CLICK-chemoproteomics and molecular dynamics simulation reveals pregnenolone targets and their binding conformations in Th2 cells
Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
Grant support
MR/V028995/1
Medical Research Council - United Kingdom
BB/V006126/1
Medical Research Council - United Kingdom
PubMed
38022565
PubMed Central
PMC10644475
DOI
10.3389/fimmu.2023.1229703
Knihovny.cz E-resources
- Keywords
- TH2, chemoproteomics, click chemistry, lymphosteroid, pregnenolone,
- MeSH
- Pregnenolone * metabolism pharmacology MeSH
- Molecular Dynamics Simulation MeSH
- Steroids MeSH
- Th2 Cells * metabolism MeSH
- Carrier Proteins metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Pregnenolone * MeSH
- Steroids MeSH
- Carrier Proteins MeSH
Pregnenolone (P5) is synthesized as the first bioactive steroid in the mitochondria from cholesterol. Clusters of differentiation 4 (CD4+) and Clusters of differentiation 8 (CD8+) immune cells synthesize P5 de novo; P5, in turn, play important role in immune homeostasis and regulation. However, P5's biochemical mode of action in immune cells is still emerging. We envisage that revealing the complete spectrum of P5 target proteins in immune cells would have multifold applications, not only in basic understanding of steroids biochemistry in immune cells but also in developing new therapeutic applications. We employed a CLICK-enabled probe to capture P5-binding proteins in live T helper cell type 2 (Th2) cells. Subsequently, using high-throughput quantitative proteomics, we identified the P5 interactome in CD4+ Th2 cells. Our study revealed P5's mode of action in CD4+ immune cells. We identified novel proteins from mitochondrial and endoplasmic reticulum membranes to be the primary mediators of P5's biochemistry in CD4+ and to concur with our earlier finding in CD8+ immune cells. Applying advanced computational algorithms and molecular simulations, we were able to generate near-native maps of P5-protein key molecular interactions. We showed bonds and interactions between key amino acids and P5, which revealed the importance of ionic bond, hydrophobic interactions, and water channels. We point out that our results can lead to designing of novel molecular therapeutics strategies.
Cellular Genetics Wellcome Sanger Institute Cambridge United Kingdom
Cellzome a GlaxoSmithKline company Genomic Sciences Pharma R and D Heidelberg Germany
Department of Biology Ashoka University Rajiv Gandhi Education City Sonipat Haryana India
Diabetes Center Faculty of Medicine University of Geneva Geneva Switzerland
Division of Immunology Department of Pathology University of Cambridge Cambridge United Kingdom
Theory of Condensed Matter Cavendish Laboratory Cambridge United Kingdom
See more in PubMed
Shih M-CM, Chiu Y-N, Hu M-C, Guo I-C, Chung B. Regulation of steroid production: analysis of Cyp11a1 promoter. Mol Cell Endocrinol (2011) 336:80–4. doi: 10.1016/j.mce.2010.12.017 PubMed DOI
Payne AH, Hales DB. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev (2004) 25:947–70. doi: 10.1210/er.2003-0030 PubMed DOI
Legacki EL, Ball BA, Corbin CJ, Loux SC, Scoggin KE, Stanley SD, et al. . Equine fetal adrenal, gonadal and placental steroidogenesis. Reproduction (2017) 154:445–54. doi: 10.1530/REP-17-0239 PubMed DOI
Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev (2011) 32:81–151. doi: 10.1210/er.2010-0013 PubMed DOI PMC
Weng J-H, Chung B. Nongenomic actions of neurosteroid pregnenolone and its metabolites. Steroids (2016) 111:54–9. doi: 10.1016/j.steroids.2016.01.017 PubMed DOI
Mayo W, Le Moal M, Abrous DN. Pregnenolone sulfate and aging of cognitive functions: behavioral, neurochemical, and morphological investigations. Hormones Behav (2001) 40:215–7. doi: 10.1006/hbeh.2001.1677 PubMed DOI
Mellon SH. Neurosteroid regulation of central nervous system development. Pharmacol Ther (2007) 116:107–24. doi: 10.1016/j.pharmthera.2007.04.011 PubMed DOI PMC
Marx CE, Lee J, Subramaniam M, Rapisarda A, Bautista DCT, Chan E, et al. . Proof-of-concept randomized controlled trial of pregnenolone in schizophrenia. Psychopharmacol (Berl) (2014) 231:3647–62. doi: 10.1007/s00213-014-3673-4 PubMed DOI
Grigoryev DN, Long BJ, Njar VC, Brodie AH. Pregnenolone stimulates LNCaP prostate cancer cell growth via the mutated androgen receptor. J Steroid Biochem Mol Biol (2000) 75:1–10. doi: 10.1016/S0960-0760(00)00131-X PubMed DOI
Trabert B, Geczik AM, Bauer DC, Buist DSM, Cauley JA, Falk RT, et al. . Association of endogenous pregnenolone, progesterone, and related metabolites with risk of endometrial and ovarian cancers in postmenopausal women: the B~FIT cohort. Cancer Epidemiol Biomarkers Prev (2021) 30:2030–7. doi: 10.1158/1055-9965.EPI-21-0669 PubMed DOI PMC
Xiao X, Chen L, Ouyang Y, Zhu W, Qiu P, Su X, et al. . Pregnenolone, a cholesterol metabolite, induces glioma cell apoptosis via activating extrinsic and intrinsic apoptotic pathways. Oncol Lett (2014) 8:645–50. doi: 10.3892/ol.2014.2147 PubMed DOI PMC
Murugan S, Jakka P, Namani S, Mujumdar V, Radhakrishnan G. The neurosteroid pregnenolone promotes degradation of key proteins in the innate immune signaling to suppress inflammation. J Biol Chem (2019) 294:4596–607. doi: 10.1074/jbc.RA118.005543 PubMed DOI PMC
Weng J-H, Liang M.-R, Chen C.-H, Tong S-K, Huang T.-C, Lee S-P, et al. . Pregnenolone activates CLIP-170 to promote microtubule growth and cell migration. Nat Chem Biol (2013) 9:636–42. doi: 10.1038/nchembio.1321 PubMed DOI
Hamasaki M, Matsumura S, Satou A, Takahashi C, Oda Y, Higashiura C, et al. . Pregnenolone functions in centriole cohesion during mitosis. Chem Biol (2014) 21:1707–21. doi: 10.1016/j.chembiol.2014.11.005 PubMed DOI
Mahata B, Zhang X, Kolodziejczyk AA, Proserpio V, Haim-Vilmovsky L, Taylor AE, et al. . Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep (2014) 7:1130–42. doi: 10.1016/j.celrep.2014.04.011 PubMed DOI PMC
Jia Y, Domenico J, Takeda K, Han J, Wang M, Armstrong M, et al. . Steroidogenic enzyme Cyp11a1 regulates Type 2 CD8+ T cell skewing in allergic lung disease. PNAS (2013) 110:8152–7. doi: 10.1073/pnas.1216671110 PubMed DOI PMC
Luckheeram RV, Zhou R, Verma AD, Xia B. CD4+T cells: differentiation and functions. Clin Dev Immunol (2012) 2012:925135. doi: 10.1155/2012/925135 PubMed DOI PMC
Kennedy R, Celis E. Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev (2008) 222:129–44. doi: 10.1111/j.1600-065X.2008.00616.x PubMed DOI
Chen F, Liu Z, Wu W, Rozo C, Bowdridge S, Millman A, et al. . An essential role for the Th2-type response in limiting tissue damage during helminth infection. Nat Med (2012) 18:260–6. doi: 10.1038/nm.2628 PubMed DOI PMC
Anthony RM, Urban JF, Alem F, Hamed HA, Rozo CT, Boucher J-L, et al. . Memory T(H)2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nat Med (2006) 12:955–60. doi: 10.1038/nm1451 PubMed DOI PMC
Liu Q, Kreider T, Bowdridge S, Liu Z, Song Y, Gaydo AG, et al. . B cells have distinct roles in host protection against different nematode parasites. J Immunol (2010) 184:5213–23. doi: 10.4049/jimmunol.0902879 PubMed DOI PMC
Roy S, Sipthorp J, Mahata B, Pramanik J, Hennrich ML, Gavin A-C, et al. . CLICK-enabled analogues reveal pregnenolone interactomes in cancer and immune cells. iScience (2021) 24:102485. doi: 10.1016/j.isci.2021.102485 PubMed DOI PMC
Fu Y, Zhao J, Chen Z. Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: A case of oligopeptide binding protein. Comput Math Methods Med (2018) 2018:3502514. doi: 10.1155/2018/3502514 PubMed DOI PMC
Du X, Li Y, Xia Y-L, Ai S-M, Liang J, Sang P, et al. . Insights into protein–ligand interactions: mechanisms, models, and methods. Int J Mol Sci (2016) 17:144. doi: 10.3390/ijms17020144 PubMed DOI PMC
Venkatachalam CM, Jiang X, Oldfield T, Waldman M. LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model (2003) 21:289–307. doi: 10.1016/S1093-3263(02)00164-X PubMed DOI
Osterberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS. Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins (2002) 46:34–40. doi: 10.1002/prot.10028 PubMed DOI
Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking method using an incremental construction algorithm. J Mol Biol (1996) 261:470–89. doi: 10.1006/jmbi.1996.0477 PubMed DOI
Jain AN. Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem (2003) 46:499–511. doi: 10.1021/jm020406h PubMed DOI
Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol (1997) 267:727–48. doi: 10.1006/jmbi.1996.0897 PubMed DOI
Schapira M, Abagyan R, Totrov M. Nuclear hormone receptor targeted virtual screening. J Med Chem (2003) 46:3045–59. doi: 10.1021/jm0300173 PubMed DOI
Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. . Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem (2004) 47:1739–49. doi: 10.1021/jm0306430 PubMed DOI
McGann MR, Almond HR, Nicholls A, Grant JA, Brown FK. Gaussian docking functions. Biopolymers (2003) 68:76–90. doi: 10.1002/bip.10207 PubMed DOI
Corbeil CR, Williams CI, Labute P. Variability in docking success rates due to dataset preparation. J Comput Aided Mol Des (2012) 26:775–86. doi: 10.1007/s10822-012-9570-1 PubMed DOI PMC
Zhao H, Caflisch A. Discovery of ZAP70 inhibitors by high-throughput docking into a conformation of its kinase domain generated by molecular dynamics. Bioorg Med Chem Lett (2013) 23:5721–6. doi: 10.1016/j.bmcl.2013.08.009 PubMed DOI
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem (2010) 31:455–61. doi: 10.1002/jcc.21334 PubMed DOI PMC
Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N, Garmendia-Doval AB, Juhos S, Schmidtke P, et al. . rDock: A fast, versatile and open source program for docking ligands to proteins and nucleic acids. PloS Comput Biol (2014) 10:e1003571. doi: 10.1371/journal.pcbi.1003571 PubMed DOI PMC
Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, et al. . DOCK 6: impact of new features and current docking performance. J Comput Chem (2015) 36:1132–56. doi: 10.1002/jcc.23905 PubMed DOI PMC
Vallée M, Vitiello S, Bellocchio L, Hébert-Chatelain E, Monlezun S, Martin-Garcia E, et al. . Pregnenolone can protect the brain from cannabis intoxication. Science (2014) 343:94–8. doi: 10.1126/science.1243985 PubMed DOI PMC
Murakami K, Fellous A, Baulieu EE, Robel P. Pregnenolone binds to microtubule-associated protein 2 and stimulates microtubule assembly. Proc Natl Acad Sci U.S.A. (2000) 97:3579–84. doi: 10.1073/pnas.97.7.3579 PubMed DOI PMC
Kleiner P, Heydenreuter W, Stahl M, Korotkov VS. & Sieber, S. A. A whole proteome inventory of background photocrosslinker binding. Angewandte Chemie Int Edition (2017) 56:1396–401. doi: 10.1002/anie.201605993 PubMed DOI
Mzhavia N, Berman YL, Qian Y, Yan L, Devi LA. Cloning, expression, and characterization of human metalloprotease 1: a novel member of the pitrilysin family of metalloendoproteases. DNA Cell Biol (1999) 18:369–80. doi: 10.1089/104454999315268 PubMed DOI
Tonazzi A, Giangregorio N, Console L, Palmieri F, Indiveri C. The mitochondrial carnitine acyl-carnitine carrier (SLC25A20): molecular mechanisms of transport, role in redox sensing and interaction with drugs. Biomolecules (2021) 11:521. doi: 10.3390/biom11040521 PubMed DOI PMC
Mastorodemos V, Kotzamani D, Zaganas I, Arianoglou G, Latsoudis H, Plaitakis A. Human GLUD1 and GLUD2 glutamate dehydrogenase localize to mitochondria and endoplasmic reticulum. Biochem Cell Biol (2009) 87:505–16. doi: 10.1139/O09-008 PubMed DOI
Mahata B, Pramanik J, van der Weyden L, Polanski K, Kar G, Riedel A, et al. . Tumors induce de novo steroid biosynthesis in T cells to evade immunity. Nat Commun (2020) 11:3588. doi: 10.1038/s41467-020-17339-6 PubMed DOI PMC
Angajala A, Lim S, Phillips JB, Kim J-H, Yates C, You Z, et al. . Diverse roles of mitochondria in immune responses: novel insights into immuno-metabolism. Front Immunol (2018) 9:1605. doi: 10.3389/fimmu.2018.01605 PubMed DOI PMC
Jiang Y, Tao Z, Chen H, Xia S. Endoplasmic reticulum quality control in immune cells. Front Cell Dev Biol (2021) 9. doi: 10.3389/fcell.2021.740653 PubMed DOI PMC
Gao J, Schatton D, Martinelli P, Hansen H, Pla-Martin D, Barth E, et al. . CLUH regulates mitochondrial biogenesis by binding mRNAs of nuclear-encoded mitochondrial proteins. J Cell Biol (2014) 207:213–23. doi: 10.1083/jcb.201403129 PubMed DOI PMC
Yang C, Ko B, Hensley CT, Jiang L, Wasti AT, Kim J, et al. . Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol Cell (2014) 56:414–24. doi: 10.1016/j.molcel.2014.09.025 PubMed DOI PMC
Matias MI, Yong CS, Foroushani A, Goldsmith C, Mongellaz C, Sezgin E, et al. . Regulatory T cell differentiation is controlled by αKG-induced alterations in mitochondrial metabolism and lipid homeostasis. Cell Rep (2021) 37:109911. doi: 10.1016/j.celrep.2021.109911 PubMed DOI PMC
Smith HQ, Li C, Stanley CA, Smith TJ. Glutamate dehydrogenase, a complex enzyme at a crucial metabolic branch point. Neurochem Res (2019) 44:117–32. doi: 10.1007/s11064-017-2428-0 PubMed DOI PMC
Michaelis EK, Wang X, Pal R, Bao X, Hascup KN, Wang Y, et al. . Neuronal glud1 (Glutamate dehydrogenase 1) over-expressing mice: increased glutamate formation and synaptic release, loss of synaptic activity, and adaptive changes in genomic expression. Neurochem Int (2011) 59:473–81. doi: 10.1016/j.neuint.2011.03.003 PubMed DOI PMC
Chakraborty S, Pramanik J, Mahata B. Revisiting steroidogenesis and its role in immune regulation with the advanced tools and technologies. Genes Immun (2021) 22:125–40. doi: 10.1038/s41435-021-00139-3 PubMed DOI PMC
Hughes CS, Foehr S, Garfield DA, Furlong EE, Steinmetz LM, Krijgsveld J. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol Syst Biol (2014) 10:757. doi: 10.15252/msb.20145625 PubMed DOI PMC
Franken H, Mathieson T, Childs D, Sweetman GMA, Werner T, Tögel I, et al. . Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat Protoc (2015) 10:1567–93. doi: 10.1038/nprot.2015.101 PubMed DOI
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. . limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res (2015) 43:e47. doi: 10.1093/nar/gkv007 PubMed DOI PMC
Huber W, von Heydebreck A, Sültmann H, Poustka A, Vingron M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics (2002) 18:S96–S104. doi: 10.1093/bioinformatics/18.suppl_1.S96 PubMed DOI
Strimmer K. fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics (2008) 24:1461–2. doi: 10.1093/bioinformatics/btn209 PubMed DOI
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. . Highly accurate protein structure prediction with AlphaFold. Nature (2021) 596:583–9. doi: 10.1038/s41586-021-03819-2 PubMed DOI PMC
Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. . AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res (2022) 50:D439–44. doi: 10.1093/nar/gkab1061 PubMed DOI PMC
Labute P. The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area. J Comput Chem (2008) 29:1693–8. doi: 10.1002/jcc.20933 PubMed DOI
Das M, Prakash S, Nayak C, Thangavel N, Singh SK, Manisankar P, et al. . Dihydroactinidiolide, a natural product against Aβ25-35 induced toxicity in Neuro2a cells: Synthesis, in silico and in vitro studies. Bioorg Chem (2018) 81:340–9. doi: 10.1016/j.bioorg.2018.08.037 PubMed DOI
Vijayalakshmi P, Selvaraj C, Singh SK, Nisha J, Saipriya K, Daisy P. Exploration of the binding of DNA binding ligands to Staphylococcal DNA through QM/MM docking and molecular dynamics simulation. J Biomol Struct Dyn (2013) 31:561–71. doi: 10.1080/07391102.2012.706080 PubMed DOI
Patidar K, Deshmukh A, Bandaru S, Lakkaraju C, Girdhar A, Vr G, et al. . Virtual screening approaches in identification of bioactive compounds akin to delphinidin as potential HER2 inhibitors for the treatment of breast cancer. Asian Pac J Cancer Prev (2016) 17:2291–5. doi: 10.7314/APJCP.2016.17.4.2291 PubMed DOI
Suryanarayanan V, Singh SK. Assessment of dual inhibition property of newly discovered inhibitors against PCAF and GCN5 through in silico screening, molecular dynamics simulation and DFT approach. J Recept Signal Transduct Res (2015) 35:370–80. doi: 10.3109/10799893.2014.956756 PubMed DOI
Reddy KK, Singh SK, Tripathi SK, Selvaraj C. Identification of potential HIV-1 integrase strand transfer inhibitors: in silico virtual screening and QM/MM docking studies. SAR QSAR Environ Res (2013) 24:581–95. doi: 10.1080/1062936X.2013.772919 PubMed DOI
Salgado-Moran G, Ramirez-Tagle R, Glossman-Mitnik D, Ruiz-Nieto S, Kishore-Deb P, Bunster M, et al. . Docking studies of binding of ethambutol to the C-terminal domain of the arabinosyltransferase from Mycobacterium tuberculosis . J Chem (2013) 2013:e601270. doi: 10.1155/2013/601270 DOI
Pradiba D, Aarthy M, Shunmugapriya V, Singh SK, Vasanthi M. Structural insights into the binding mode of flavonols with the active site of matrix metalloproteinase-9 through molecular docking and molecular dynamic simulations studies. J Biomol Struct Dyn (2018) 36:3718–39. doi: 10.1080/07391102.2017.1397058 PubMed DOI
Stourac J, Vavra O, Kokkonen P, Filipovic J, Pinto G, Brezovsky J, et al. . Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res (2019) 47:W414–22. doi: 10.1093/nar/gkz378 PubMed DOI PMC
Dehouck Y, Grosfils A, Folch B, Gilis D, Bogaerts P, Rooman M. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Bioinformatics (2009) 25:2537–43. doi: 10.1093/bioinformatics/btp445 PubMed DOI
Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. . The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res (2019) 47:D442–50. doi: 10.1093/nar/gky1106 PubMed DOI PMC