Predicting Chronic Hyperplastic Candidiasis Retro-Angular Mucosa Using Machine Learning
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
37987421
PubMed Central
PMC10660707
DOI
10.3390/clinpract13060120
PII: clinpract13060120
Knihovny.cz E-resources
- Keywords
- candidosis/chronic hyperplastic candidosis, chronic mucosal lesions, digital health, leukoplakia, machine learning, oral intraepithelial neoplasia, oral squamous cell carcinoma,
- Publication type
- Journal Article MeSH
Chronic hyperplastic candidiasis (CHC) presents a distinctive and relatively rare form of oral candidal infection characterized by the presence of white or white-red patches on the oral mucosa. Often mistaken for leukoplakia or erythroleukoplakia due to their appearance, these lesions display nonhomogeneous textures featuring combinations of white and red hyperplastic or nodular surfaces. Predominant locations for such lesions include the tongue, retro-angular mucosa, and buccal mucosa. This paper aims to investigate the potential influence of specific anatomical locations, retro-angular mucosa, on the development and occurrence of CHC. By examining the relationship between risk factors, we present an approach based on machine learning (ML) to predict the location of CHC occurrence. In this way, we employ Gradient Boosting Regression (GBR) to classify CHC lesion locations based on important risk factors. This estimator can serve both research and diagnostic purposes effectively. The findings underscore that the proposed ML technique can be used to predict the occurrence of CHC in retro-angular mucosa compared to other locations. The results also show a high rate of accuracy in predicting lesion locations. Performance assessment relies on Mean Squared Error (MSE), Root Mean Squared Error (RMSE), R-squared (R2), and Mean Absolute Error (MAE), consistently revealing favorable results that underscore the robustness and dependability of our classification method. Our research contributes valuable insights to the field, enhancing diagnostic accuracy and informing treatment strategies.
Biopticka Laboratory Mikulasske namesti 628 32600 Pilsen Czech Republic
Dentistry School Babol University of Medical Sciences Babol 4717647745 Iran
Department of Anatomy Faculty of Medicine in Pilsen Charles University 32300 Pilsen Czech Republic
See more in PubMed
Lamey P.J., Darwazeh A., Muirhead J., Rennie J., Samaranayake L., MacFarlane T. Chronic hyperplastic candidosis and secretor status. J. Oral Pathol. Med. 1991;20:64–67. doi: 10.1111/j.1600-0714.1991.tb00891.x. PubMed DOI
Zhang W., Wu S., Wang X., Wei P., Yan Z. Combination treatment with photodynamic therapy and laser therapy in chronic hyperplastic candidiasis: A case report. Photodiagnosis Photodyn. Ther. 2022;38:102819. doi: 10.1016/j.pdpdt.2022.102819. PubMed DOI
Williams A., Rogers H., Williams D., Wei X.-Q., Farnell D., Wozniak S., Jones A. Higher Number of EBI3 Cells in Mucosal Chronic Hyperplastic Candidiasis May Serve to Regulate IL-17-Producing Cells. J. Fungi. 2021;7:533. doi: 10.3390/jof7070533. PubMed DOI PMC
Zhang W., Wu S., Wang X., Gao Y., Yan Z. Malignant Transformation and Treatment Recommendations of Chronic Hyperplastic Candidiasis—A Six-year Retrospective Cohort Study. Mycoses. 2021;64:1422–1428. doi: 10.1111/myc.13371. PubMed DOI
Li B., Fang X., Hu X., Hua H., Wei P. Successful treatment of chronic hyperplastic candidiasis with 5-aminolevulinic acid photodynamic therapy: A case report. Photodiagnosis Photodyn. Ther. 2022;37:102633. doi: 10.1016/j.pdpdt.2021.102633. PubMed DOI
Farah C. Concurrent chronic hyperplastic candidosis and oral lichenoid lesion as adverse events of secukinumab therapy. Aust. Dent. J. 2021;66:340–345. doi: 10.1111/adj.12833. PubMed DOI
Sitheeque M., Samaranayake L. Chronic hyperplastic candidosis/candidiasis (candidal leukoplakia) Crit. Rev. Oral Biol. Med. 2003;14:253–267. doi: 10.1177/154411130301400403. PubMed DOI
Pina P.S.S., Custódio M., Sugaya N.N., de Sousa S.C.O.M. Histopathologic aspects of the so-called chronic hyperplastic candidiasis: An analysis of 36 cases. J. Cutan. Pathol. 2021;48:66–71. doi: 10.1111/cup.13875. PubMed DOI
Di Cosola M., Cazzolla A.P., Charitos I.A., Ballini A., Inchingolo F., Santacroce L. Candida albicans and oral carcinogenesis. A brief review. J. Fungi. 2021;7:476. doi: 10.3390/jof7060476. PubMed DOI PMC
Sharma A. Oral candidiasis: An opportunistic infection: A review. Int. J. Appl. Dent. Sci. 2019;5:23–27.
Lorenzo-Pouso A.I., Pérez-Jardón A., Caponio V.C.A., Spirito F., Chamorro-Petronacci C.M., Álvarez-Calderón-Iglesias Ó., Gándara-Vila P., Lo Muzio L., Pérez-Sayáns M. Oral chronic hyperplastic candidiasis and its potential risk of malignant transformation: A systematic review and prevalence meta-analysis. J. Fungi. 2022;8:1093. doi: 10.3390/jof8101093. PubMed DOI PMC
Achararit P., Manaspon C., Jongwannasiri C., Phattarataratip E., Osathanon T., Sappayatosok K. Artificial Intelligence-Based Diagnosis of Oral Lichen Planus Using Deep Convolutional Neural Networks. Eur. J. Dent. 2023 doi: 10.1055/s-0042-1760300. PubMed DOI PMC
Fu C., Zhang X., Veri A.O., Iyer K.R., Lash E., Xue A., Yan H., Revie N.M., Wong C., Lin Z.-Y. Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets. Nat. Commun. 2021;12:6497. doi: 10.1038/s41467-021-26850-3. PubMed DOI PMC
Varoquaux G., Cheplygina V. Machine learning for medical imaging: Methodological failures and recommendations for the future. NPJ Digit. Med. 2022;5:48. doi: 10.1038/s41746-022-00592-y. PubMed DOI PMC
Daneshfar F., Jamshidi M.B. An octonion-based nonlinear echo state network for speech emotion recognition in Metaverse. Neural Netw. 2023;163:108–121. doi: 10.1016/j.neunet.2023.03.026. PubMed DOI
Shehab M., Abualigah L., Shambour Q., Abu-Hashem M.A., Shambour M.K.Y., Alsalibi A.I., Gandomi A.H. Machine learning in medical applications: A review of state-of-the-art methods. Comput. Biol. Med. 2022;145:105458. doi: 10.1016/j.compbiomed.2022.105458. PubMed DOI
Keshmiri Neghab H., Jamshidi M., Keshmiri Neghab H. Digital twin of a magnetic medical microrobot with stochastic model predictive controller boosted by machine learning in cyber-physical healthcare systems. Information. 2022;13:321. doi: 10.3390/info13070321. DOI
Jamshidi M.B., Jamshidi M., Rostami S. An intelligent approach for nonlinear system identification of a li-ion battery; Proceedings of the 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS); Kota Kinabalu, Malaysia. 21 October 2017; pp. 98–103.
Jamshidi M.B., Alibeigi N., Lalbakhsh A., Roshani S. An ANFIS approach to modeling a small satellite power source of NASA; Proceedings of the 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC); Banff, AB, Canada. 9–11 May 2019; pp. 459–464.
Moztarzadeh O., Jamshidi M., Sargolzaei S., Jamshidi A., Baghalipour N., Malekzadeh Moghani M., Hauer L. Metaverse and Healthcare: Machine Learning-Enabled Digital Twins of Cancer. Bioengineering. 2023;10:455. doi: 10.3390/bioengineering10040455. PubMed DOI PMC
Jamshidi M.B., Daneshfar F. A hybrid echo state network for hypercomplex pattern recognition, classification, and big data analysis; Proceedings of the 2022 12th International Conference on Computer and Knowledge Engineering (ICCKE); Mashhad, Iran, Republic of Islamic. 17–18 November 2022; pp. 007–012.
Li X., Li W., Xu Y. Human age prediction based on DNA methylation using a gradient boosting regressor. Genes. 2018;9:424. doi: 10.3390/genes9090424. PubMed DOI PMC
Jamshidi M.B., Ebadpour M., Moghani M.M. Cancer digital twins in metaverse; Proceedings of the 2022 20th International Conference on Mechatronics-Mechatronika (ME); Pilsen, Czech Republic. 7–9 December 2022; pp. 1–6.
Jamshidi M., Moztarzadeh O., Jamshidi A., Abdelgawad A., El-Baz A.S., Hauer L. Future of Drug Discovery: The Synergy of Edge Computing, Internet of Medical Things, and Deep Learning. Future Internet. 2023;15:142. doi: 10.3390/fi15040142. DOI
Jamshidi M.B., Talla J., Lalbakhsh A., Sharifi-Atashgah M.S., Sabet A., Peroutka Z. A conceptual deep learning framework for COVID-19 drug discovery; Proceedings of the 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON); New York, NY, USA. 1–4 December 2021; pp. 00030–00034.
Shafiei A., Jamshidi M., Khani F., Talla J., Peroutka Z., Gantassi R., Baz M., Cheikhrouhou O., Hamam H. A hybrid technique based on a genetic algorithm for fuzzy multiobjective problems in 5G, internet of things, and mobile edge computing. Math. Probl. Eng. 2021;2021:9194578. doi: 10.1155/2021/9194578. DOI
Moztarzadeh O., Jamshidi M., Sargolzaei S., Keikhaee F., Jamshidi A., Shadroo S., Hauer L. Metaverse and Medical Diagnosis: A Blockchain-Based Digital Twinning Approach Based on MobileNetV2 Algorithm for Cervical Vertebral Maturation. Diagnostics. 2023;13:1485. doi: 10.3390/diagnostics13081485. PubMed DOI PMC
Prettenhofer P., Louppe G. PyData 2014. PyData; Redmond, WA, USA: 2014. Gradient boosted regression trees in scikit-learn.
Keprate A., Ratnayake R.C. Using gradient boosting regressor to predict stress intensity factor of a crack propagating in small bore piping; Proceedings of the 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM); Singapore. 10–13 December 2017; pp. 1331–1336.
Khan M.S.I., Islam N., Uddin J., Islam S., Nasir M.K. Water quality prediction and classification based on principal component regression and gradient boosting classifier approach. J. King Saud Univ.-Comput. Inf. Sci. 2022;34:4773–4781.
Khalaj O., Jamshidi M.B., Saebnoori E., Mašek B., Štadler C., Svoboda J. Hybrid machine learning techniques and computational mechanics: Estimating the dynamic behavior of oxide precipitation hardened steel. IEEE Access. 2021;9:156930–156946. doi: 10.1109/ACCESS.2021.3129454. DOI
Jamshidi M., Yahya S.I., Nouri L., Hashemi-Dezaki H., Rezaei A., Chaudhary M.A. A High-Efficiency Diplexer for Sustainable 5G-Enabled IoT in Metaverse Transportation System and Smart Grids. Symmetry. 2023;15:821. doi: 10.3390/sym15040821. DOI
Jamshidi M., Yahya S.I., Nouri L., Hashemi-Dezaki H., Rezaei A., Chaudhary M.A. A Super-Efficient GSM Triplexer for 5G-Enabled IoT in Sustainable Smart Grid Edge Computing and the Metaverse. Sensors. 2023;23:3775. doi: 10.3390/s23073775. PubMed DOI PMC
Jamshidi M., Dehghaniyan Serej A., Jamshidi A., Moztarzadeh O. The Meta-Metaverse: Ideation and Future Directions. Future Internet. 2023;15:252. doi: 10.3390/fi15080252. DOI