• This record comes from PubMed

Copper Phosphinate Complexes as Molecular Precursors for Ethanol Dehydrogenation Catalysts

. 2023 Dec 11 ; 62 (49) : 19871-19886. [epub] 20231130

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Nowadays, the production of acetaldehyde heavily relies on the petroleum industry. Developing new catalysts for the ethanol dehydrogenation process that could sustainably substitute current acetaldehyde production methods is highly desired. Among the ethanol dehydrogenation catalysts, copper-based materials have been intensively studied. Unfortunately, the Cu-based catalysts suffer from sintering and coking, which lead to rapid deactivation with time-on-stream. Phosphorus doping has been demonstrated to diminish coking in methanol dehydrogenation, fluid catalytic cracking, and ethanol-to-olefin reactions. This work reports a pioneering application of the well-characterized copper phosphinate complexes as molecular precursors for copper-based ethanol dehydrogenation catalysts enriched with phosphate groups (Cu-phosphate/SiO2). Three new catalysts (CuP-1, CuP-2, and CuP-3), prepared by the deposition of complexes {Cu(SAAP)}n (1), [Cu6(BSAAP)6] (2), and [Cu3(NAAP)3] (3) on the surface of commercial SiO2, calcination at 500 °C, and reduction in the stream of the forming gas 5% H2/N2 at 400 °C, exhibited unusual properties. First, the catalysts showed a rapid increase in catalytic activity. After reaching the maximum conversion, the catalyst started to deactivate. The unusual behavior could be explained by the presence of the phosphate phase, which made Cu2+ reduction more difficult. The phosphorus content gradually decreased during time-on-stream, copper was reduced, and the activity increased. The deactivation of the catalyst could be related to the copper diffusion processes. The most active CuP-1 catalyst reaches a maximum of 73% ethanol conversion and over 98% acetaldehyde selectivity at 325 °C and WHSV = 2.37 h-1.

See more in PubMed

Graedel T. Green Chemistry in an Industrial Ecology Context. Green Chem. 1999, 1 (5), 126–128. 10.1039/a908574b. DOI

Clark J. H. Green Chemistry: Challenges and Opportunities. Green Chem. 1999, 1 (1), 1–8. 10.1039/a807961g. DOI

Liu P.; Hensen E. J. M. Highly Efficient and Robust Au/MgCuCr2O4 Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde. J. Am. Chem. Soc. 2013, 135 (38), 14032–14035. 10.1021/ja406820f. PubMed DOI

Takei T.; Iguchi N.; Haruta M. Synthesis of Acetoaldehyde, Acetic Acid, and Others by the Dehydrogenation and Oxidation of Ethanol. Catal. Surv. from Asia 2011, 15 (2), 80–88. 10.1007/s10563-011-9112-1. DOI

Patel A. C.; Li S.; Wang C.; Zhang W.; Wei Y. Electrospinning of Porous Silica Nanofibers Containing Silver Nanoparticles for Catalytic Applications. Chem. Mater. 2007, 19 (6), 1231–1238. 10.1021/cm061331z. DOI

Cespi D.; Passarini F.; Vassura I.; Cavani F. Butadiene from Biomass, a Life Cycle Perspective to Address Sustainability in the Chemical Industry. Green Chem. 2016, 18 (6), 1625–1638. 10.1039/C5GC02148K. DOI

Pomalaza G.; Arango Ponton P.; Capron M.; Dumeignil F. Ethanol-to-Butadiene: The Reaction and Its Catalysts. Catal. Sci. Technol. 2020, 10 (15), 4860–4911. 10.1039/D0CY00784F. DOI

Shylesh S.; Gokhale A. A.; Scown C. D.; Kim D.; Ho C. R.; Bell A. T. From Sugars to Wheels: The Conversion of Ethanol to 1,3-Butadiene over Metal-Promoted Magnesia-Silicate Catalysts. ChemSusChem 2016, 9 (12), 1462–1472. 10.1002/cssc.201600195. PubMed DOI

Jira R. Acetaldehyde from Ethylene-A Retrospective on the Discovery of the Wacker Process. Angew. Chemie Int. Ed. 2009, 48 (48), 9034–9037. 10.1002/anie.200903992. PubMed DOI

Keith J. A.; Nielsen R. J.; Oxgaard J.; Goddard W. A. Unraveling the Wacker Oxidation Mechanisms. J. Am. Chem. Soc. 2007, 129 (41), 12342–12343. 10.1021/ja072400t. PubMed DOI

Lebedev Process. In Comprehensive Organic Name Reactions and Reagents; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010.

Angelici C.; Velthoen M. E. Z.; Weckhuysen B. M.; Bruijnincx P. C. A. Influence of Acid–Base Properties on the Lebedev Ethanol-to-Butadiene Process Catalyzed by SiO2–MgO Materials. Catal. Sci. Technol. 2015, 5 (5), 2869–2879. 10.1039/C5CY00200A. DOI

Segawa A.; Nakashima A.; Nojima R.; Yoshida N.; Okamoto M. Acetaldehyde Production from Ethanol by Eco-Friendly Non-Chromium Catalysts Consisting of Copper and Calcium Silicate. Ind. Eng. Chem. Res. 2018, 57 (35), 11852–11857. 10.1021/acs.iecr.8b02498. DOI

Freitas I. C.; Damyanova S.; Oliveira D. C.; Marques C. M. P.; Bueno J. M. C. Effect of Cu Content on the Surface and Catalytic Properties of Cu/ZrO2 Catalyst for Ethanol Dehydrogenation. J. Mol. Catal. A Chem. 2014, 381, 26–37. 10.1016/j.molcata.2013.09.038. DOI

Chang F. W.; Yang H. C.; Roselin L. S.; Kuo W. Y. Ethanol Dehydrogenation over Copper Catalysts on Rice Husk Ash Prepared by Ion Exchange. Appl. Catal. A Gen. 2006, 304 (1–2), 30–39. 10.1016/j.apcata.2006.02.017. DOI

Zhang H.; Tan H. R.; Jaenicke S.; Chuah G. K. Highly Efficient and Robust Cu Catalyst for Non-Oxidative Dehydrogenation of Ethanol to Acetaldehyde and Hydrogen. J. Catal. 2020, 389, 19–28. 10.1016/j.jcat.2020.05.018. DOI

Yu D.; Dai W.; Wu G.; Guan N.; Li L. Stabilizing Copper Species Using Zeolite for Ethanol Catalytic Dehydrogenation to Acetaldehyde. Chin. J. Catal. 2019, 40 (9), 1375–1384. 10.1016/S1872-2067(19)63378-4. DOI

Ob-eye J.; Praserthdam P.; Jongsomjit B. Dehydrogenation of Ethanol to Acetaldehyde over Different Metals Supported on Carbon Catalysts. Catalysts 2019, 9 (1), 66.10.3390/catal9010066. DOI

Chang F. W.; Kuo W. Y.; Lee K. C. Dehydrogenation of Ethanol over Copper Catalysts on Rice Husk Ash Prepared by Incipient Wetness Impregnation. Appl. Catal. A Gen. 2003, 246 (2), 253–264. 10.1016/S0926-860X(03)00050-4. DOI

Pokorny T.; Vykoukal V.; Machac P.; Moravec Z.; Scotti N.; Roupcova P.; Karaskova K.; Styskalik A. Ethanol Dehydrogenation over Copper-Silica Catalysts: From Sub-Nanometer Clusters to 15 Nm Large Particles. ACS Sustain. Chem. Eng. 2023, 11 (30), 10980–10992. 10.1021/acssuschemeng.2c06777. PubMed DOI PMC

Pampararo G.; Garbarino G.; Riani P.; Vykoukal V.; Busca G.; Debecker D. P. Ethanol Dehydrogenation to Acetaldehyde with Mesoporous Cu-SiO2 Catalysts Prepared by Aerosol-Assisted Sol–Gel. Chem. Eng. J. 2023, 465, 14271510.1016/j.cej.2023.142715. DOI

Tu Y. J.; Chen Y. W. Effects of Alkali Metal Oxide Additives on Cu/SiO2 Catalyst in the Dehydrogenation of Ethanol. Ind. Eng. Chem. Res. 2001, 40 (25), 5889–5893. 10.1021/ie010272q. DOI

Coles M. P.; Lugmair C. G.; Terry K. W.; Tilley T. D. Titania-Silica Materials from the Molecular Precursor Ti[OSi(OtBu)3]4: Selective Epoxidation Catalysts. Chem. Mater. 2000, 12 (1), 122–131. 10.1021/cm990444y. DOI

Jarupatrakorn J.; Tilley T. D. Silica-Supported, Single-Site Titanium Catalysts for Olefin Epoxidation. A Molecular Precursor Strategy for Control of Catalyst Structure. J. Am. Chem. Soc. 2002, 124 (28), 8380–8388. 10.1021/JA0202208/ASSET/IMAGES/LARGE/JA0202208F00008.JPEG. PubMed DOI

Singh A.; Chang S. L. Y.; Hocking R. K.; Bach U.; Spiccia L. Highly Active Nickel Oxide Water Oxidation Catalysts Deposited from Molecular Complexes. Energy Environ. Sci. 2013, 6 (2), 579–586. 10.1039/C2EE23862D. DOI

Khemthong P.; Daorattanachai P.; Laosiripojana N.; Faungnawakij K. Copper Phosphate Nanostructures Catalyze Dehydration of Fructose to 5-Hydroxymethylfufural. Catal. Commun. 2012, 29, 96–100. 10.1016/j.catcom.2012.09.025. DOI

Zhong G.; Bai J.; Duchesne P. N.; McDonald M. J.; Li Q.; Hou X.; Tang J. A.; Wang Y.; Zhao W.; Gong Z.; Zhang P.; Fu R.; Yang Y. Copper Phosphate as a Cathode Material for Rechargeable Li Batteries and Its Electrochemical Reaction Mechanism. Chem. Mater. 2015, 27 (16), 5736–5744. 10.1021/acs.chemmater.5b02290. DOI

Soták T.; Hronec M.; Gál M.; Dobročka E.; Škriniarová J. Aqueous-Phase Oxidation of Furfural to Maleic Acid Catalyzed by Copper Phosphate Catalysts. Catal. Lett. 2017, 147 (11), 2714–2723. 10.1007/s10562-017-2191-5. DOI

Xie W.-Y.; Song F.; Wang X.-L.; Wang Y.-Z. Development of Copper Phosphate Nanoflowers on Soy Protein toward a Superhydrophobic and Self-Cleaning Film. ACS Sustain. Chem. Eng. 2017, 5 (1), 869–875. 10.1021/acssuschemeng.6b02199. DOI

Luo Y. K.; Song F.; Wang X. L.; Wang Y. Z. Pure Copper Phosphate Nanostructures with Controlled Growth: A Versatile Support for Enzyme Immobilization. CrystEngComm 2017, 19 (22), 2996–3002. 10.1039/C7CE00466D. DOI

Wu H.; Song J.; Xie C.; Hu Y.; Liu S.; Han B. Preparation of Copper Phosphate from Naturally Occurring Phytic Acid as an Advanced Catalyst for Oxidation of Aromatic Benzyl Compounds. ACS Sustain. Chem. Eng. 2018, 6 (11), 13670–13675. 10.1021/acssuschemeng.8b04193. DOI

Nag R.; Rao C. P. Development and Demonstration of Functionalized Inorganic–Organic Hybrid Copper Phosphate Nanoflowers for Mimicking the Oxidative Reactions of Metalloenzymes by Working as a Nanozyme. J. Mater. Chem. B 2021, 9 (16), 3523–3532. 10.1039/D1TB00221J. PubMed DOI

Rahmani F.; Ghadi A.; Doustkhah E.; Khaksar S. In Situ Formation of Copper Phosphate on Hydroxyapatite for Wastewater Treatment. Nanomaterials 2022, 12 (15), 2650.10.3390/nano12152650. PubMed DOI PMC

Prapakaran T.; Sathish C. I.; Yi J.; Vinu A.; Murugavel R. Nuclearity Control in Molecular Copper Phosphates Derived from a Bulky Arylphosphate: Synthesis, Structural and Magnetic Studies. Eur. J. Inorg. Chem. 2023, 26 (17), e20230007110.1002/ejic.202300071. DOI

Zhang Y.; Clearfield A. Synthesis, Crystal Structures, and Coordination Intercalation Behavior of Two Copper Phosphonates. Inorg. Chem. 1992, 31 (13), 2821–2826. 10.1021/ic00039a029. DOI

Le Bideau J.; Payen C.; Palvadeau P.; Bujoli B. Preparation Structure, and Magnetic Properties of Copper(II) Phosphonates. .Beta.-CuII(CH3PO3), an Original Three-Dimensional Structure with a Channel-Type Arrangement. Inorg. Chem. 1994, 33 (22), 4885–4890. 10.1021/ic00100a011. DOI

Chandrasekhar V.; Sahoo D.; Narayanan R. S.; Butcher R. J.; Lloret F.; Pardo E. A Hexaicosametallic Copper(II) Phosphonate. Dalt. Trans. 2013, 42 (23), 8192–8196. 10.1039/c3dt00103b. PubMed DOI

Hermer N.; Stock N. The New Triazine-Based Porous Copper Phosphonate [Cu3(PPT)(H2O)3]·10H2O. Dalt. Trans. 2015, 44 (8), 3720–3723. 10.1039/C4DT03698K. PubMed DOI

Ai J.; Min X.; Gao C. Y.; Tian H. R.; Dang S.; Sun Z. M. A Copper-Phosphonate Network as a High-Performance Heterogeneous Catalyst for the CO2 Cycloaddition Reactions and Alcoholysis of Epoxides. Dalt. Trans. 2017, 46 (20), 6756–6761. 10.1039/C7DT00739F. PubMed DOI

Wang J. M.; Liu Y. R.; Mao X. Y.; Shi N. N.; Zhang X.; Wang H. S.; Fan Y. H.; Wang M. Two Trinuclear CuII Complexes: Effect of Phosphonate Ligand on the Magnetic Property and Electrocatalytic Reactivity for Water Oxidation. Chem. – Asian J. 2019, 14 (15), 2685–2693. 10.1002/ASIA.201900531. PubMed DOI

Liu B.; Liu J. C.; Shen Y.; Feng J. S.; Bao S. S.; Zheng L. M. Polymorphic Layered Copper Phosphonates: Exfoliation and Proton Conductivity Studies. Dalt. Trans. 2019, 48 (19), 6539–6545. 10.1039/C9DT00970A. PubMed DOI

Peeples C. A.; Kober D.; Schmitt F.; Tholen P.; Siemensmeyer K.; Halldorson Q.; Çoşut B.; Gurlo A.; Yazaydin A. O.; Hanna G.; Yücesan G. A 3D Cu-Naphthalene-Phosphonate Metal–Organic Framework with Ultra-High Electrical Conductivity. Adv. Funct. Mater. 2021, 31 (3), 200729410.1002/adfm.202007294. DOI

Hu Z. J.; Tsai M. J.; Sung H. L.; Wu J. Y. A Three-Component Copper Phosphonate Complex as a Sensor Platform for Sensitive Cd2+ and Zn2+ Ion Detection in Water via Fluorescence Enhancement. J. Solid State Chem. 2021, 299, 12217810.1016/j.jssc.2021.122178. DOI

Pankhurst J. R.; Castilla-Amorós L.; Stoian D. C.; Vavra J.; Mantella V.; Albertini P. P.; Buonsanti R. Copper Phosphonate Lamella Intermediates Control the Shape of Colloidal Copper Nanocrystals. J. Am. Chem. Soc. 2022, 144 (27), 12261–12271. 10.1021/jacs.2c03489. PubMed DOI PMC

Salcedo-Abraira P.; Serrano-Nieto R.; Biglione C.; Cabrero-Antonino M.; Vilela S. M. F.; Babaryk A. A.; Tilve-Martínez D.; Rodriguez-Diéguez A.; Navalón S.; García H.; Horcajada P. Two Cu-Based Phosphonate Metal–Organic Frameworks as Efficient Water-Splitting Photocatalysts. Chem. Mater. 2023, 35 (11), 4211–4219. 10.1021/acs.chemmater.3c00054. DOI

Chandrasekhar V.; Kingsley S. A Dodecanuclear Copper(Ii) Cage Containing Phosphonate and Pyrazole Ligands**. Angew. Chem., Int. Ed. 2000, 39 (13), 2320.10.1002/1521-3773. PubMed DOI

Yao H.-C.; Li Y.-Z.; Gao S.; Song Y.; Zheng L.-M.; Xin X.-Q. Copper Phosphonates with Dinuclear and Layer Structures: A Structural and Magnetic Study. J. Solid State Chem. 2004, 177 (12), 4557–4563. 10.1016/j.jssc.2004.09.007. DOI

Chandrasekhar V.; Senapati T.; Sañudo E. C. Synthesis, Structure, and Magnetism of Hexanuclear Copper(II) Phosphonates. Inorg. Chem. 2008, 47 (20), 9553–9560. 10.1021/ic8011525. PubMed DOI

Chandrasekhar V.; Nagarajan L.; Clérac R.; Ghosh S.; Verma S. A Distorted Cubic Tetranuclear Copper(II) Phosphonate Cage with a Double-Four-Ring-Type Core. Inorg. Chem. 2008, 47 (3), 1067–1073. 10.1021/ic701948g. PubMed DOI

Chandrasekhar V.; Nagarajan L. A Hexadecameric Copper(II) Phosphonate. Dalt. Trans. 2009, 34, 6712–6714. 10.1039/b905456a. PubMed DOI

Chandrasekhar V.; Senapati T.; Dey A.; Sañudo E. C. Rational Assembly of Soluble Copper(II) Phosphonates: Synthesis, Structure and Magnetism of Molecular Tetranuclear Copper(II) Phosphonates. Inorg. Chem. 2011, 50 (4), 1420–1428. 10.1021/ic101982c. PubMed DOI

Chandrasekhar V.; Nagarajan L.; Hossain S.; Gopal K.; Ghosh S.; Verma S. Multicomponent Assembly of Anionic and Neutral Decanuclear Copper(II) Phosphonate Cages. Inorg. Chem. 2012, 51 (10), 5605–5616. 10.1021/ic202510d. PubMed DOI

Taddei M.; Costantino F.; Ienco A.; Comotti A.; Dau P. V.; Cohen S. M. Synthesis, Breathing, and Gas Sorption Study of the First Isoreticular Mixed-Linker Phosphonate Based Metal–Organic Frameworks. Chem. Commun. 2013, 49 (13), 1315.10.1039/c2cc38092g. PubMed DOI

Cini R.; Colamarino P.; Orioli P. L.; Smith L. S.; Newman P. R.; Gillman H. D.; Nannelli P. Crystal Structure and Magnetic Studies of Bis(.Mu.-Dibutylphosphinato)-Copper(II). Inorg. Chem. 1977, 16 (12), 3223–3226. 10.1021/ic50178a048. DOI

Gillman H. D.; Eichelberger J. L. Inorganic Coordination Polymers. XXII. Manganese(II), Cobalt(II), Nickel(II), Copper(II), and Zinc(II) Bis[Bis(N-Phenylaminomethyl)Phosphinates]. Effects of Coordinating Side Groups. Inorg. Chim. Acta 1977, 24 (C), 31–34. 10.1016/S0020-1693(00)93846-5. DOI

Oliver K. W.; Rettig S. J.; Thompson R. C.; Trotter J.; Xia S. Crystal Structure and Magnetic Behavior of Copper(II) Dimethylphosphinate: A Chain Polymer Containing Triangular Trimetallic Bis(μ-Dimethylphosphinato)Copper(II) Units. Inorg. Chem. 1997, 36 (11), 2465–2468. 10.1021/ic961365g. PubMed DOI

Cecconi F.; Ghilardi C. A.; Lorenzo Luis P. A.; Midollini S.; Orlandini A.; Dakternieks D.; Duthie A.; Dominguez S.; Berti E.; Vacca A. Complexes of the Tripodal Nitrilotrimethylenetrisphosphonic (H6L) and P,P′,P″-Triphenylnitrilotrimethylenetrisphosphinic (H3L°) Acids with the Copper(II) Ion. Synthesis and Characterization of [Hpy][Cu(H3L)(H2O)] and [Cu(HL°)(Py)]2·2Me2CO. J. Chem. Soc. Dalt. Trans. 2001, 2, 211–217. 10.1039/b004576o. DOI

Sergienko V. S. Structural Features of 3d Metal Compounds with 1-Hydroxyethylidenediphosphonic Acid. Crystallogr. Reports 2001, 46 (2), 196–206. 10.1134/1.1358393. DOI

Chiang M. Y.-N.; Wu J.-Y.; Zeng W.-F.; Xu D.-J. Bis(Di-2-Pyridylphosphinato-κ3N,O,N′)Copper(II) Dichloromethane Disolvate. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2003, 59 (12), m523–m525. 10.1107/S0108270103023631. PubMed DOI

Kubíček V.; Vojtišek P.; Rudovsky J.; Hermann P.; Lukeš I. Complexes of Divalent Transition Metal Ions with Bis(Aminomethyl)Phosphinic Acid in Aqueous Solution and in the Solid State. Dalt. Trans. 2003, 20, 3927–3938. 10.1039/B305844A. DOI

Koga K.; Ohtsubo M.; Yamada Y.; Koikawa M.; Tokii T. Novel Dinuclear Copper(II) Complexes with Syn-Syn and Syn-Anti Coordination Modes of Bis(μ-Phosphinato)-Bridges: Structures and Magnetic Properties. Chem. Lett. 2004, 33 (12), 1606–1607. 10.1246/cl.2004.1606. DOI

Ciattini S.; Costantino F.; Lorenzo-Luis P.; Midollini S.; Orlandini A.; Vacca A. Inorganic–Organic Hybrids Formed by P,P‘-Diphenylmethylenediphosphinate, Pcp2–, with the Cu2+ Ion. X-Ray Crystal Structures of [Cu(Pcp)(H2O)2]·H2O and [Cu(Pcp)(Bipy)(H2O)]. Inorg. Chem. 2005, 44 (11), 4008–4016. 10.1021/ic050171a. PubMed DOI

Midollini S.; Orlandini A. Hydrogen Bonding in Triamine Copper(II) P,P′-Diphenylmethylenediphosphinate (Pcp2–) Hybrids. Syntheses and Crystal Structures of [Cu(Pcp)(2,2′-Dipyridylamine)(H2O)]·2H2O and [Cu(Pcp)(2,2′: 6′,2″terpyridine)]·4H2O. J. Coord. Chem. 2006, 59 (13), 1433–1442. 10.1080/00958970600559203. DOI

Kubíček V.; Řehoř I.; Havlíčková J.; Kotek J.; Císařová I.; Hermann P.; Lukeš I. Synthesis and Coordination Behavior of Symmetrical Tetraamine Phosphinic Acids. Eur. J. Inorg. Chem. 2007, 2007 (24), 3881–3891. 10.1002/ejic.200700010. DOI

Murugavel R.; Pothiraja R.; Gogoi N.; Clérac R.; Lecren L.; Butcher R. J.; Nethaji M. Synthesis, Magnetic Behaviour, and X-Ray Structures of Dinuclear Copper Complexes with Multiple Bridges. Efficient and Selective Catalysts for Polymerization of 2,6-Dimethylphenol. Dalton Trans. 2007, 23, 2405–2410. 10.1039/B618559B. PubMed DOI

Oliver K. W.; Rettig S. J.; Thompson R. C.; Trotter J. Synthesis, Structure, and Properties of Poly-Bis(μ-Diethylphosphinato)Copper(II). Can. J. Chem. 1982, 60 (15), 2017–2022. 10.1139/v82-285. DOI

Tircsó G.; Bényei A.; Király R.; Lázár I.; Pál R.; Brücher E. Complexation Properties of the Di-, Tri-, and Tetraacetate Derivatives of Bis(Aminomethyl)Phosphinic Acid. Eur. J. Inorg. Chem. 2007, 2007 (5), 701–713. 10.1002/ejic.200600891. DOI

Yoon J.; Solomon E. I. Electronic Structures of Exchange Coupled Trigonal Trimeric Cu(II) Complexes: Spin Frustration, Antisymmetric Exchange, Pseudo-A Terms, and Their Relation to O2 Activation in the Multicopper Oxidases. Coord. Chem. Rev. 2007, 251 (3–4), 379–400. 10.1016/j.ccr.2006.04.012. DOI

Bataille T.; Costantino F.; Ienco A.; Guerri A.; Marmottini F.; Midollini S. A Snapshot of a Coordination Polymer Self-Assembly Process: The Crystallization of a Metastable 3D Network Followed by the Spontaneous Transformation in Water to a 2D Pseudopolymorphic Phase. Chem. Commun. 2008, 47, 6381–6383. 10.1039/b813222d. PubMed DOI

Bataille T.; Costantino F.; Lorenzo-Luis P.; Midollini S.; Orlandini A. A New Copper(II) Tubelike Metal–Organic Framework Constructed from P,P′-Diphenylmethylenediphosphinic Acid and 4,4′-Bipyridine: Synthesis, Structure, and Thermal Behavior. Inorg. Chim. Acta 2008, 361 (1), 9–15. 10.1016/j.ica.2007.06.005. DOI

Costantino F.; Ienco A.; Midollini S.; Orlandini A.; Sorace L.; Vacca A. Copper(II) Complexes with Bridging Diphosphinates – The Effect of the Elongation of the Aliphatic Chain on the Structural Arrangements Around the Metal Centres. Eur. J. Inorg. Chem. 2008, 2008 (19), 3046–3055. 10.1002/ejic.200800203. DOI

Costantino F.; Ienco A.; Midollini S. Different Structural Networks Determined by Variation of the Ligand Skeleton in Copper(II) Diphosphinate Coordination Polymers. Cryst. Growth Des. 2010, 10 (1), 7–10. 10.1021/cg900748r. DOI

Pothiraja R.; Sathiyendiran M.; Steiner A.; Murugavel R. Copper Phosphates and Phosphinates with Pyridine/Pyrazole Alcohol Co-Ligands: Synthesis and Structure. Inorg. Chim. Acta 2011, 372 (1), 347–352. 10.1016/j.ica.2011.03.063. DOI

Liu M. J.; Cao D. K.; Liu B.; Li Y. Z.; Huang J.; Zheng L. M. Cobalt and Copper Phosphinates Based on N-(Phosphinomethyl)Iminodiacetic Acid: Supramolecular Layered Structures and Magnetic Properties. CrystEngComm 2012, 14 (14), 4699–4705. 10.1039/c2ce00026a. DOI

Taddei M.; Ienco A.; Costantino F.; Guerri A. Supramolecular Interactions Impacting on the Water Stability of Tubular Metal–Organic Frameworks. RSC Adv. 2013, 3 (48), 26177–26183. 10.1039/c3ra44910f. DOI

Zhao C. C.; Zhou Z. G.; Xu X.; Dong L. J.; Xu G. H.; Du Z. Y. Isomerism of a Series of Octahedrally Coordinated Transition Metal Carboxylate–Phosphinates with 1,10-Phenanthroline as a Coligand: Discrete Dimers or Double-Chains Constructed by Various Dimeric Ring Motifs. Polyhedron 2013, 51 (1), 18–26. 10.1016/j.poly.2012.11.051. DOI

Bronzan-Planinić P.; Meider H. Synthesis and Characterization of Cobalt(II), Nickel(II) and Copper(II) Perchlorate Complexes with Bis [(Diphenylphosphinyl)Methyl] Phenylphosphine Oxide, Bis [(Disphenylphosphinyl)Methyl]Ethyl Phosphinate, and Bis [(Diphenylphosphinyl)Methyl] Phosphinic. Polyhedron 1983, 2 (2), 69–75. 10.1016/S0277-5387(00)84675-6. DOI

David T.; Procházková S.; Kotek J.; Kubíček V.; Hermann P.; Lukeš I. Aminoalkyl-1,1-Bis(Phosphinic Acids): Stability, Acid–Base, and Coordination Properties. Eur. J. Inorg. Chem. 2014, 2014 (26), 4357–4368. 10.1002/ejic.201402420. DOI

Ienco A.; Caporali M.; Costantino F.; Guerri A.; Manca G.; Moneti S.; Peruzzini M. The Quest for Hydrogen Bond-Based Metal Organic Nanotubes (MONT). J. Coord. Chem. 2014, 67 (23–24), 3863–3872. 10.1080/00958972.2014.964698. DOI

Calancea S.; Reis S. G.; Guedes G. P.; Cassaro R. A. A.; Semaan F.; López-Ortiz F.; Vaz M. G. F. A New Family of Multinuclear Mixed-Ligand Copper(II) Clusters: Crystal Structures, Magnetic Properties and Catecholase-like Activity. Inorg. Chim. Acta 2016, 453, 104–114. 10.1016/j.ica.2016.07.057. DOI

Li J.; Xue C.-C.; Liu S.; Wang Z.-X. Structures and Magnetic Properties of Two Noncentrosymmetric Coordination Polymers Based on Carboxyphosphinate Ligand. Solid State Sci. 2016, 61, 111–115. 10.1016/j.solidstatesciences.2016.09.014. DOI

Beil A.; Müller G.; Käser D.; Hattendorf B.; Li Z.; Krumeich F.; Rosenthal A.; Rana V. K.; Schönberg H.; Benkő Z.; Grützmacher H. Bismesitoylphosphinic Acid (BAPO-OH): A Ligand for Copper Complexes and Four-Electron Photoreductant for the Preparation of Copper Nanomaterials. Angew. Chemie Int. Ed. 2018, 57 (26), 7697–7702. 10.1002/anie.201800456. PubMed DOI

Hlinová V.; Jaroš A.; David T.; Císařová I.; Kotek J.; Kubíček V.; Hermann P. Complexes of Phosphonate and Phosphinate Derivatives of Dipicolylamine. New J. Chem. 2018, 42 (10), 7713–7722. 10.1039/C8NJ00100F. DOI

Yang Y. Y.; He M. Q.; Li M. X.; Huang Y. Q.; Chi T.; Wang Z. X. Ferrimagnetic Copper-Carboxyphosphinate Compounds for Catalytic Degradation of Methylene Blue. Inorg. Chem. Commun. 2018, 94, 5–9. 10.1016/j.inoche.2018.05.026. DOI

Ienco A.; Tuci G.; Guerri A.; Costantino F. Mechanochemical Access to Elusive Metal Diphosphinate Coordination Polymer. Crystals 2019, 9 (6), 283.10.3390/cryst9060283. DOI

Gholivand K.; Fallah N.; Ebrahimi Valmoozi A. A.; Gholami A.; Dusek M.; Eigner V.; Pooyan M.; Mohammadpanah F. Synthesis and Structural Characterization of Phosphinate Coordination Polymers with Tin(IV) and Copper(II). J. Mol. Struct. 2020, 1202, 12736910.1016/j.molstruc.2019.127369. DOI

Mohammadnezhad G.; Amirian A. M.; Görls H.; Plass W.; Sandleben A.; Schäfer S.; Klein A. Redox Instability of Copper(II) Complexes of a Triazine-Based PNP Pincer. Eur. J. Inorg. Chem. 2021, 2021 (12), 1140–1151. 10.1002/ejic.202001129. DOI

Haynes J. S.; Oliver K. W.; Rettig S. J.; Thompson R. C.; Trotter J. Structure and Magnetic Exchange in Poly-Bis((μ-Dialkylphosphinato)Copper(II) Compounds. Can. J. Chem. 1984, 62 (5), 891–898. 10.1139/v84-146. DOI

Głowiak T. Structure of Catena-Bis[μ-(Aminomethyl)Methylphosphinato-N,O:O’-μ-Chloro-Copper(II)]. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1986, 42 (1), 62–64. 10.1107/S0108270186097305. DOI

Bino A.; Sissman L. Preparation and Structure of Poly-Bis(μ-Diphenyl-Phosphinato)Copper(II). Inorg. Chim. Acta 1987, 128 (2), L21–L22. 10.1016/S0020-1693(00)86534-2. DOI

Betz P.; Bino A. A New Class of Metalphosphinates Containing Bridging Formamide Ligands. Inorg. Chim. Acta 1988, 149 (2), 171–175. 10.1016/S0020-1693(00)86065-X. DOI

Betz P.; Bino A. Crystal Structure of Poly-Bis(μ-Phenylmethylphosphinato)Copper(II)(Dimethylformamide). Inorg. Chim. Acta 1988, 145 (1), 11–12. 10.1016/S0020-1693(00)81997-0. DOI

Rohovec J.; Lukeš I.; Vojtíšek P.; Císařová I.; Hermann P. Complexing Properties of Phosphinic Analogues of Glycine. J. Chem. Soc. Dalt. Trans. 1996, 13, 2685–2691. 10.1039/DT9960002685. DOI

Cole E.; Parker D.; Ferguson G.; Gallagher J. F.; Kaitner B. Synthesis and Structure of Chiral Metal Complexes of Polyazacycloalkane Ligands Incorporating Phosphinic Acid Donors. J. Chem. Soc. Chem. Commun. 1991, (20), 1473.10.1039/c39910001473. DOI

Cole E.; Copley R. C. B.; Howard J. A. K.; Parker D.; Ferguson G.; Gallagher J. F.; Kaitner B.; Harrison A.; Royle L. 1,4,7-Triazacyclononane-1,4,7-Triyltrimethylenetris-(Phenylphosphinate) Enforces Octahedral Geometry: Crystal and Solution Structures of Its Metal Complexes and Comparative Biodistribution Studies of Radiolabelled Indium and Gallium Complexes. J. Chem. Soc. Dalton Trans. 1994, (11), 1619.10.1039/dt9940001619. DOI

David T.; Kubíček V.; Gutten O.; Lubal P.; Kotek J.; Pietzsch H.-J.; Rulíšek L.; Hermann P. Cyclam Derivatives with a Bis(Phosphinate) or a Phosphinato–Phosphonate Pendant Arm: Ligands for Fast and Efficient Copper(II) Complexation for Nuclear Medical Applications. Inorg. Chem. 2015, 54 (24), 11751–11766. 10.1021/acs.inorgchem.5b01791. PubMed DOI

Procházková S.; Kubíček V.; Böhmová Z.; Holá K.; Kotek J.; Hermann P. DOTA Analogues with a Phosphinate-Iminodiacetate Pendant Arm: Modification of the Complex Formation Rate with a Strongly Chelating Pendant. Dalt. Trans. 2017, 46 (31), 10484–10497. 10.1039/C7DT01797A. PubMed DOI

Weekes D. M.; Jaraquemada-Peláez M. D. G.; Kostelnik T. I.; Patrick B. O.; Orvig C. Di- and Trivalent Metal-Ion Solution Studies with the Phosphinate-Containing Heterocycle DEDA-(PO). Inorg. Chem. 2017, 56 (17), 10155–10161. 10.1021/acs.inorgchem.7b01117. PubMed DOI

Paúrová M.; David T.; Císařová I.; Lubal P.; Hermann P.; Kotek J. Optimization of the Selectivity and Rate of Copper Radioisotope Complexation: Formation and Dissociation Kinetic Studies of 1,4,8-Trimethylcyclam-Based Ligands with Different Coordinating Pendant Arms. New J. Chem. 2018, 42 (14), 11908–11929. 10.1039/C8NJ00419F. DOI

Pazderová L.; Kubíček V.; Kotek J.; Hermann P. 1,4,7-Triazacyclononane (Tacn) with N,N′-bridging Methylene-bis(Phosphinic Acid) Group and Its Complexes. Z. Anorg. Allg. Chem. 2021, 647 (12), 1261–1268. 10.1002/zaac.202100107. DOI

Pazderová L.; David T.; Kotek J.; Kubíček V.; Hermann P. Complexes of Cyclen Side-Bridged with a Methylene-Bis(Phosphinate) Group. Polyhedron 2021, 196, 11499410.1016/j.poly.2020.114994. DOI

Yamamoto T.; Shimoda A.; Okuhara T.; Misono M. A Promoting Effect of Phosphorus-Addition to Cu/SiO2 on Selective Synthesis of Formaldehyde by Dehydrogenation of Methanol. Chem. Lett. 1988, 17 (2), 273–276. 10.1246/cl.1988.273. DOI

Qi X.; Zhang L.; Xie W.; Ji T.; Li R. Synthesis of Copper-Substituted Aluminophosphate Molecular Sieves (CuAPO-11) and Their Catalytic Behavior for Phenol Hydroxylation. Appl. Catal. A Gen. 2004, 276 (1–2), 89–94. 10.1016/J.APCATA.2004.07.043. DOI

Siva Kumar V.; Padmasri A. H.; Satyanarayana C. V. V.; Ajit Kumar Reddy I.; David Raju B.; Rama Rao K. S. Nature and Mode of Addition of Phosphate Precursor in the Synthesis of Aluminum Phosphate and Its Influence on Methanol Dehydration to Dimethyl Ether. Catal. Commun. 2006, 7 (10), 745–751. 10.1016/j.catcom.2006.02.025. DOI

van der Bij H. E.; Weckhuysen B. M. Phosphorus Promotion and Poisoning in Zeolite-Based Materials: Synthesis, Characterisation and Catalysis. Chem. Soc. Rev. 2015, 44 (20), 7406–7428. 10.1039/C5CS00109A. PubMed DOI PMC

Xia W.; Huang Y.; Ma C.; Li S.; Wang X.; Chen K.; Liu D. Multiple Important Roles of Phosphorus Modification on the ZSM-5 in Ethanol to Olefin Reaction: Acidity Adjustment, Hydrothermal Stability and Anti-Coking. Fuel 2023, 341, 12767510.1016/j.fuel.2023.127675. DOI

Schneider C. A.; Rasband W. S.; Eliceiri K. W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9 (7), 671–675. 10.1038/nmeth.2089. PubMed DOI PMC

Hooft R. W. W.Collect: Data Collection Software; Nonius BV: Delft, 1998.

Otwinowski Z.; Minor W. Processing of X-Ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol. 1993, 1997 (276), 307–326. 10.1016/S0076-6879(97)76066-X. PubMed DOI

Sheldrick G. M.SADABS-Bruker Nonius Scaling and Absorption Correction; Bruker AXS Inc.: Madison, Wisconsin, USA, 2003.

Sheldrick G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71 (1), 3–8. 10.1107/S2053273314026370. PubMed DOI PMC

Sheldrick G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71 (1), 3–8. 10.1107/S2053229614024218. PubMed DOI PMC

Llunell M.; Casanova D.; Cirera J.; Alemany P.; Alvarez S.. Users Manual: SHAPE. Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools, 2013.

Pinsky M.; Avnir D. Continuous Symmetry Measures. 5. The Classical Polyhedra. Inorg. Chem. 1998, 37 (21), 5575–5582. 10.1021/ic9804925. PubMed DOI

Cirera J.; Alemany P.; Alvarez S. Mapping the Stereochemistry and Symmetry of Tetracoordinate Transition-Metal Complexes. Chem.—Eur. J. 2004, 10 (1), 190–207. 10.1002/chem.200305074. PubMed DOI

Alvarez S.; Llunell M. Continuous Symmetry Measures of Penta-Coordinate Molecules: Berry and Non-Berry Distortions of the Trigonal Bipyramid. J. Chem. Soc. Dalt. Trans. 2000, 19, 3288–3303. 10.1039/b004878j. DOI

Robertson B. E.; Calvo C. The Crystal Structure and Phase Transformation of α-Cu2P2O7. Acta Crystallogr. 1967, 22 (5), 665–672. 10.1107/S0365110X6700132X. DOI

Eysel W.; Wetzel A.. ICDD Grant-in-Aid. Mineral.-Petrogr; Institut, University Heidelberg: Germany. 1992.

Schneider M.; Trommer J.; Wilde L.; Fratzky D.. ICDD Grant-in-Aid; Inst. f. Angewandte Chemie: Berlin, Germany. 1999. https://www.icdd.com/grant-in-aid/.

Forsyth J. B.; Wilkinson C.; Paster S.; Effenberger H. The Antiferromagnetic Structure of Triclinic Copper(II) Phosphate. J. Phys.: Condens. Matter 1990, 2 (6), 1609–1617. 10.1088/0953-8984/2/6/019. DOI

Langford J. I.; Louër D. High-Resolution Powder Diffraction Studies of Copper(II) Oxide. J. Appl. Crystallogr. 1991, 24 (2), 149–155. 10.1107/S0021889890012092. DOI

Campisano I. S. P.; Rodella C. B.; Sousa Z. S. B.; Henriques C. A.; Teixeira da Silva V. Influence of Thermal Treatment Conditions on the Characteristics of Cu-Based Metal Oxides Derived from Hydrotalcite-like Compounds and Their Performance in Bio-Ethanol Dehydrogenation to Acetaldehyde. Catal. Today 2018, 306, 111–120. 10.1016/j.cattod.2017.03.017. DOI

Amokrane S.; Boualouache A.; Simon P.; Capron M.; Otmanine G.; Allam D.; Hocine S. Effect of Adding Transition Metals to Copper on the Dehydrogenation Reaction of Ethanol. Catal. Lett. 2021, 151 (10), 2864–2883. 10.1007/s10562-020-03517-0. DOI

Shard A. G. Detection Limits in XPS for More than 6000 Binary Systems Using Al and Mg Kα X-Rays. Surf. Interface Anal. 2014, 46 (3), 175–185. 10.1002/sia.5406. DOI

Biesinger M. C.; Hart B. R.; Polack R.; Kobe B. A.; Smart R. S. C. Analysis of Mineral Surface Chemistry in Flotation Separation Using Imaging XPS. Miner. Eng. 2007, 20 (2), 152–162. 10.1016/j.mineng.2006.08.006. DOI

Zhang H.; Tan H.-R.; Jaenicke S.; Chuah G.-K. Highly Efficient and Robust Cu Catalyst for Non-Oxidative Dehydrogenation of Ethanol to Acetaldehyde and Hydrogen. J. Catal. 2020, 389, 19–28. 10.1016/j.jcat.2020.05.018. DOI

Swanson H. E.; Tatge E. Standard X-Ray Diffraction Powder Patterns. Natl. Bur. Stand. (U.S.), Circ. 1953, 539 (I), 31–32. 10.6028/NBS.CIRC.539v1. DOI

Yu J.; Yang M.; Zhang J.; Ge Q.; Zimina A.; Pruessmann T.; Zheng L.; Grunwaldt J.; Sun J. Stabilizing Cu+ in Cu/SiO2 Catalysts with a Shattuckite-Like Structure Boosts CO2 Hydrogenation into Methanol. ACS Catal. 2020, 10 (24), 14694–14706. 10.1021/acscatal.0c04371. DOI

Ivanova T. M.; Maslakov K. I.; Sidorov A. A.; Kiskin M. A.; Linko R. V.; Savilov S. V.; Lunin V. V.; Eremenko I. L. XPS Detection of Unusual Cu(II) to Cu(I) Transition on the Surface of Complexes with Redox-Active Ligands. J. Electron Spectrosc. Relat. Phenom. 2020, 238, 146878.10.1016/j.elspec.2019.06.010. DOI

Post P.; Wurlitzer L.; Maus-Friedrichs W.; Weber A. Characterization and Applications of Nanoparticles Modified in-Flight with Silica or Silica-Organic Coatings. Nanomaterials 2018, 8, 530.10.3390/nano8070530. PubMed DOI PMC

Wu X.; Gong K.; Zhao G.; Lou W.; Wang X.; Liu W. Mechanical Synthesis of Chemically Bonded Phosphorus–Graphene Hybrid as High-Temperature Lubricating Oil Additive. RSC Adv. 2018, 8 (9), 4595–4603. 10.1039/C7RA11691H. PubMed DOI PMC

Mitchell D. F.; Clark K. B.; Bardwell J. A.; Lennard W. N.; Massoumi G. R.; Mitchell I. V. Film Thickness Measurements of SiO2 by XPS. Surf. Interface Anal. 1994, 21 (1), 44–50. 10.1002/sia.740210107. DOI

Styskalik A.; Kordoghli I.; Poleunis C.; Delcorte A.; Aprile C.; Fusaro L.; Debecker D. P. Highly Porous Hybrid Metallosilicate Materials Prepared by Non-Hydrolytic Sol-Gel: Hydrothermal Stability and Catalytic Properties in Ethanol Dehydration. Microporous Mesoporous Mater. 2020, 297, 11002810.1016/j.micromeso.2020.110028. DOI

Janvelyan N.; Van Spronsen M. A.; Wu C. H.; Qi Z.; Montemore M. M.; Shan J.; Zakharov D. N.; Xu F.; Boscoboinik J. A.; Salmeron M. B.; Stach E. A.; Flyztani-Stephanopoulos M.; Biener J.; Friend C. M. Stabilization of a Nanoporous NiCu Dilute Alloy Catalyst for Non-Oxidative Ethanol Dehydrogenation. Catal. Sci. Technol. 2020, 10 (15), 5207–5217. 10.1039/D0CY00683A. DOI

Kumar A.; Bal R.; Srivastava R. Modulation of Ru and Cu Nanoparticle Contents over CuAlPO-5 for Synergistic Enhancement in the Selective Reduction and Oxidation of Biomass-Derived Furan Based Alcohols and Carbonyls. Catal. Sci. Technol. 2021, 11 (12), 4133–4148. 10.1039/D1CY00593F. DOI

Sepúlveda C.; Delgado L.; García R.; Melendrez M.; Fierro J. L. G.; Ghampson I. T.; Escalona N. Effect of Phosphorus on the Activity of Cu/SiO2 Catalysts in the Hydrogenolysis of Glycerol. Catal. Today 2017, 279, 217–223. 10.1016/j.cattod.2016.06.004. DOI

Pampararo G.; Garbarino G.; Riani P.; Villa García M.; Sánchez Escribano V.; Busca G. A Study of Ethanol Dehydrogenation to Acetaldehyde over Supported Copper Catalysts: Catalytic Activity, Deactivation and Regeneration. Appl. Catal. A Gen. 2020, 602, 11771010.1016/j.apcata.2020.117710. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...