Long-term pulmonary and neurodevelopmental impairment in a fetal growth restriction rabbit model
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
765274
Horizon 2020 Framework Programme
PubMed
38017239
PubMed Central
PMC10684490
DOI
10.1038/s41598-023-48174-6
PII: 10.1038/s41598-023-48174-6
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- králíci MeSH
- Lagomorpha * MeSH
- lidé MeSH
- novorozenec nedonošený MeSH
- novorozenec MeSH
- placenta metabolismus MeSH
- plíce metabolismus MeSH
- porodnictví * MeSH
- růstová retardace plodu metabolismus MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- králíci MeSH
- lidé MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Fetal growth restriction (FGR) remains one of the main obstetrical problems worldwide, with consequences beyond perinatal life. Animal models with developmental and structural similarities to the human are essential to understand FGR long-term consequences and design novel therapeutic strategies aimed at preventing or ameliorating them. Herein, we described the long-term consequences of FGR in pulmonary function, structure, and gene expression, and characterized neurodevelopmental sequelae up to preadolescence in a rabbit model. FGR was induced at gestational day 25 by surgically reducing placental blood supply in one uterine horn, leaving the contralateral horn as internal control. Neonatal rabbits born near term were assigned to foster care in mixed groups until postnatal day (PND) 21. At that time, one group underwent pulmonary biomechanical testing followed by lung morphometry and gene expression analysis. A second group underwent longitudinal neurobehavioral assessment until PND 60 followed by brain harvesting for multiregional oligodendrocyte and microglia quantification. FGR was associated with impaired pulmonary function and lung development at PND 21. FGR rabbits had higher respiratory resistance and altered parenchymal biomechanical properties in the lungs. FGR lungs presented thicker alveolar septal walls and reduced alveolar space. Furthermore, the airway smooth muscle content was increased, and the tunica media of the intra-acinar pulmonary arteries was thicker. In addition, FGR was associated with anxiety-like behavior, impaired memory and attention, and lower oligodendrocyte proportion in the frontal cortex and white matter. In conclusion, we documented and characterized the detrimental pulmonary function and structural changes after FGR, independent of prematurity, and beyond the neonatal period for the first time in the rabbit model, and describe the oligodendrocyte alteration in pre-adolescent rabbit brains. This characterization will allow researchers to develop and test therapies to treat FGR and prevent its sequelae.
Zobrazit více v PubMed
Barker DJ. The fetal and infant origins of adult disease. BMJ. 1990;301:1111. doi: 10.1136/bmj.301.6761.1111. PubMed DOI PMC
Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311:171–174. doi: 10.1136/bmj.311.6998.171. PubMed DOI PMC
Gardosi J, Madurasinghe V, Williams M, Malik A, Francis A. Maternal and fetal risk factors for stillbirth: population based study. BMJ. 2013;346:f108. doi: 10.1136/bmj.f108. PubMed DOI PMC
Unterscheider J, et al. Fetal growth restriction and the risk of perinatal mortality–case studies from the multicentre PORTO study. BMC Pregnancy Childbirth. 2014;14:63. doi: 10.1186/1471-2393-14-63. PubMed DOI PMC
Pike KC, et al. Patterns of fetal and infant growth are related to atopy and wheezing disorders at age 3 years. Thorax. 2010;65:1099–1106. doi: 10.1136/thx.2010.134742. PubMed DOI PMC
Greenough A, Yuksel B, Cheeseman P. Effect of in utero growth retardation on lung function at follow-up of prematurely born infants. Eur. Respir. J. 2004;24:731–733. doi: 10.1183/09031936.04.00060304. PubMed DOI
Edmonds CJ, et al. The effect of intrauterine growth on verbal IQ scores in childhood: A study of monozygotic twins. Pediatrics. 2010;126:e1095–1101. doi: 10.1542/peds.2008-3684. PubMed DOI
Figueras F, et al. Neurobehavioral outcomes in preterm, growth-restricted infants with and without prenatal advanced signs of brain-sparing. Ultrasound Obstet. Gynecol. 2011;38:288–294. doi: 10.1002/uog.9041. PubMed DOI
Sacchi C, et al. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: A systematic review and meta-analysis. JAMA Pediatr. 2020;174:772–781. doi: 10.1001/jamapediatrics.2020.1097. PubMed DOI PMC
Leitner Y, et al. Neurodevelopmental outcome of children with intrauterine growth retardation: A longitudinal, 10-year prospective study. J. Child Neurol. 2007;22:580–587. doi: 10.1177/0883073807302605. PubMed DOI
Nielsen PR, et al. Fetal growth and schizophrenia: A nested case-control and case-sibling study. Schizophr. Bull. 2013;39:1337–1342. doi: 10.1093/schbul/sbs148. PubMed DOI PMC
Edwards CA, Osman LM, Godden DJ, Campbell DM, Douglas JG. Relationship between birth weight and adult lung function: Controlling for maternal factors. Thorax. 2003;58:1061–1065. doi: 10.1136/thorax.58.12.1061. PubMed DOI PMC
Stein CE, et al. Relation of fetal growth to adult lung function in south India. Thorax. 1997;52:895–899. doi: 10.1136/thx.52.10.895. PubMed DOI PMC
Saad NJ, Patel J, Burney P, Minelli C. Birth weight and lung function in adulthood: A systematic review and meta-analysis. Ann. Am. Thorac. Soc. 2017;14:994–1004. doi: 10.1513/AnnalsATS.201609-746SR. PubMed DOI
Lohaugen GC, et al. Small for gestational age and intrauterine growth restriction decreases cognitive function in young adults. J. Pediatr. 2013;163:447–453. doi: 10.1016/j.jpeds.2013.01.060. PubMed DOI
Valenzuela I, Kinoshita M, van der Merwe J, Marsal K, Deprest J. Prenatal interventions for fetal growth restriction in animal models: A systematic review. Placenta. 2022;126:90–113. doi: 10.1016/j.placenta.2022.06.007. PubMed DOI
Furukawa S, Kuroda Y, Sugiyama A. A comparison of the histological structure of the placenta in experimental animals. J. Toxicol. Pathol. 2014;27:11–18. doi: 10.1293/tox.2013-0060. PubMed DOI PMC
Pringle KC. Human fetal lung development and related animal models. Clin. Obstet. Gynecol. 1986;29:502–513. doi: 10.1097/00003081-198609000-00006. PubMed DOI
Clancy B, Finlay BL, Darlington RB, Anand KJ. Extrapolating brain development from experimental species to humans. Neurotoxicology. 2007;28:931–937. doi: 10.1016/j.neuro.2007.01.014. PubMed DOI PMC
Hunter DS, et al. Programming the brain: Common outcomes and gaps in knowledge from animal studies of IUGR. Physiol. Behav. 2016;164:233–248. doi: 10.1016/j.physbeh.2016.06.005. PubMed DOI
Valenzuela I, et al. Placental vascular alterations are associated with early neurodevelopmental and pulmonary impairment in the rabbit fetal growth restriction model. Sci. Rep. 2022;12:19720. doi: 10.1038/s41598-022-22895-6. PubMed DOI PMC
Illa M, et al. Early environmental enrichment enhances abnormal brain connectivity in a rabbit model of intrauterine growth restriction. Fetal Diagn. Ther. 2018;44:184–193. doi: 10.1159/000481171. PubMed DOI
Illa M, et al. Long-term functional outcomes and correlation with regional brain connectivity by MRI diffusion tractography metrics in a near-term rabbit model of intrauterine growth restriction. PloS One. 2013;8:e76453. doi: 10.1371/journal.pone.0076453. PubMed DOI PMC
Illa M, et al. Neurodevelopmental effects of undernutrition and placental underperfusion in fetal growth restriction rabbit models. Fetal Diagn. Ther. 2017;42:189–197. doi: 10.1159/000454859. PubMed DOI
Batalle D, et al. Long-term reorganization of structural brain networks in a rabbit model of intrauterine growth restriction. Neuroimage. 2014;100:24–38. doi: 10.1016/j.neuroimage.2014.05.065. PubMed DOI
Jimenez J, et al. Progressive vascular functional and structural damage in a bronchopulmonary dysplasia model in preterm rabbits exposed to hyperoxia. Int. J. Mol. Sci. 2016;17:200. doi: 10.3390/ijms17101776. PubMed DOI PMC
Gie AG, et al. Intermittent CPAP limits hyperoxia-induced lung damage in a rabbit model of bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020;318:L976–L987. doi: 10.1152/ajplung.00465.2019. PubMed DOI
Gie AG, et al. Intratracheal budesonide/surfactant attenuates hyperoxia-induced lung injury in preterm rabbits. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020;319:L949–L956. doi: 10.1152/ajplung.00162.2020. PubMed DOI
Trocino A, Majolini D, Tazzoli M, Filiou E, Xiccato G. Housing of growing rabbits in individual, bicellular and collective cages: Fear level and behavioural patterns. Animal. 2013;7:633–639. doi: 10.1017/S1751731112002029. PubMed DOI
Barenys M, et al. Rabbit neurospheres as a novel in vitro tool for studying neurodevelopmental effects induced by intrauterine growth restriction. Stem Cells Transl. Med. 2021;10:209–221. doi: 10.1002/sctm.20-0223. PubMed DOI PMC
du Percie Sert N, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020;18:e3000410. doi: 10.1371/journal.pbio.3000410. PubMed DOI PMC
Richter J, et al. Functional assessment of hyperoxia-induced lung injury after preterm birth in the rabbit. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014;306:L277–L283. doi: 10.1152/ajplung.00315.2013. PubMed DOI
Basurto D, et al. New device permitting non-invasive reversal of fetal endoscopic tracheal occlusion: Ex-vivo and in-vivo study. Ultrasound Obstet. Gynecol. 2020;56:522–531. doi: 10.1002/uog.22132. PubMed DOI
Salaets T, et al. A semi-automated method for unbiased alveolar morphometry: Validation in a bronchopulmonary dysplasia model. PloS One. 2020;15:e0239562. doi: 10.1371/journal.pone.0239562. PubMed DOI PMC
Salaets T, et al. Preterm birth impairs postnatal lung development in the neonatal rabbit model. Respir. Res. 2020;21:59. doi: 10.1186/s12931-020-1321-6. PubMed DOI PMC
Bankhead P, et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017;7:16878. doi: 10.1038/s41598-017-17204-5. PubMed DOI PMC
Ohar JA, et al. A rabbit model of pulmonary hypertension induced by the synthetic platelet-activating factor acetylglyceryl ether phosphorylcholine. Am. Rev. Respir. Dis. 1990;141:104–110. doi: 10.1164/ajrccm/141.1.104. PubMed DOI
Derrick M, et al. Preterm fetal hypoxia-ischemia causes hypertonia and motor deficits in the neonatal rabbit: A model for human cerebral palsy? J. Neurosci. 2004;24:24–34. doi: 10.1523/JNEUROSCI.2816-03.2004. PubMed DOI PMC
van der Merwe J, et al. Early neuropathological and neurobehavioral consequences of preterm birth in a rabbit model. Sci. Rep. 2019;9:3506. doi: 10.1038/s41598-019-39922-8. PubMed DOI PMC
Van der Veeken L, et al. Maternal surgery during pregnancy has a transient adverse effect on the developing fetal rabbit brain. Am. J. Obstet. Gynecol. 2019;221:e351–e355. doi: 10.1016/j.ajog.2019.07.029. PubMed DOI
Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/bf03193146. PubMed DOI