Copper Phosphinate Complexes as Molecular Precursors for Ethanol Dehydrogenation Catalysts
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
38032353
PubMed Central
PMC10716910
DOI
10.1021/acs.inorgchem.3c01678
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Nowadays, the production of acetaldehyde heavily relies on the petroleum industry. Developing new catalysts for the ethanol dehydrogenation process that could sustainably substitute current acetaldehyde production methods is highly desired. Among the ethanol dehydrogenation catalysts, copper-based materials have been intensively studied. Unfortunately, the Cu-based catalysts suffer from sintering and coking, which lead to rapid deactivation with time-on-stream. Phosphorus doping has been demonstrated to diminish coking in methanol dehydrogenation, fluid catalytic cracking, and ethanol-to-olefin reactions. This work reports a pioneering application of the well-characterized copper phosphinate complexes as molecular precursors for copper-based ethanol dehydrogenation catalysts enriched with phosphate groups (Cu-phosphate/SiO2). Three new catalysts (CuP-1, CuP-2, and CuP-3), prepared by the deposition of complexes {Cu(SAAP)}n (1), [Cu6(BSAAP)6] (2), and [Cu3(NAAP)3] (3) on the surface of commercial SiO2, calcination at 500 °C, and reduction in the stream of the forming gas 5% H2/N2 at 400 °C, exhibited unusual properties. First, the catalysts showed a rapid increase in catalytic activity. After reaching the maximum conversion, the catalyst started to deactivate. The unusual behavior could be explained by the presence of the phosphate phase, which made Cu2+ reduction more difficult. The phosphorus content gradually decreased during time-on-stream, copper was reduced, and the activity increased. The deactivation of the catalyst could be related to the copper diffusion processes. The most active CuP-1 catalyst reaches a maximum of 73% ethanol conversion and over 98% acetaldehyde selectivity at 325 °C and WHSV = 2.37 h-1.
See more in PubMed
Graedel T. Green Chemistry in an Industrial Ecology Context. Green Chem. 1999, 1 (5), 126–128. 10.1039/a908574b. DOI
Clark J. H. Green Chemistry: Challenges and Opportunities. Green Chem. 1999, 1 (1), 1–8. 10.1039/a807961g. DOI
Liu P.; Hensen E. J. M. Highly Efficient and Robust Au/MgCuCr2O4 Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde. J. Am. Chem. Soc. 2013, 135 (38), 14032–14035. 10.1021/ja406820f. PubMed DOI
Takei T.; Iguchi N.; Haruta M. Synthesis of Acetoaldehyde, Acetic Acid, and Others by the Dehydrogenation and Oxidation of Ethanol. Catal. Surv. from Asia 2011, 15 (2), 80–88. 10.1007/s10563-011-9112-1. DOI
Patel A. C.; Li S.; Wang C.; Zhang W.; Wei Y. Electrospinning of Porous Silica Nanofibers Containing Silver Nanoparticles for Catalytic Applications. Chem. Mater. 2007, 19 (6), 1231–1238. 10.1021/cm061331z. DOI
Cespi D.; Passarini F.; Vassura I.; Cavani F. Butadiene from Biomass, a Life Cycle Perspective to Address Sustainability in the Chemical Industry. Green Chem. 2016, 18 (6), 1625–1638. 10.1039/C5GC02148K. DOI
Pomalaza G.; Arango Ponton P.; Capron M.; Dumeignil F. Ethanol-to-Butadiene: The Reaction and Its Catalysts. Catal. Sci. Technol. 2020, 10 (15), 4860–4911. 10.1039/D0CY00784F. DOI
Shylesh S.; Gokhale A. A.; Scown C. D.; Kim D.; Ho C. R.; Bell A. T. From Sugars to Wheels: The Conversion of Ethanol to 1,3-Butadiene over Metal-Promoted Magnesia-Silicate Catalysts. ChemSusChem 2016, 9 (12), 1462–1472. 10.1002/cssc.201600195. PubMed DOI
Jira R. Acetaldehyde from Ethylene-A Retrospective on the Discovery of the Wacker Process. Angew. Chemie Int. Ed. 2009, 48 (48), 9034–9037. 10.1002/anie.200903992. PubMed DOI
Keith J. A.; Nielsen R. J.; Oxgaard J.; Goddard W. A. Unraveling the Wacker Oxidation Mechanisms. J. Am. Chem. Soc. 2007, 129 (41), 12342–12343. 10.1021/ja072400t. PubMed DOI
Lebedev Process. In Comprehensive Organic Name Reactions and Reagents; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010.
Angelici C.; Velthoen M. E. Z.; Weckhuysen B. M.; Bruijnincx P. C. A. Influence of Acid–Base Properties on the Lebedev Ethanol-to-Butadiene Process Catalyzed by SiO2–MgO Materials. Catal. Sci. Technol. 2015, 5 (5), 2869–2879. 10.1039/C5CY00200A. DOI
Segawa A.; Nakashima A.; Nojima R.; Yoshida N.; Okamoto M. Acetaldehyde Production from Ethanol by Eco-Friendly Non-Chromium Catalysts Consisting of Copper and Calcium Silicate. Ind. Eng. Chem. Res. 2018, 57 (35), 11852–11857. 10.1021/acs.iecr.8b02498. DOI
Freitas I. C.; Damyanova S.; Oliveira D. C.; Marques C. M. P.; Bueno J. M. C. Effect of Cu Content on the Surface and Catalytic Properties of Cu/ZrO2 Catalyst for Ethanol Dehydrogenation. J. Mol. Catal. A Chem. 2014, 381, 26–37. 10.1016/j.molcata.2013.09.038. DOI
Chang F. W.; Yang H. C.; Roselin L. S.; Kuo W. Y. Ethanol Dehydrogenation over Copper Catalysts on Rice Husk Ash Prepared by Ion Exchange. Appl. Catal. A Gen. 2006, 304 (1–2), 30–39. 10.1016/j.apcata.2006.02.017. DOI
Zhang H.; Tan H. R.; Jaenicke S.; Chuah G. K. Highly Efficient and Robust Cu Catalyst for Non-Oxidative Dehydrogenation of Ethanol to Acetaldehyde and Hydrogen. J. Catal. 2020, 389, 19–28. 10.1016/j.jcat.2020.05.018. DOI
Yu D.; Dai W.; Wu G.; Guan N.; Li L. Stabilizing Copper Species Using Zeolite for Ethanol Catalytic Dehydrogenation to Acetaldehyde. Chin. J. Catal. 2019, 40 (9), 1375–1384. 10.1016/S1872-2067(19)63378-4. DOI
Ob-eye J.; Praserthdam P.; Jongsomjit B. Dehydrogenation of Ethanol to Acetaldehyde over Different Metals Supported on Carbon Catalysts. Catalysts 2019, 9 (1), 66.10.3390/catal9010066. DOI
Chang F. W.; Kuo W. Y.; Lee K. C. Dehydrogenation of Ethanol over Copper Catalysts on Rice Husk Ash Prepared by Incipient Wetness Impregnation. Appl. Catal. A Gen. 2003, 246 (2), 253–264. 10.1016/S0926-860X(03)00050-4. DOI
Pokorny T.; Vykoukal V.; Machac P.; Moravec Z.; Scotti N.; Roupcova P.; Karaskova K.; Styskalik A. Ethanol Dehydrogenation over Copper-Silica Catalysts: From Sub-Nanometer Clusters to 15 Nm Large Particles. ACS Sustain. Chem. Eng. 2023, 11 (30), 10980–10992. 10.1021/acssuschemeng.2c06777. PubMed DOI PMC
Pampararo G.; Garbarino G.; Riani P.; Vykoukal V.; Busca G.; Debecker D. P. Ethanol Dehydrogenation to Acetaldehyde with Mesoporous Cu-SiO2 Catalysts Prepared by Aerosol-Assisted Sol–Gel. Chem. Eng. J. 2023, 465, 14271510.1016/j.cej.2023.142715. DOI
Tu Y. J.; Chen Y. W. Effects of Alkali Metal Oxide Additives on Cu/SiO2 Catalyst in the Dehydrogenation of Ethanol. Ind. Eng. Chem. Res. 2001, 40 (25), 5889–5893. 10.1021/ie010272q. DOI
Coles M. P.; Lugmair C. G.; Terry K. W.; Tilley T. D. Titania-Silica Materials from the Molecular Precursor Ti[OSi(OtBu)3]4: Selective Epoxidation Catalysts. Chem. Mater. 2000, 12 (1), 122–131. 10.1021/cm990444y. DOI
Jarupatrakorn J.; Tilley T. D. Silica-Supported, Single-Site Titanium Catalysts for Olefin Epoxidation. A Molecular Precursor Strategy for Control of Catalyst Structure. J. Am. Chem. Soc. 2002, 124 (28), 8380–8388. 10.1021/JA0202208/ASSET/IMAGES/LARGE/JA0202208F00008.JPEG. PubMed DOI
Singh A.; Chang S. L. Y.; Hocking R. K.; Bach U.; Spiccia L. Highly Active Nickel Oxide Water Oxidation Catalysts Deposited from Molecular Complexes. Energy Environ. Sci. 2013, 6 (2), 579–586. 10.1039/C2EE23862D. DOI
Khemthong P.; Daorattanachai P.; Laosiripojana N.; Faungnawakij K. Copper Phosphate Nanostructures Catalyze Dehydration of Fructose to 5-Hydroxymethylfufural. Catal. Commun. 2012, 29, 96–100. 10.1016/j.catcom.2012.09.025. DOI
Zhong G.; Bai J.; Duchesne P. N.; McDonald M. J.; Li Q.; Hou X.; Tang J. A.; Wang Y.; Zhao W.; Gong Z.; Zhang P.; Fu R.; Yang Y. Copper Phosphate as a Cathode Material for Rechargeable Li Batteries and Its Electrochemical Reaction Mechanism. Chem. Mater. 2015, 27 (16), 5736–5744. 10.1021/acs.chemmater.5b02290. DOI
Soták T.; Hronec M.; Gál M.; Dobročka E.; Škriniarová J. Aqueous-Phase Oxidation of Furfural to Maleic Acid Catalyzed by Copper Phosphate Catalysts. Catal. Lett. 2017, 147 (11), 2714–2723. 10.1007/s10562-017-2191-5. DOI
Xie W.-Y.; Song F.; Wang X.-L.; Wang Y.-Z. Development of Copper Phosphate Nanoflowers on Soy Protein toward a Superhydrophobic and Self-Cleaning Film. ACS Sustain. Chem. Eng. 2017, 5 (1), 869–875. 10.1021/acssuschemeng.6b02199. DOI
Luo Y. K.; Song F.; Wang X. L.; Wang Y. Z. Pure Copper Phosphate Nanostructures with Controlled Growth: A Versatile Support for Enzyme Immobilization. CrystEngComm 2017, 19 (22), 2996–3002. 10.1039/C7CE00466D. DOI
Wu H.; Song J.; Xie C.; Hu Y.; Liu S.; Han B. Preparation of Copper Phosphate from Naturally Occurring Phytic Acid as an Advanced Catalyst for Oxidation of Aromatic Benzyl Compounds. ACS Sustain. Chem. Eng. 2018, 6 (11), 13670–13675. 10.1021/acssuschemeng.8b04193. DOI
Nag R.; Rao C. P. Development and Demonstration of Functionalized Inorganic–Organic Hybrid Copper Phosphate Nanoflowers for Mimicking the Oxidative Reactions of Metalloenzymes by Working as a Nanozyme. J. Mater. Chem. B 2021, 9 (16), 3523–3532. 10.1039/D1TB00221J. PubMed DOI
Rahmani F.; Ghadi A.; Doustkhah E.; Khaksar S. In Situ Formation of Copper Phosphate on Hydroxyapatite for Wastewater Treatment. Nanomaterials 2022, 12 (15), 2650.10.3390/nano12152650. PubMed DOI PMC
Prapakaran T.; Sathish C. I.; Yi J.; Vinu A.; Murugavel R. Nuclearity Control in Molecular Copper Phosphates Derived from a Bulky Arylphosphate: Synthesis, Structural and Magnetic Studies. Eur. J. Inorg. Chem. 2023, 26 (17), e20230007110.1002/ejic.202300071. DOI
Zhang Y.; Clearfield A. Synthesis, Crystal Structures, and Coordination Intercalation Behavior of Two Copper Phosphonates. Inorg. Chem. 1992, 31 (13), 2821–2826. 10.1021/ic00039a029. DOI
Le Bideau J.; Payen C.; Palvadeau P.; Bujoli B. Preparation Structure, and Magnetic Properties of Copper(II) Phosphonates. .Beta.-CuII(CH3PO3), an Original Three-Dimensional Structure with a Channel-Type Arrangement. Inorg. Chem. 1994, 33 (22), 4885–4890. 10.1021/ic00100a011. DOI
Chandrasekhar V.; Sahoo D.; Narayanan R. S.; Butcher R. J.; Lloret F.; Pardo E. A Hexaicosametallic Copper(II) Phosphonate. Dalt. Trans. 2013, 42 (23), 8192–8196. 10.1039/c3dt00103b. PubMed DOI
Hermer N.; Stock N. The New Triazine-Based Porous Copper Phosphonate [Cu3(PPT)(H2O)3]·10H2O. Dalt. Trans. 2015, 44 (8), 3720–3723. 10.1039/C4DT03698K. PubMed DOI
Ai J.; Min X.; Gao C. Y.; Tian H. R.; Dang S.; Sun Z. M. A Copper-Phosphonate Network as a High-Performance Heterogeneous Catalyst for the CO2 Cycloaddition Reactions and Alcoholysis of Epoxides. Dalt. Trans. 2017, 46 (20), 6756–6761. 10.1039/C7DT00739F. PubMed DOI
Wang J. M.; Liu Y. R.; Mao X. Y.; Shi N. N.; Zhang X.; Wang H. S.; Fan Y. H.; Wang M. Two Trinuclear CuII Complexes: Effect of Phosphonate Ligand on the Magnetic Property and Electrocatalytic Reactivity for Water Oxidation. Chem. – Asian J. 2019, 14 (15), 2685–2693. 10.1002/ASIA.201900531. PubMed DOI
Liu B.; Liu J. C.; Shen Y.; Feng J. S.; Bao S. S.; Zheng L. M. Polymorphic Layered Copper Phosphonates: Exfoliation and Proton Conductivity Studies. Dalt. Trans. 2019, 48 (19), 6539–6545. 10.1039/C9DT00970A. PubMed DOI
Peeples C. A.; Kober D.; Schmitt F.; Tholen P.; Siemensmeyer K.; Halldorson Q.; Çoşut B.; Gurlo A.; Yazaydin A. O.; Hanna G.; Yücesan G. A 3D Cu-Naphthalene-Phosphonate Metal–Organic Framework with Ultra-High Electrical Conductivity. Adv. Funct. Mater. 2021, 31 (3), 200729410.1002/adfm.202007294. DOI
Hu Z. J.; Tsai M. J.; Sung H. L.; Wu J. Y. A Three-Component Copper Phosphonate Complex as a Sensor Platform for Sensitive Cd2+ and Zn2+ Ion Detection in Water via Fluorescence Enhancement. J. Solid State Chem. 2021, 299, 12217810.1016/j.jssc.2021.122178. DOI
Pankhurst J. R.; Castilla-Amorós L.; Stoian D. C.; Vavra J.; Mantella V.; Albertini P. P.; Buonsanti R. Copper Phosphonate Lamella Intermediates Control the Shape of Colloidal Copper Nanocrystals. J. Am. Chem. Soc. 2022, 144 (27), 12261–12271. 10.1021/jacs.2c03489. PubMed DOI PMC
Salcedo-Abraira P.; Serrano-Nieto R.; Biglione C.; Cabrero-Antonino M.; Vilela S. M. F.; Babaryk A. A.; Tilve-Martínez D.; Rodriguez-Diéguez A.; Navalón S.; García H.; Horcajada P. Two Cu-Based Phosphonate Metal–Organic Frameworks as Efficient Water-Splitting Photocatalysts. Chem. Mater. 2023, 35 (11), 4211–4219. 10.1021/acs.chemmater.3c00054. DOI
Chandrasekhar V.; Kingsley S. A Dodecanuclear Copper(Ii) Cage Containing Phosphonate and Pyrazole Ligands**. Angew. Chem., Int. Ed. 2000, 39 (13), 2320.10.1002/1521-3773. PubMed DOI
Yao H.-C.; Li Y.-Z.; Gao S.; Song Y.; Zheng L.-M.; Xin X.-Q. Copper Phosphonates with Dinuclear and Layer Structures: A Structural and Magnetic Study. J. Solid State Chem. 2004, 177 (12), 4557–4563. 10.1016/j.jssc.2004.09.007. DOI
Chandrasekhar V.; Senapati T.; Sañudo E. C. Synthesis, Structure, and Magnetism of Hexanuclear Copper(II) Phosphonates. Inorg. Chem. 2008, 47 (20), 9553–9560. 10.1021/ic8011525. PubMed DOI
Chandrasekhar V.; Nagarajan L.; Clérac R.; Ghosh S.; Verma S. A Distorted Cubic Tetranuclear Copper(II) Phosphonate Cage with a Double-Four-Ring-Type Core. Inorg. Chem. 2008, 47 (3), 1067–1073. 10.1021/ic701948g. PubMed DOI
Chandrasekhar V.; Nagarajan L. A Hexadecameric Copper(II) Phosphonate. Dalt. Trans. 2009, 34, 6712–6714. 10.1039/b905456a. PubMed DOI
Chandrasekhar V.; Senapati T.; Dey A.; Sañudo E. C. Rational Assembly of Soluble Copper(II) Phosphonates: Synthesis, Structure and Magnetism of Molecular Tetranuclear Copper(II) Phosphonates. Inorg. Chem. 2011, 50 (4), 1420–1428. 10.1021/ic101982c. PubMed DOI
Chandrasekhar V.; Nagarajan L.; Hossain S.; Gopal K.; Ghosh S.; Verma S. Multicomponent Assembly of Anionic and Neutral Decanuclear Copper(II) Phosphonate Cages. Inorg. Chem. 2012, 51 (10), 5605–5616. 10.1021/ic202510d. PubMed DOI
Taddei M.; Costantino F.; Ienco A.; Comotti A.; Dau P. V.; Cohen S. M. Synthesis, Breathing, and Gas Sorption Study of the First Isoreticular Mixed-Linker Phosphonate Based Metal–Organic Frameworks. Chem. Commun. 2013, 49 (13), 1315.10.1039/c2cc38092g. PubMed DOI
Cini R.; Colamarino P.; Orioli P. L.; Smith L. S.; Newman P. R.; Gillman H. D.; Nannelli P. Crystal Structure and Magnetic Studies of Bis(.Mu.-Dibutylphosphinato)-Copper(II). Inorg. Chem. 1977, 16 (12), 3223–3226. 10.1021/ic50178a048. DOI
Gillman H. D.; Eichelberger J. L. Inorganic Coordination Polymers. XXII. Manganese(II), Cobalt(II), Nickel(II), Copper(II), and Zinc(II) Bis[Bis(N-Phenylaminomethyl)Phosphinates]. Effects of Coordinating Side Groups. Inorg. Chim. Acta 1977, 24 (C), 31–34. 10.1016/S0020-1693(00)93846-5. DOI
Oliver K. W.; Rettig S. J.; Thompson R. C.; Trotter J.; Xia S. Crystal Structure and Magnetic Behavior of Copper(II) Dimethylphosphinate: A Chain Polymer Containing Triangular Trimetallic Bis(μ-Dimethylphosphinato)Copper(II) Units. Inorg. Chem. 1997, 36 (11), 2465–2468. 10.1021/ic961365g. PubMed DOI
Cecconi F.; Ghilardi C. A.; Lorenzo Luis P. A.; Midollini S.; Orlandini A.; Dakternieks D.; Duthie A.; Dominguez S.; Berti E.; Vacca A. Complexes of the Tripodal Nitrilotrimethylenetrisphosphonic (H6L) and P,P′,P″-Triphenylnitrilotrimethylenetrisphosphinic (H3L°) Acids with the Copper(II) Ion. Synthesis and Characterization of [Hpy][Cu(H3L)(H2O)] and [Cu(HL°)(Py)]2·2Me2CO. J. Chem. Soc. Dalt. Trans. 2001, 2, 211–217. 10.1039/b004576o. DOI
Sergienko V. S. Structural Features of 3d Metal Compounds with 1-Hydroxyethylidenediphosphonic Acid. Crystallogr. Reports 2001, 46 (2), 196–206. 10.1134/1.1358393. DOI
Chiang M. Y.-N.; Wu J.-Y.; Zeng W.-F.; Xu D.-J. Bis(Di-2-Pyridylphosphinato-κ3N,O,N′)Copper(II) Dichloromethane Disolvate. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2003, 59 (12), m523–m525. 10.1107/S0108270103023631. PubMed DOI
Kubíček V.; Vojtišek P.; Rudovsky J.; Hermann P.; Lukeš I. Complexes of Divalent Transition Metal Ions with Bis(Aminomethyl)Phosphinic Acid in Aqueous Solution and in the Solid State. Dalt. Trans. 2003, 20, 3927–3938. 10.1039/B305844A. DOI
Koga K.; Ohtsubo M.; Yamada Y.; Koikawa M.; Tokii T. Novel Dinuclear Copper(II) Complexes with Syn-Syn and Syn-Anti Coordination Modes of Bis(μ-Phosphinato)-Bridges: Structures and Magnetic Properties. Chem. Lett. 2004, 33 (12), 1606–1607. 10.1246/cl.2004.1606. DOI
Ciattini S.; Costantino F.; Lorenzo-Luis P.; Midollini S.; Orlandini A.; Vacca A. Inorganic–Organic Hybrids Formed by P,P‘-Diphenylmethylenediphosphinate, Pcp2–, with the Cu2+ Ion. X-Ray Crystal Structures of [Cu(Pcp)(H2O)2]·H2O and [Cu(Pcp)(Bipy)(H2O)]. Inorg. Chem. 2005, 44 (11), 4008–4016. 10.1021/ic050171a. PubMed DOI
Midollini S.; Orlandini A. Hydrogen Bonding in Triamine Copper(II) P,P′-Diphenylmethylenediphosphinate (Pcp2–) Hybrids. Syntheses and Crystal Structures of [Cu(Pcp)(2,2′-Dipyridylamine)(H2O)]·2H2O and [Cu(Pcp)(2,2′: 6′,2″terpyridine)]·4H2O. J. Coord. Chem. 2006, 59 (13), 1433–1442. 10.1080/00958970600559203. DOI
Kubíček V.; Řehoř I.; Havlíčková J.; Kotek J.; Císařová I.; Hermann P.; Lukeš I. Synthesis and Coordination Behavior of Symmetrical Tetraamine Phosphinic Acids. Eur. J. Inorg. Chem. 2007, 2007 (24), 3881–3891. 10.1002/ejic.200700010. DOI
Murugavel R.; Pothiraja R.; Gogoi N.; Clérac R.; Lecren L.; Butcher R. J.; Nethaji M. Synthesis, Magnetic Behaviour, and X-Ray Structures of Dinuclear Copper Complexes with Multiple Bridges. Efficient and Selective Catalysts for Polymerization of 2,6-Dimethylphenol. Dalton Trans. 2007, 23, 2405–2410. 10.1039/B618559B. PubMed DOI
Oliver K. W.; Rettig S. J.; Thompson R. C.; Trotter J. Synthesis, Structure, and Properties of Poly-Bis(μ-Diethylphosphinato)Copper(II). Can. J. Chem. 1982, 60 (15), 2017–2022. 10.1139/v82-285. DOI
Tircsó G.; Bényei A.; Király R.; Lázár I.; Pál R.; Brücher E. Complexation Properties of the Di-, Tri-, and Tetraacetate Derivatives of Bis(Aminomethyl)Phosphinic Acid. Eur. J. Inorg. Chem. 2007, 2007 (5), 701–713. 10.1002/ejic.200600891. DOI
Yoon J.; Solomon E. I. Electronic Structures of Exchange Coupled Trigonal Trimeric Cu(II) Complexes: Spin Frustration, Antisymmetric Exchange, Pseudo-A Terms, and Their Relation to O2 Activation in the Multicopper Oxidases. Coord. Chem. Rev. 2007, 251 (3–4), 379–400. 10.1016/j.ccr.2006.04.012. DOI
Bataille T.; Costantino F.; Ienco A.; Guerri A.; Marmottini F.; Midollini S. A Snapshot of a Coordination Polymer Self-Assembly Process: The Crystallization of a Metastable 3D Network Followed by the Spontaneous Transformation in Water to a 2D Pseudopolymorphic Phase. Chem. Commun. 2008, 47, 6381–6383. 10.1039/b813222d. PubMed DOI
Bataille T.; Costantino F.; Lorenzo-Luis P.; Midollini S.; Orlandini A. A New Copper(II) Tubelike Metal–Organic Framework Constructed from P,P′-Diphenylmethylenediphosphinic Acid and 4,4′-Bipyridine: Synthesis, Structure, and Thermal Behavior. Inorg. Chim. Acta 2008, 361 (1), 9–15. 10.1016/j.ica.2007.06.005. DOI
Costantino F.; Ienco A.; Midollini S.; Orlandini A.; Sorace L.; Vacca A. Copper(II) Complexes with Bridging Diphosphinates – The Effect of the Elongation of the Aliphatic Chain on the Structural Arrangements Around the Metal Centres. Eur. J. Inorg. Chem. 2008, 2008 (19), 3046–3055. 10.1002/ejic.200800203. DOI
Costantino F.; Ienco A.; Midollini S. Different Structural Networks Determined by Variation of the Ligand Skeleton in Copper(II) Diphosphinate Coordination Polymers. Cryst. Growth Des. 2010, 10 (1), 7–10. 10.1021/cg900748r. DOI
Pothiraja R.; Sathiyendiran M.; Steiner A.; Murugavel R. Copper Phosphates and Phosphinates with Pyridine/Pyrazole Alcohol Co-Ligands: Synthesis and Structure. Inorg. Chim. Acta 2011, 372 (1), 347–352. 10.1016/j.ica.2011.03.063. DOI
Liu M. J.; Cao D. K.; Liu B.; Li Y. Z.; Huang J.; Zheng L. M. Cobalt and Copper Phosphinates Based on N-(Phosphinomethyl)Iminodiacetic Acid: Supramolecular Layered Structures and Magnetic Properties. CrystEngComm 2012, 14 (14), 4699–4705. 10.1039/c2ce00026a. DOI
Taddei M.; Ienco A.; Costantino F.; Guerri A. Supramolecular Interactions Impacting on the Water Stability of Tubular Metal–Organic Frameworks. RSC Adv. 2013, 3 (48), 26177–26183. 10.1039/c3ra44910f. DOI
Zhao C. C.; Zhou Z. G.; Xu X.; Dong L. J.; Xu G. H.; Du Z. Y. Isomerism of a Series of Octahedrally Coordinated Transition Metal Carboxylate–Phosphinates with 1,10-Phenanthroline as a Coligand: Discrete Dimers or Double-Chains Constructed by Various Dimeric Ring Motifs. Polyhedron 2013, 51 (1), 18–26. 10.1016/j.poly.2012.11.051. DOI
Bronzan-Planinić P.; Meider H. Synthesis and Characterization of Cobalt(II), Nickel(II) and Copper(II) Perchlorate Complexes with Bis [(Diphenylphosphinyl)Methyl] Phenylphosphine Oxide, Bis [(Disphenylphosphinyl)Methyl]Ethyl Phosphinate, and Bis [(Diphenylphosphinyl)Methyl] Phosphinic. Polyhedron 1983, 2 (2), 69–75. 10.1016/S0277-5387(00)84675-6. DOI
David T.; Procházková S.; Kotek J.; Kubíček V.; Hermann P.; Lukeš I. Aminoalkyl-1,1-Bis(Phosphinic Acids): Stability, Acid–Base, and Coordination Properties. Eur. J. Inorg. Chem. 2014, 2014 (26), 4357–4368. 10.1002/ejic.201402420. DOI
Ienco A.; Caporali M.; Costantino F.; Guerri A.; Manca G.; Moneti S.; Peruzzini M. The Quest for Hydrogen Bond-Based Metal Organic Nanotubes (MONT). J. Coord. Chem. 2014, 67 (23–24), 3863–3872. 10.1080/00958972.2014.964698. DOI
Calancea S.; Reis S. G.; Guedes G. P.; Cassaro R. A. A.; Semaan F.; López-Ortiz F.; Vaz M. G. F. A New Family of Multinuclear Mixed-Ligand Copper(II) Clusters: Crystal Structures, Magnetic Properties and Catecholase-like Activity. Inorg. Chim. Acta 2016, 453, 104–114. 10.1016/j.ica.2016.07.057. DOI
Li J.; Xue C.-C.; Liu S.; Wang Z.-X. Structures and Magnetic Properties of Two Noncentrosymmetric Coordination Polymers Based on Carboxyphosphinate Ligand. Solid State Sci. 2016, 61, 111–115. 10.1016/j.solidstatesciences.2016.09.014. DOI
Beil A.; Müller G.; Käser D.; Hattendorf B.; Li Z.; Krumeich F.; Rosenthal A.; Rana V. K.; Schönberg H.; Benkő Z.; Grützmacher H. Bismesitoylphosphinic Acid (BAPO-OH): A Ligand for Copper Complexes and Four-Electron Photoreductant for the Preparation of Copper Nanomaterials. Angew. Chemie Int. Ed. 2018, 57 (26), 7697–7702. 10.1002/anie.201800456. PubMed DOI
Hlinová V.; Jaroš A.; David T.; Císařová I.; Kotek J.; Kubíček V.; Hermann P. Complexes of Phosphonate and Phosphinate Derivatives of Dipicolylamine. New J. Chem. 2018, 42 (10), 7713–7722. 10.1039/C8NJ00100F. DOI
Yang Y. Y.; He M. Q.; Li M. X.; Huang Y. Q.; Chi T.; Wang Z. X. Ferrimagnetic Copper-Carboxyphosphinate Compounds for Catalytic Degradation of Methylene Blue. Inorg. Chem. Commun. 2018, 94, 5–9. 10.1016/j.inoche.2018.05.026. DOI
Ienco A.; Tuci G.; Guerri A.; Costantino F. Mechanochemical Access to Elusive Metal Diphosphinate Coordination Polymer. Crystals 2019, 9 (6), 283.10.3390/cryst9060283. DOI
Gholivand K.; Fallah N.; Ebrahimi Valmoozi A. A.; Gholami A.; Dusek M.; Eigner V.; Pooyan M.; Mohammadpanah F. Synthesis and Structural Characterization of Phosphinate Coordination Polymers with Tin(IV) and Copper(II). J. Mol. Struct. 2020, 1202, 12736910.1016/j.molstruc.2019.127369. DOI
Mohammadnezhad G.; Amirian A. M.; Görls H.; Plass W.; Sandleben A.; Schäfer S.; Klein A. Redox Instability of Copper(II) Complexes of a Triazine-Based PNP Pincer. Eur. J. Inorg. Chem. 2021, 2021 (12), 1140–1151. 10.1002/ejic.202001129. DOI
Haynes J. S.; Oliver K. W.; Rettig S. J.; Thompson R. C.; Trotter J. Structure and Magnetic Exchange in Poly-Bis((μ-Dialkylphosphinato)Copper(II) Compounds. Can. J. Chem. 1984, 62 (5), 891–898. 10.1139/v84-146. DOI
Głowiak T. Structure of Catena-Bis[μ-(Aminomethyl)Methylphosphinato-N,O:O’-μ-Chloro-Copper(II)]. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1986, 42 (1), 62–64. 10.1107/S0108270186097305. DOI
Bino A.; Sissman L. Preparation and Structure of Poly-Bis(μ-Diphenyl-Phosphinato)Copper(II). Inorg. Chim. Acta 1987, 128 (2), L21–L22. 10.1016/S0020-1693(00)86534-2. DOI
Betz P.; Bino A. A New Class of Metalphosphinates Containing Bridging Formamide Ligands. Inorg. Chim. Acta 1988, 149 (2), 171–175. 10.1016/S0020-1693(00)86065-X. DOI
Betz P.; Bino A. Crystal Structure of Poly-Bis(μ-Phenylmethylphosphinato)Copper(II)(Dimethylformamide). Inorg. Chim. Acta 1988, 145 (1), 11–12. 10.1016/S0020-1693(00)81997-0. DOI
Rohovec J.; Lukeš I.; Vojtíšek P.; Císařová I.; Hermann P. Complexing Properties of Phosphinic Analogues of Glycine. J. Chem. Soc. Dalt. Trans. 1996, 13, 2685–2691. 10.1039/DT9960002685. DOI
Cole E.; Parker D.; Ferguson G.; Gallagher J. F.; Kaitner B. Synthesis and Structure of Chiral Metal Complexes of Polyazacycloalkane Ligands Incorporating Phosphinic Acid Donors. J. Chem. Soc. Chem. Commun. 1991, (20), 1473.10.1039/c39910001473. DOI
Cole E.; Copley R. C. B.; Howard J. A. K.; Parker D.; Ferguson G.; Gallagher J. F.; Kaitner B.; Harrison A.; Royle L. 1,4,7-Triazacyclononane-1,4,7-Triyltrimethylenetris-(Phenylphosphinate) Enforces Octahedral Geometry: Crystal and Solution Structures of Its Metal Complexes and Comparative Biodistribution Studies of Radiolabelled Indium and Gallium Complexes. J. Chem. Soc. Dalton Trans. 1994, (11), 1619.10.1039/dt9940001619. DOI
David T.; Kubíček V.; Gutten O.; Lubal P.; Kotek J.; Pietzsch H.-J.; Rulíšek L.; Hermann P. Cyclam Derivatives with a Bis(Phosphinate) or a Phosphinato–Phosphonate Pendant Arm: Ligands for Fast and Efficient Copper(II) Complexation for Nuclear Medical Applications. Inorg. Chem. 2015, 54 (24), 11751–11766. 10.1021/acs.inorgchem.5b01791. PubMed DOI
Procházková S.; Kubíček V.; Böhmová Z.; Holá K.; Kotek J.; Hermann P. DOTA Analogues with a Phosphinate-Iminodiacetate Pendant Arm: Modification of the Complex Formation Rate with a Strongly Chelating Pendant. Dalt. Trans. 2017, 46 (31), 10484–10497. 10.1039/C7DT01797A. PubMed DOI
Weekes D. M.; Jaraquemada-Peláez M. D. G.; Kostelnik T. I.; Patrick B. O.; Orvig C. Di- and Trivalent Metal-Ion Solution Studies with the Phosphinate-Containing Heterocycle DEDA-(PO). Inorg. Chem. 2017, 56 (17), 10155–10161. 10.1021/acs.inorgchem.7b01117. PubMed DOI
Paúrová M.; David T.; Císařová I.; Lubal P.; Hermann P.; Kotek J. Optimization of the Selectivity and Rate of Copper Radioisotope Complexation: Formation and Dissociation Kinetic Studies of 1,4,8-Trimethylcyclam-Based Ligands with Different Coordinating Pendant Arms. New J. Chem. 2018, 42 (14), 11908–11929. 10.1039/C8NJ00419F. DOI
Pazderová L.; Kubíček V.; Kotek J.; Hermann P. 1,4,7-Triazacyclononane (Tacn) with N,N′-bridging Methylene-bis(Phosphinic Acid) Group and Its Complexes. Z. Anorg. Allg. Chem. 2021, 647 (12), 1261–1268. 10.1002/zaac.202100107. DOI
Pazderová L.; David T.; Kotek J.; Kubíček V.; Hermann P. Complexes of Cyclen Side-Bridged with a Methylene-Bis(Phosphinate) Group. Polyhedron 2021, 196, 11499410.1016/j.poly.2020.114994. DOI
Yamamoto T.; Shimoda A.; Okuhara T.; Misono M. A Promoting Effect of Phosphorus-Addition to Cu/SiO2 on Selective Synthesis of Formaldehyde by Dehydrogenation of Methanol. Chem. Lett. 1988, 17 (2), 273–276. 10.1246/cl.1988.273. DOI
Qi X.; Zhang L.; Xie W.; Ji T.; Li R. Synthesis of Copper-Substituted Aluminophosphate Molecular Sieves (CuAPO-11) and Their Catalytic Behavior for Phenol Hydroxylation. Appl. Catal. A Gen. 2004, 276 (1–2), 89–94. 10.1016/J.APCATA.2004.07.043. DOI
Siva Kumar V.; Padmasri A. H.; Satyanarayana C. V. V.; Ajit Kumar Reddy I.; David Raju B.; Rama Rao K. S. Nature and Mode of Addition of Phosphate Precursor in the Synthesis of Aluminum Phosphate and Its Influence on Methanol Dehydration to Dimethyl Ether. Catal. Commun. 2006, 7 (10), 745–751. 10.1016/j.catcom.2006.02.025. DOI
van der Bij H. E.; Weckhuysen B. M. Phosphorus Promotion and Poisoning in Zeolite-Based Materials: Synthesis, Characterisation and Catalysis. Chem. Soc. Rev. 2015, 44 (20), 7406–7428. 10.1039/C5CS00109A. PubMed DOI PMC
Xia W.; Huang Y.; Ma C.; Li S.; Wang X.; Chen K.; Liu D. Multiple Important Roles of Phosphorus Modification on the ZSM-5 in Ethanol to Olefin Reaction: Acidity Adjustment, Hydrothermal Stability and Anti-Coking. Fuel 2023, 341, 12767510.1016/j.fuel.2023.127675. DOI
Schneider C. A.; Rasband W. S.; Eliceiri K. W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9 (7), 671–675. 10.1038/nmeth.2089. PubMed DOI PMC
Hooft R. W. W.Collect: Data Collection Software; Nonius BV: Delft, 1998.
Otwinowski Z.; Minor W. Processing of X-Ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol. 1993, 1997 (276), 307–326. 10.1016/S0076-6879(97)76066-X. PubMed DOI
Sheldrick G. M.SADABS-Bruker Nonius Scaling and Absorption Correction; Bruker AXS Inc.: Madison, Wisconsin, USA, 2003.
Sheldrick G. M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71 (1), 3–8. 10.1107/S2053273314026370. PubMed DOI PMC
Sheldrick G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71 (1), 3–8. 10.1107/S2053229614024218. PubMed DOI PMC
Llunell M.; Casanova D.; Cirera J.; Alemany P.; Alvarez S.. Users Manual: SHAPE. Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools, 2013.
Pinsky M.; Avnir D. Continuous Symmetry Measures. 5. The Classical Polyhedra. Inorg. Chem. 1998, 37 (21), 5575–5582. 10.1021/ic9804925. PubMed DOI
Cirera J.; Alemany P.; Alvarez S. Mapping the Stereochemistry and Symmetry of Tetracoordinate Transition-Metal Complexes. Chem.—Eur. J. 2004, 10 (1), 190–207. 10.1002/chem.200305074. PubMed DOI
Alvarez S.; Llunell M. Continuous Symmetry Measures of Penta-Coordinate Molecules: Berry and Non-Berry Distortions of the Trigonal Bipyramid. J. Chem. Soc. Dalt. Trans. 2000, 19, 3288–3303. 10.1039/b004878j. DOI
Robertson B. E.; Calvo C. The Crystal Structure and Phase Transformation of α-Cu2P2O7. Acta Crystallogr. 1967, 22 (5), 665–672. 10.1107/S0365110X6700132X. DOI
Eysel W.; Wetzel A.. ICDD Grant-in-Aid. Mineral.-Petrogr; Institut, University Heidelberg: Germany. 1992.
Schneider M.; Trommer J.; Wilde L.; Fratzky D.. ICDD Grant-in-Aid; Inst. f. Angewandte Chemie: Berlin, Germany. 1999. https://www.icdd.com/grant-in-aid/.
Forsyth J. B.; Wilkinson C.; Paster S.; Effenberger H. The Antiferromagnetic Structure of Triclinic Copper(II) Phosphate. J. Phys.: Condens. Matter 1990, 2 (6), 1609–1617. 10.1088/0953-8984/2/6/019. DOI
Langford J. I.; Louër D. High-Resolution Powder Diffraction Studies of Copper(II) Oxide. J. Appl. Crystallogr. 1991, 24 (2), 149–155. 10.1107/S0021889890012092. DOI
Campisano I. S. P.; Rodella C. B.; Sousa Z. S. B.; Henriques C. A.; Teixeira da Silva V. Influence of Thermal Treatment Conditions on the Characteristics of Cu-Based Metal Oxides Derived from Hydrotalcite-like Compounds and Their Performance in Bio-Ethanol Dehydrogenation to Acetaldehyde. Catal. Today 2018, 306, 111–120. 10.1016/j.cattod.2017.03.017. DOI
Amokrane S.; Boualouache A.; Simon P.; Capron M.; Otmanine G.; Allam D.; Hocine S. Effect of Adding Transition Metals to Copper on the Dehydrogenation Reaction of Ethanol. Catal. Lett. 2021, 151 (10), 2864–2883. 10.1007/s10562-020-03517-0. DOI
Shard A. G. Detection Limits in XPS for More than 6000 Binary Systems Using Al and Mg Kα X-Rays. Surf. Interface Anal. 2014, 46 (3), 175–185. 10.1002/sia.5406. DOI
Biesinger M. C.; Hart B. R.; Polack R.; Kobe B. A.; Smart R. S. C. Analysis of Mineral Surface Chemistry in Flotation Separation Using Imaging XPS. Miner. Eng. 2007, 20 (2), 152–162. 10.1016/j.mineng.2006.08.006. DOI
Zhang H.; Tan H.-R.; Jaenicke S.; Chuah G.-K. Highly Efficient and Robust Cu Catalyst for Non-Oxidative Dehydrogenation of Ethanol to Acetaldehyde and Hydrogen. J. Catal. 2020, 389, 19–28. 10.1016/j.jcat.2020.05.018. DOI
Swanson H. E.; Tatge E. Standard X-Ray Diffraction Powder Patterns. Natl. Bur. Stand. (U.S.), Circ. 1953, 539 (I), 31–32. 10.6028/NBS.CIRC.539v1. DOI
Yu J.; Yang M.; Zhang J.; Ge Q.; Zimina A.; Pruessmann T.; Zheng L.; Grunwaldt J.; Sun J. Stabilizing Cu+ in Cu/SiO2 Catalysts with a Shattuckite-Like Structure Boosts CO2 Hydrogenation into Methanol. ACS Catal. 2020, 10 (24), 14694–14706. 10.1021/acscatal.0c04371. DOI
Ivanova T. M.; Maslakov K. I.; Sidorov A. A.; Kiskin M. A.; Linko R. V.; Savilov S. V.; Lunin V. V.; Eremenko I. L. XPS Detection of Unusual Cu(II) to Cu(I) Transition on the Surface of Complexes with Redox-Active Ligands. J. Electron Spectrosc. Relat. Phenom. 2020, 238, 146878.10.1016/j.elspec.2019.06.010. DOI
Post P.; Wurlitzer L.; Maus-Friedrichs W.; Weber A. Characterization and Applications of Nanoparticles Modified in-Flight with Silica or Silica-Organic Coatings. Nanomaterials 2018, 8, 530.10.3390/nano8070530. PubMed DOI PMC
Wu X.; Gong K.; Zhao G.; Lou W.; Wang X.; Liu W. Mechanical Synthesis of Chemically Bonded Phosphorus–Graphene Hybrid as High-Temperature Lubricating Oil Additive. RSC Adv. 2018, 8 (9), 4595–4603. 10.1039/C7RA11691H. PubMed DOI PMC
Mitchell D. F.; Clark K. B.; Bardwell J. A.; Lennard W. N.; Massoumi G. R.; Mitchell I. V. Film Thickness Measurements of SiO2 by XPS. Surf. Interface Anal. 1994, 21 (1), 44–50. 10.1002/sia.740210107. DOI
Styskalik A.; Kordoghli I.; Poleunis C.; Delcorte A.; Aprile C.; Fusaro L.; Debecker D. P. Highly Porous Hybrid Metallosilicate Materials Prepared by Non-Hydrolytic Sol-Gel: Hydrothermal Stability and Catalytic Properties in Ethanol Dehydration. Microporous Mesoporous Mater. 2020, 297, 11002810.1016/j.micromeso.2020.110028. DOI
Janvelyan N.; Van Spronsen M. A.; Wu C. H.; Qi Z.; Montemore M. M.; Shan J.; Zakharov D. N.; Xu F.; Boscoboinik J. A.; Salmeron M. B.; Stach E. A.; Flyztani-Stephanopoulos M.; Biener J.; Friend C. M. Stabilization of a Nanoporous NiCu Dilute Alloy Catalyst for Non-Oxidative Ethanol Dehydrogenation. Catal. Sci. Technol. 2020, 10 (15), 5207–5217. 10.1039/D0CY00683A. DOI
Kumar A.; Bal R.; Srivastava R. Modulation of Ru and Cu Nanoparticle Contents over CuAlPO-5 for Synergistic Enhancement in the Selective Reduction and Oxidation of Biomass-Derived Furan Based Alcohols and Carbonyls. Catal. Sci. Technol. 2021, 11 (12), 4133–4148. 10.1039/D1CY00593F. DOI
Sepúlveda C.; Delgado L.; García R.; Melendrez M.; Fierro J. L. G.; Ghampson I. T.; Escalona N. Effect of Phosphorus on the Activity of Cu/SiO2 Catalysts in the Hydrogenolysis of Glycerol. Catal. Today 2017, 279, 217–223. 10.1016/j.cattod.2016.06.004. DOI
Pampararo G.; Garbarino G.; Riani P.; Villa García M.; Sánchez Escribano V.; Busca G. A Study of Ethanol Dehydrogenation to Acetaldehyde over Supported Copper Catalysts: Catalytic Activity, Deactivation and Regeneration. Appl. Catal. A Gen. 2020, 602, 11771010.1016/j.apcata.2020.117710. DOI