Biotransformation of progesterone by endophytic fungal cells immobilized on electrospun nanofibrous membrane
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
445982/2020-9
Conselho Nacional de Desenvolvimento Científico e Tecnológico
PubMed
37979123
DOI
10.1007/s12223-023-01113-4
PII: 10.1007/s12223-023-01113-4
Knihovny.cz E-resources
- Keywords
- Biotransformation, Electrospinning, Endophytic fungus, Fungal immobilization, GC–MS, Steroids,
- MeSH
- Biotransformation MeSH
- Nanofibers * chemistry MeSH
- Progesterone MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Progesterone MeSH
Biotransformation of steroids by fungi has been raised as a successful, eco-friendly, and cost-effective biotechnological alternative for chemical derivatization. Endophytic fungi live inside vegetal tissues without causing damage to the host plant, making available unique enzymes that carry out uncommon reactions. Moreover, using nanofibrous membranes as support for immobilizing fungal cells is a powerful strategy to improve their performance by enabling the combined action of adsorption and transformation processes, along with increasing the stability of the fungal cell. In the present study, we report the use of polyacrylonitrile nanofibrous membrane (PAN NFM) produced by electrospinning as supporting material for immobilizing the endophytic fungus Penicillium citrinum H7 aiming the biotransformation of progesterone. The PAN@H7 NFM displayed a high progesterone transformation efficiency (above 90%). The investigation of the biotransformation pathway of progesterone allowed the putative structural characterization of its main fungal metabolite by GC-MS analysis. The oxidative potential of P. citrinum H7 was selective for the C-17 position of the steroidal nucleus.
INCT in Energy and Environment Federal University of Bahia Salvador 40170 115 Brazil
Institute of Chemistry Federal University of Bahia Salvador 40170 115 Brazil
See more in PubMed
Aamir S, Sutar S, Singh SK, Baghela A (2015) A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathol Quar 5:74–81. https://doi.org/10.5943/ppq/5/2/6 DOI
Ahn H, Rehman JU, Kim T, Oh MS, Yoon HY, Kim C, Lee Y, Shin SG, Jeon J-R (2020) Fungal mycelia functionalization with halloysite nanotubes for hyphal spreading and sorption behavior regulation: a new bio-ceramic hybrid for enhanced water treatment. Water Res 186:116380. https://doi.org/10.1016/j.watres.2020.116380 DOI
Alam R, Mahmood RA, Islam S, Ardiati FC, Solihat NN, Alam MB, Lee SH, Yanto DHY, Kim S (2023) Understanding the biodegradation pathways of azo dyes by immobilized white-rot fungus, Trametes hirsuta D7, using UPLC-PDA-FTICR MS supported by in silico simulations and toxicity assessment. Chemosphere 313:137505. https://doi.org/10.1016/j.chemosphere.2022.137505 DOI
Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549. https://doi.org/10.1890/05-1459 DOI
Balusamy B, Sarioglu OF, Senthamizhan A, Uyar T (2019) Rational design and development of electrospun nanofibrous biohybrid composites. ACS Appl Bio Mater 2:3128. https://doi.org/10.1021/acsabm.9b00308 DOI
Beltrán-Flores E, Pla-Ferriol M, Martínez-Alonso M, Gaju N, Blánquez P, Sarrà M (2022) Fungal bioremediation of agricultural wastewater in a long-term treatment: biomass stabilization by immobilization strategy. J Hazard Mater 439:129614. https://doi.org/10.1016/j.jhazmat.2022.129614 DOI
Bexfield LM, Toccalino PL, Belitz K, Foreman WT, Furlong ET (2019) Hormones and pharmaceuticals in groundwater used as a source of drinking water across the United States. Environ Sci Technol 53:2950–2960. https://doi.org/10.1021/acs.est.8b05592 DOI
Brown FJ, Djerassi C (1980) Elucidation of the course of the electron impact induced fragmentation of α, β-unsaturated 3-keto steroids. J Am Chem Soc 102:807–817. https://doi.org/10.1021/ja00522a061 DOI
Brown FJ, Djerassi C (1981) Effect of additional double bonds on the mass spectrometric fragmentations of ∆4-3-keto steroids. J Org Chem 46:954–963. https://doi.org/10.1021/jo00318a022 DOI
Carlström K (1967) Mechanism of the side chain degradation of progesterone by microorganisms. Acta Chem Scand 21:1297–1303. https://doi.org/10.3891/acta.chem.scand.21-1297 DOI
Creek DJ, Dunn WB, Fiehn O, Griffin JL, Hall RD, Lei Z, Mistrik R, Neumann S, Schymanski EL, Sumner LW, Trengove R, Wolfender J-L (2014) Metabolite identification: are you sure? And how do your peers gauge your confidence? Metabolomics 10:350–353. https://doi.org/10.1007/s11306-014-0656-8 DOI
Cruz de Carvalho T, de Oliveira SE, Soares GA, Parreira RLT, Ambrósio SR, Furtado NAJC (2020) Fungal biocatalysts for labdane diterpene hydroxylation. Bioprocess Biosyst Eng 43:1051–1059. https://doi.org/10.1007/s00449-020-02303-x DOI
de Paula SFC, Rosset IG, Porto ALM (2021) Hydroxylated steroids in C-7 and C-15 positions from progesterone bio-oxidation by the marine-derived fungus Penicillium oxalicum CBMAI 1996. Biocatal Agric Biotechnol 37:102167. https://doi.org/10.1016/j.bcab.2021.102167 DOI
do Nascimento JS, Silva FM, Magallanes-Noguera CA, Kurina-Sanz M, Santos EG, Caldas IS, Luiz JHH, Silva EO, (2020) Natural trypanocidal product produced by endophytic fungi through co-culturing. Folia Microbiol 65:323–328. https://doi.org/10.1007/s12223-019-00727-x DOI
Facure MHM, Mercante LA, Correa DS (2022) Polyacrylonitrile/reduced graphene oxide free-standing nanofibrous membranes for detecting endocrine disruptors. ACS Appl Nano Mater 5:6376–6384. https://doi.org/10.1021/acsanm.2c00484 DOI
George J, Anand SS, Senthil Kumar P, Saravanan P, Lenin R, Rajendran DS, Venkataraman S, Vaidyanathan VK, Vo D-VN (2022) Biocatalytic polymeric membranes to decrease biofilm fouling and remove organic contaminants in wastewater: a review. Environ Chem Lett 20:1897–1927. https://doi.org/10.1007/s10311-022-01413-0 DOI
Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432. https://doi.org/10.1017/S0953756201004725 DOI
Hegazy M-EF, Mohamed TA, ElShamy AI, Mohamed AH, Mahalel UA, Reda EH, Shaheen AM, Tawfik WA, Shahat AA, Shams KA, Abdel-Azim NS, Hammouda FM (2015) Microbial biotransformation as a tool for drug development based on natural products from mevalonic acid pathway: a review. J Adv Res 6:17–33. https://doi.org/10.1016/j.jare.2014.11.009 DOI
Hussain R, Ahmed M, Khan TA, Akhter Y (2020) Fungal P450 monooxygenases - the diversity in catalysis and their promising roles in biocontrol activity. Appl Microbiol Biotechnol 104:989–999. https://doi.org/10.1007/s00253-019-10305-3 DOI
Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581 DOI
Mercante LA, Pavinatto A, Pereira TS, Migliorini FL, dos Santos DM, Correa DS (2021) Nanofibers interfaces for biosensing: design and applications. Sensors and Actuators Reports 3:100048. https://doi.org/10.1016/j.snr.2021.100048 DOI
Mir-Tutusaus JA, Baccar R, Caminal G, Sarrà M (2018) Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? A review. Water Res 138:137–151. https://doi.org/10.1016/j.watres.2018.02.056 DOI
Narayanan M, Murugan JM, Kandasamy G, Kandasamy S, Nasif O, Rajendran M, Pugazhendhi A (2022) The biotransformation potential of Bacillus cereus on β- cypermethrin to protect the earthworm (Perionyx excavatus) on insecticide -contaminated soil. Arch Agron Soil Sci 68:944–955. https://doi.org/10.1080/03650340.2020.1864339 DOI
Nassiri-Koopaei N, Faramarzi MA (2015) Recent developments in the fungal transformation of steroids. Biocatal Biotransformation 33:1–28. https://doi.org/10.3109/10242422.2015.1022533 DOI
Pereira dos Santos VH, Coelho Neto DM, Lacerda Júnior V, Borges WS, Silva EO (2020) Fungal biotransformation: an efficient approach for stereoselective chemical reactions. Curr Org Chem 24:2902–2953. https://doi.org/10.2174/1385272824999201111203506 DOI
Pereira dos Santos VH, Luiz JHH, dos Anjos JP, de Oliveira SE (2022) Oxidative potential of two Brazilian endophytic fungi from Handroanthus impetiginosus towards progesterone. Steroids 187:109101. https://doi.org/10.1016/j.steroids.2022.109101 DOI
Purohit J, Chattopadhyay A, Biswas MK, Singh NK (2018) Mycoremediation of agricultural soil: bioprospection for sustainable development. Mycoremediation and environmental sustainability. Springer International Publishing, Cham, Switzerland, pp 91–120 DOI
Qi-he C, Jing L, Hai-feng Z, Guo-qing H, Ming-liang F (2009) The betulinic acid production from betulin through biotransformation by fungi. Enzyme Microb Technol 45:175–180. https://doi.org/10.1016/j.enzmictec.2009.06.005 DOI
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 DOI
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197 DOI
Thevis M, Schänzer W (2007) Mass spectrometry in sports drug testing: structure characterization and analytical assays. Mass Spectrom Rev 26:79–107. https://doi.org/10.1002/mas.20107 DOI
Thompson J (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. https://doi.org/10.1093/nar/25.24.4876 DOI
Virués-Segovia JR, Muñoz-Mira S, Durán-Patrón R, Aleu J (2023) Marine-Derived Fungi as Biocatalysts Front Microbiol 14:1125639. https://doi.org/10.3389/fmicb.2023.1125639 DOI
Wenda S, Illner S, Mell A, Kragl U (2011) Industrial biotechnology-the future of green chemistry? Green Chem 13:3007. https://doi.org/10.1039/c1gc15579b DOI
Xiong L, Lyu K, Zeng Y, Yang C, Chi F, Hu S, Long X (2023) Stable and high-flux polyacrylonitrile/hafnium phosphonate nanofibrous membranes for efficient removal of actinides from strong acidic solutions. J Environ Chem Eng 11:109619. https://doi.org/10.1016/j.jece.2023.109619 DOI
Xu Y-X, Jiang Z-D, Du X-P, Zheng M-J, Fan-Yang Y, Ni H, Chen F (2022) The identification of biotransformation pathways for removing fishy malodor from Bangia fusco-purpurea using fermentation with Saccharomyces cerevisiae. Food Chem 380:132103. https://doi.org/10.1016/j.foodchem.2022.132103 DOI
Yasar Mahlicli F, Alsoy Altinkaya S, Yurekli Y (2012) Preparation and characterization of polyacrylonitrile membranes modified with polyelectrolyte deposition for separating similar sized proteins. J Memb Sci 415–416:383–390. https://doi.org/10.1016/j.memsci.2012.05.028 DOI