biosynthesis during pregnancy predicts future postpartum depression: A role for the 3α and/or 3β-HSD neurosteroidogenic enzymes? Neuropsychopharmacology. 2025;50:904–912. doi: 10.1038/s41386-025-02052-z. Erratum in Neuropsychopharmacology 2025, 50, 1021. PubMed DOI PMC

Mellon S.H., Griffin L.D., Compagnone N.A. Biosynthesis and action of neurosteroids. Brain Res. Brain Res. Rev. 2001;37:3–12. doi: 10.1016/S0165-0173(01)00109-6. PubMed DOI

Agis-Balboa R.C., Pinna G., Zhubi A., Maloku E., Veldic M., Costa E., Guidotti A. Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc. Natl. Acad. Sci. USA. 2006;103:14602–14607. doi: 10.1073/pnas.0606544103. PubMed DOI PMC

Caruso D., Pesaresi M., Abbiati F., Calabrese D., Giatti S., Garcia-Segura L.M., Melcangi R.C. Comparison of plasma and cerebrospinal fluid levels of neuroactive steroids with their brain, spinal cord and peripheral nerve levels in male and female rats. Psychoneuroendocrinology. 2013;38:2278–2290. doi: 10.1016/j.psyneuen.2013.04.016. PubMed DOI

Giatti S., Diviccaro S., Serafini M.M., Caruso D., Garcia-Segura L.M., Viviani B., Melcangi R.C. Sex differences in steroid levels and steroidogenesis in the nervous system: Physiopathological role. Front. Neuroendocrinol. 2020;56:100804. doi: 10.1016/j.yfrne.2019.100804. PubMed DOI

Zamora-Sanchez C.J., Camacho-Arroyo I. Allopregnanolone: Metabolism, Mechanisms of Action, and Its Role in Cancer. Int. J. Mol. Sci. 2023;24:560. doi: 10.3390/ijms24010560. PubMed DOI PMC

Bengtsson S.K.S., Backstrom T., Brinton R., Irwin R.W., Johansson M., Sjostedt J., Wang M.D. GABA-A receptor modulating steroids in acute and chronic stress; relevance for cognition and dementia? Neurobiol. Stress. 2020;12:100206. doi: 10.1016/j.ynstr.2019.100206. PubMed DOI PMC

Wang M.D., Wahlstrom G., Gee K.W., Backstrom T. Potency of lipid and protein formulation of 5α-pregnanolone at induction of anaesthesia and the corresponding regional brain distribution. Br. J. Anaesth. 1995;74:553–557. doi: 10.1093/bja/74.5.553. PubMed DOI

Ossewaarde L., van Wingen G.A., Kooijman S.C., Backstrom T., Fernandez G., Hermans E.J. Changes in functioning of mesolimbic incentive processing circuits during the premenstrual phase. Soc. Cogn. Affect. Neurosci. 2011;6:612–620. doi: 10.1093/scan/nsq071. PubMed DOI PMC

Stiernman L., Dubol M., Comasco E., Sundstrom-Poromaa I., Boraxbekk C.J., Johansson M., Bixo M. Emotion-induced brain activation across the menstrual cycle in individuals with premenstrual dysphoric disorder and associations to serum levels of progesterone-derived neurosteroids. Transl. Psychiatry. 2023;13:124. doi: 10.1038/s41398-023-02424-3. PubMed DOI PMC

Belyaeva O.V., Chetyrkin S.V., Clark A.L., Kostereva N.V., SantaCruz K.S., Chronwall B.M., Kedishvili N.Y. Role of microsomal retinol/sterol dehydrogenase-like short-chain dehydrogenases/reductases in the oxidation and epimerization of 3α-hydroxysteroids in human tissues. Endocrinology. 2007;148:2148–2156. doi: 10.1210/en.2006-1491. PubMed DOI PMC

Dombroski R.A., Casey M.L., MacDonald P.C. 5-Alpha-dihydroprogesterone formation in human placenta from 5alpha-pregnan-3beta/alpha-ol-20-ones and 5-pregnan-3beta-yl-20-one sulfate. J. Steroid Biochem. Mol. Biol. 1997;63:155–163. doi: 10.1016/S0960-0760(97)00058-7. PubMed DOI

Stromstedt M., Warner M., Banner C.D., MacDonald P.C., Gustafsson J.A. Role of brain cytochrome P450 in regulation of the level of anesthetic steroids in the brain. Mol. Pharmacol. 1993;44:1077–1083. doi: 10.1016/S0026-895X(25)13279-3. PubMed DOI

Vallee M., Rivera J.D., Koob G.F., Purdy R.H., Fitzgerald R.L. Quantification of neurosteroids in rat plasma and brain following swim stress and allopregnanolone administration using negative chemical ionization gas chromatography/mass spectrometry. Anal. Biochem. 2000;287:153–166. doi: 10.1006/abio.2000.4841. PubMed DOI

Steckelbroeck S., Watzka M., Stoffel-Wagner B., Hans V.H., Redel L., Clusmann H., Elger C.E., Bidlingmaier F., Klingmuller D. Expression of the 17β-hydroxysteroid dehydrogenase type 5 mRNA in the human brain. Mol. Cell Endocrinol. 2001;171:165–168. doi: 10.1016/S0303-7207(00)00432-9. PubMed DOI

Penning T.M., Chen M., Jin Y. Promiscuity and diversity in 3-ketosteroid reductases. J. Steroid Biochem. Mol. Biol. 2015;151:93–101. doi: 10.1016/j.jsbmb.2014.12.003. PubMed DOI PMC

Penning T.M., Wangtrakuldee P., Auchus R.J. Structural and Functional Biology of Aldo-Keto Reductase Steroid-Transforming Enzymes. Endocr. Rev. 2019;40:447–475. doi: 10.1210/er.2018-00089. PubMed DOI PMC

Bixo M., Andersson A., Winblad B., Purdy R.H., Backstrom T. Progesterone, 5alpha-pregnane-3,20-dione and 3alpha-hydroxy-5alpha-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res. 1997;764:173–178. doi: 10.1016/S0006-8993(97)00455-1. PubMed DOI

Wang M.D., Wahlstrom G., Backstrom T. The regional brain distribution of the neurosteroids pregnenolone and pregnenolone sulfate following intravenous infusion. J. Steroid Biochem. Mol. Biol. 1997;62:299–306. doi: 10.1016/S0960-0760(97)00041-1. PubMed DOI

Kancheva R., Hill M., Novak Z., Chrastina J., Velikova M., Kancheva L., Riha I., Starka L. Peripheral neuroactive steroids may be as good as the steroids in the cerebrospinal fluid for the diagnostics of CNS disturbances. J. Steroid Biochem. Mol. Biol. 2010;119:35–44. doi: 10.1016/j.jsbmb.2009.12.006. PubMed DOI

Qaiser M.Z., Dolman D.E.M., Begley D.J., Abbott N.J., Cazacu-Davidescu M., Corol D.I., Fry J.P. Uptake and metabolism of sulphated steroids by the blood-brain barrier in the adult male rat. J. Neurochem. 2017;142:672–685. doi: 10.1111/jnc.14117. PubMed DOI PMC

Chantilis S., Dombroski R., Shackleton C.H., Casey M.L., MacDonald P.C. Metabolism of 5 alpha-dihydroprogesterone in women and men: 3 beta- and 3 alpha-,6 alpha-dihydroxy-5 alpha-pregnan-20-ones are major urinary metabolites. J. Clin. Endocrinol. Metab. 1996;81:3644–3649. PubMed

Gemzik B., Parkinson A. Hydroxylation of 5α-androstane-3β,17β-diol by rat prostate microsomes: Potent inhibition by imidazole-type antimycotic drugs and lack of inhibition by steroid 5α-reductase inhibitors. Arch. Biochem. Biophys. 1992;296:366–373. doi: 10.1016/0003-9861(92)90586-L. PubMed DOI

Sundin M., Warner M., Haaparanta T., Gustafsson J.A. Isolation and catalytic activity of cytochrome P-450 from ventral prostate of control rats. J. Biol. Chem. 1987;262:12293–12297. doi: 10.1016/S0021-9258(18)45350-1. PubMed DOI

Funae Y., Kishimoto W., Cho T., Niwa T., Hiroi T. CYP2D in the brain. Drug Metab. Pharmacokinet. 2003;18:337–349. doi: 10.2133/dmpk.18.337. PubMed DOI

Koganti P.P., Selvaraj V. Single cell resolution of neurosteroidogenesis in the murine brain: De novo biosynthesis. J. Endocrinol. 2025;265:e240318. doi: 10.1530/JOE-24-0318. PubMed DOI PMC

Johansson I.M., Birzniece V., Lindblad C., Olsson T., Backstrom T. Allopregnanolone inhibits learning in the Morris water maze. Brain Res. 2002;934:125–131. doi: 10.1016/S0006-8993(02)02414-9. PubMed DOI

Zhu D., Birzniece V., Backstrom T., Wahlstrom G. Dynamic aspects of acute tolerance to allopregnanolone evaluated using anaesthesia threshold in male rats. Br. J. Anaesth. 2004;93:560–567. doi: 10.1093/bja/aeh233. PubMed DOI

Wang M., Backstrom T., Sundstrom I., Wahlstrom G., Olsson T., Zhu D., Johansson I.M., Bjorn I., Bixo M. Neuroactive steroids and central nervous system disorders. Int. Rev. Neurobiol. 2001;46:421–459. PubMed

Kancheva R., Hill M., Cibula D., Vcelakova H., Kancheva L., Vrbikova J., Fait T., Parizek A., Starka L. Relationships of circulating pregnanolone isomers and their polar conjugates to the status of sex, menstrual cycle, and pregnancy. J. Endocrinol. 2007;195:67–78. doi: 10.1677/JOE-06-0192. PubMed DOI

Kim Y.S., Zhang H., Kim H.Y. Profiling neurosteroids in cerebrospinal fluids and plasma by gas chromatography/electron capture negative chemical ionization mass spectrometry. Anal. Biochem. 2000;277:187–195. doi: 10.1006/abio.1999.4384. PubMed DOI

Eechaute W.P., Dhooge W.S., Gao C.Q., Calders P., Rubens R., Weyne J., Kaufman J.M. Progesterone-transforming enzyme activity in the hypothalamus of the male rat. J. Steroid Biochem. Mol. Biol. 1999;70:159–167. doi: 10.1016/S0960-0760(99)00106-5. PubMed DOI

Kudova E., Mares P., Hill M., Vondrakova K., Tsenov G., Chodounska H., Kubova H., Vales K. The Neuroactive Steroid Pregnanolone Glutamate: Anticonvulsant Effect, Metabolites and Its Effect on Neurosteroid Levels in Developing Rat Brains. Pharmaceuticals. 2022;15:49. doi: 10.3390/ph15010049. PubMed DOI PMC

Landgren S., Aasly J., Backstrom T., Dubrovsky B., Danielsson E. The effect of progesterone and its metabolites on the interictal epileptiform discharge in the cat’s cerebral cortex. Acta Physiol. Scand. 1987;131:33–42. doi: 10.1111/j.1748-1716.1987.tb08202.x. PubMed DOI

Do Rego J.L., Seong J.Y., Burel D., Leprince J., Luu-The V., Tsutsui K., Tonon M.C., Pelletier G., Vaudry H. Neurosteroid biosynthesis: Enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front. Neuroendocrinol. 2009;30:259–301. doi: 10.1016/j.yfrne.2009.05.006. PubMed DOI

Steckelbroeck S., Jin Y., Gopishetty S., Oyesanmi B., Penning T.M. Human cytosolic 3α-hydroxysteroid dehydrogenases of the aldo-keto reductase superfamily display significant 3β-hydroxysteroid dehydrogenase activity: Implications for steroid hormone metabolism and action. J. Biol. Chem. 2004;279:10784–10795. doi: 10.1074/jbc.M313308200. PubMed DOI

Trauger J.W., Jiang A., Stearns B.A., LoGrasso P.V. Kinetics of allopregnanolone formation catalyzed by human 3α-hydroxysteroid dehydrogenase type III (AKR1C2) Biochemistry. 2002;41:13451–13459. doi: 10.1021/bi026109w. PubMed DOI

Rizner T.L., Smuc T., Rupreht R., Sinkovec J., Penning T.M. AKR1C1 and AKR1C3 may determine progesterone and estrogen ratios in endometrial cancer. Mol. Cell Endocrinol. 2006;248:126–135. doi: 10.1016/j.mce.2005.10.009. PubMed DOI

Liang J.J., Rasmusson A.M. Overview of the Molecular Steps in Steroidogenesis of the GABAergic Neurosteroids Allopregnanolone and Pregnanolone. Chronic Stress. 2018;2:1–17. doi: 10.1177/2470547018818555. PubMed DOI PMC

Steckelbroeck S., Watzka M., Reichelt R., Hans V.H., Stoffel-Wagner B., Heidrich D.D., Schramm J., Bidlingmaier F., Klingmuller D. Characterization of the 5alpha-reductase-3alpha-hydroxysteroid dehydrogenase complex in the human brain. J. Clin. Endocrinol. Metab. 2001;86:1324–1331. PubMed

Stoffel-Wagner B., Watzka M., Steckelbroeck S., Ludwig M., Clusmann H., Bidlingmaier F., Casarosa E., Luisi S., Elger C.E., Beyenburg S. Allopregnanolone serum levels and expression of 5α-reductase and 3α-hydroxysteroid dehydrogenase isoforms in hippocampal and temporal cortex of patients with epilepsy. Epilepsy Res. 2003;54:11–19. doi: 10.1016/S0920-1211(03)00036-6. PubMed DOI

Higaki Y., Usami N., Shintani S., Ishikura S., El-Kabbani O., Hara A. Selective and potent inhibitors of human 20α-hydroxysteroid dehydrogenase (AKR1C1) that metabolizes neurosteroids derived from progesterone. Chem. Biol. Interact. 2003;143–144:503–513. doi: 10.1016/S0009-2797(02)00206-5. PubMed DOI

Timby E., Balgard M., Nyberg S., Spigset O., Andersson A., Porankiewicz-Asplund J., Purdy R.H., Zhu D., Backstrom T., Poromaa I.S. Pharmacokinetic and behavioral effects of allopregnanolone in healthy women. Psychopharmacology. 2006;186:414–424. doi: 10.1007/s00213-005-0148-7. PubMed DOI

Oakley J., Hill M., Giess A., Tanguy M., Elgar G. Long read sequencing characterises a novel structural variant, revealing underactive AKR1C1 with overactive AKR1C2 as a possible cause of severe chronic fatigue. J. Transl. Med. 2023;21:825. doi: 10.1186/s12967-023-04711-5. PubMed DOI PMC

Chetyrkin S.V., Hu J., Gough W.H., Dumaual N., Kedishvili N.Y. Further characterization of human microsomal 3α-hydroxysteroid dehydrogenase. Arch. Biochem. Biophys. 2001;386:1–10. doi: 10.1006/abbi.2000.2203. PubMed DOI

Hedström H., Bixo M., Nyberg S., Spigset O., Zingmark E., Bäckström T. Studies of pharmacokinetic and pharmacodynamic properties of isoallopregnanolone in healthy women. Psychopharmacology. 2009;203:85–98. doi: 10.1007/s00213-008-1372-8. PubMed DOI

Pihlajoki M., Dorner J., Cochran R.S., Heikinheimo M., Wilson D.B. Adrenocortical zonation, renewal, and remodeling. Front. Endocrinol. 2015;6:27. doi: 10.3389/fendo.2015.00027. PubMed DOI PMC

Rege J., Nakamura Y., Wang T., Merchen T.D., Sasano H., Rainey W.E. Transcriptome profiling reveals differentially expressed transcripts between the human adrenal zona fasciculata and zona reticularis. J. Clin. Endocrinol. Metab. 2014;99:E518–E527. doi: 10.1210/jc.2013-3198. PubMed DOI PMC

Setchell K.D., Alme B., Axelson M., Sjovall J. The multicomponent analysis of conjugates of neutral steroids in urine by lipophilic ion exchange chromatography and computerised gas chromatography-mass spectrometry. J. Steroid Biochem. 1976;7:615–629. doi: 10.1016/0022-4731(76)90086-8. PubMed DOI

Dehennin L., Lafarge P., Dailly P., Bailloux D., Lafarge J.P. Combined profile of androgen glucuro- and sulfoconjugates in post-competition urine of sportsmen: A simple screening procedure using gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Appl. 1996;687:85–91. doi: 10.1016/S0378-4347(96)00131-4. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...