Long-term pulmonary and neurodevelopmental impairment in a fetal growth restriction rabbit model

. 2023 Nov 28 ; 13 (1) : 20966. [epub] 20231128

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38017239

Grantová podpora
765274 Horizon 2020 Framework Programme

Odkazy

PubMed 38017239
PubMed Central PMC10684490
DOI 10.1038/s41598-023-48174-6
PII: 10.1038/s41598-023-48174-6
Knihovny.cz E-zdroje

Fetal growth restriction (FGR) remains one of the main obstetrical problems worldwide, with consequences beyond perinatal life. Animal models with developmental and structural similarities to the human are essential to understand FGR long-term consequences and design novel therapeutic strategies aimed at preventing or ameliorating them. Herein, we described the long-term consequences of FGR in pulmonary function, structure, and gene expression, and characterized neurodevelopmental sequelae up to preadolescence in a rabbit model. FGR was induced at gestational day 25 by surgically reducing placental blood supply in one uterine horn, leaving the contralateral horn as internal control. Neonatal rabbits born near term were assigned to foster care in mixed groups until postnatal day (PND) 21. At that time, one group underwent pulmonary biomechanical testing followed by lung morphometry and gene expression analysis. A second group underwent longitudinal neurobehavioral assessment until PND 60 followed by brain harvesting for multiregional oligodendrocyte and microglia quantification. FGR was associated with impaired pulmonary function and lung development at PND 21. FGR rabbits had higher respiratory resistance and altered parenchymal biomechanical properties in the lungs. FGR lungs presented thicker alveolar septal walls and reduced alveolar space. Furthermore, the airway smooth muscle content was increased, and the tunica media of the intra-acinar pulmonary arteries was thicker. In addition, FGR was associated with anxiety-like behavior, impaired memory and attention, and lower oligodendrocyte proportion in the frontal cortex and white matter. In conclusion, we documented and characterized the detrimental pulmonary function and structural changes after FGR, independent of prematurity, and beyond the neonatal period for the first time in the rabbit model, and describe the oligodendrocyte alteration in pre-adolescent rabbit brains. This characterization will allow researchers to develop and test therapies to treat FGR and prevent its sequelae.

Zobrazit více v PubMed

Barker DJ. The fetal and infant origins of adult disease. BMJ. 1990;301:1111. doi: 10.1136/bmj.301.6761.1111. PubMed DOI PMC

Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311:171–174. doi: 10.1136/bmj.311.6998.171. PubMed DOI PMC

Gardosi J, Madurasinghe V, Williams M, Malik A, Francis A. Maternal and fetal risk factors for stillbirth: population based study. BMJ. 2013;346:f108. doi: 10.1136/bmj.f108. PubMed DOI PMC

Unterscheider J, et al. Fetal growth restriction and the risk of perinatal mortality–case studies from the multicentre PORTO study. BMC Pregnancy Childbirth. 2014;14:63. doi: 10.1186/1471-2393-14-63. PubMed DOI PMC

Pike KC, et al. Patterns of fetal and infant growth are related to atopy and wheezing disorders at age 3 years. Thorax. 2010;65:1099–1106. doi: 10.1136/thx.2010.134742. PubMed DOI PMC

Greenough A, Yuksel B, Cheeseman P. Effect of in utero growth retardation on lung function at follow-up of prematurely born infants. Eur. Respir. J. 2004;24:731–733. doi: 10.1183/09031936.04.00060304. PubMed DOI

Edmonds CJ, et al. The effect of intrauterine growth on verbal IQ scores in childhood: A study of monozygotic twins. Pediatrics. 2010;126:e1095–1101. doi: 10.1542/peds.2008-3684. PubMed DOI

Figueras F, et al. Neurobehavioral outcomes in preterm, growth-restricted infants with and without prenatal advanced signs of brain-sparing. Ultrasound Obstet. Gynecol. 2011;38:288–294. doi: 10.1002/uog.9041. PubMed DOI

Sacchi C, et al. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: A systematic review and meta-analysis. JAMA Pediatr. 2020;174:772–781. doi: 10.1001/jamapediatrics.2020.1097. PubMed DOI PMC

Leitner Y, et al. Neurodevelopmental outcome of children with intrauterine growth retardation: A longitudinal, 10-year prospective study. J. Child Neurol. 2007;22:580–587. doi: 10.1177/0883073807302605. PubMed DOI

Nielsen PR, et al. Fetal growth and schizophrenia: A nested case-control and case-sibling study. Schizophr. Bull. 2013;39:1337–1342. doi: 10.1093/schbul/sbs148. PubMed DOI PMC

Edwards CA, Osman LM, Godden DJ, Campbell DM, Douglas JG. Relationship between birth weight and adult lung function: Controlling for maternal factors. Thorax. 2003;58:1061–1065. doi: 10.1136/thorax.58.12.1061. PubMed DOI PMC

Stein CE, et al. Relation of fetal growth to adult lung function in south India. Thorax. 1997;52:895–899. doi: 10.1136/thx.52.10.895. PubMed DOI PMC

Saad NJ, Patel J, Burney P, Minelli C. Birth weight and lung function in adulthood: A systematic review and meta-analysis. Ann. Am. Thorac. Soc. 2017;14:994–1004. doi: 10.1513/AnnalsATS.201609-746SR. PubMed DOI

Lohaugen GC, et al. Small for gestational age and intrauterine growth restriction decreases cognitive function in young adults. J. Pediatr. 2013;163:447–453. doi: 10.1016/j.jpeds.2013.01.060. PubMed DOI

Valenzuela I, Kinoshita M, van der Merwe J, Marsal K, Deprest J. Prenatal interventions for fetal growth restriction in animal models: A systematic review. Placenta. 2022;126:90–113. doi: 10.1016/j.placenta.2022.06.007. PubMed DOI

Furukawa S, Kuroda Y, Sugiyama A. A comparison of the histological structure of the placenta in experimental animals. J. Toxicol. Pathol. 2014;27:11–18. doi: 10.1293/tox.2013-0060. PubMed DOI PMC

Pringle KC. Human fetal lung development and related animal models. Clin. Obstet. Gynecol. 1986;29:502–513. doi: 10.1097/00003081-198609000-00006. PubMed DOI

Clancy B, Finlay BL, Darlington RB, Anand KJ. Extrapolating brain development from experimental species to humans. Neurotoxicology. 2007;28:931–937. doi: 10.1016/j.neuro.2007.01.014. PubMed DOI PMC

Hunter DS, et al. Programming the brain: Common outcomes and gaps in knowledge from animal studies of IUGR. Physiol. Behav. 2016;164:233–248. doi: 10.1016/j.physbeh.2016.06.005. PubMed DOI

Valenzuela I, et al. Placental vascular alterations are associated with early neurodevelopmental and pulmonary impairment in the rabbit fetal growth restriction model. Sci. Rep. 2022;12:19720. doi: 10.1038/s41598-022-22895-6. PubMed DOI PMC

Illa M, et al. Early environmental enrichment enhances abnormal brain connectivity in a rabbit model of intrauterine growth restriction. Fetal Diagn. Ther. 2018;44:184–193. doi: 10.1159/000481171. PubMed DOI

Illa M, et al. Long-term functional outcomes and correlation with regional brain connectivity by MRI diffusion tractography metrics in a near-term rabbit model of intrauterine growth restriction. PloS One. 2013;8:e76453. doi: 10.1371/journal.pone.0076453. PubMed DOI PMC

Illa M, et al. Neurodevelopmental effects of undernutrition and placental underperfusion in fetal growth restriction rabbit models. Fetal Diagn. Ther. 2017;42:189–197. doi: 10.1159/000454859. PubMed DOI

Batalle D, et al. Long-term reorganization of structural brain networks in a rabbit model of intrauterine growth restriction. Neuroimage. 2014;100:24–38. doi: 10.1016/j.neuroimage.2014.05.065. PubMed DOI

Jimenez J, et al. Progressive vascular functional and structural damage in a bronchopulmonary dysplasia model in preterm rabbits exposed to hyperoxia. Int. J. Mol. Sci. 2016;17:200. doi: 10.3390/ijms17101776. PubMed DOI PMC

Gie AG, et al. Intermittent CPAP limits hyperoxia-induced lung damage in a rabbit model of bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020;318:L976–L987. doi: 10.1152/ajplung.00465.2019. PubMed DOI

Gie AG, et al. Intratracheal budesonide/surfactant attenuates hyperoxia-induced lung injury in preterm rabbits. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020;319:L949–L956. doi: 10.1152/ajplung.00162.2020. PubMed DOI

Trocino A, Majolini D, Tazzoli M, Filiou E, Xiccato G. Housing of growing rabbits in individual, bicellular and collective cages: Fear level and behavioural patterns. Animal. 2013;7:633–639. doi: 10.1017/S1751731112002029. PubMed DOI

Barenys M, et al. Rabbit neurospheres as a novel in vitro tool for studying neurodevelopmental effects induced by intrauterine growth restriction. Stem Cells Transl. Med. 2021;10:209–221. doi: 10.1002/sctm.20-0223. PubMed DOI PMC

du Percie Sert N, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020;18:e3000410. doi: 10.1371/journal.pbio.3000410. PubMed DOI PMC

Richter J, et al. Functional assessment of hyperoxia-induced lung injury after preterm birth in the rabbit. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014;306:L277–L283. doi: 10.1152/ajplung.00315.2013. PubMed DOI

Basurto D, et al. New device permitting non-invasive reversal of fetal endoscopic tracheal occlusion: Ex-vivo and in-vivo study. Ultrasound Obstet. Gynecol. 2020;56:522–531. doi: 10.1002/uog.22132. PubMed DOI

Salaets T, et al. A semi-automated method for unbiased alveolar morphometry: Validation in a bronchopulmonary dysplasia model. PloS One. 2020;15:e0239562. doi: 10.1371/journal.pone.0239562. PubMed DOI PMC

Salaets T, et al. Preterm birth impairs postnatal lung development in the neonatal rabbit model. Respir. Res. 2020;21:59. doi: 10.1186/s12931-020-1321-6. PubMed DOI PMC

Bankhead P, et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017;7:16878. doi: 10.1038/s41598-017-17204-5. PubMed DOI PMC

Ohar JA, et al. A rabbit model of pulmonary hypertension induced by the synthetic platelet-activating factor acetylglyceryl ether phosphorylcholine. Am. Rev. Respir. Dis. 1990;141:104–110. doi: 10.1164/ajrccm/141.1.104. PubMed DOI

Derrick M, et al. Preterm fetal hypoxia-ischemia causes hypertonia and motor deficits in the neonatal rabbit: A model for human cerebral palsy? J. Neurosci. 2004;24:24–34. doi: 10.1523/JNEUROSCI.2816-03.2004. PubMed DOI PMC

van der Merwe J, et al. Early neuropathological and neurobehavioral consequences of preterm birth in a rabbit model. Sci. Rep. 2019;9:3506. doi: 10.1038/s41598-019-39922-8. PubMed DOI PMC

Van der Veeken L, et al. Maternal surgery during pregnancy has a transient adverse effect on the developing fetal rabbit brain. Am. J. Obstet. Gynecol. 2019;221:e351–e355. doi: 10.1016/j.ajog.2019.07.029. PubMed DOI

Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/bf03193146. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...