Ethanol Dehydrogenation over Copper-Silica Catalysts: From Sub-Nanometer Clusters to 15 nm Large Particles

. 2023 Jul 31 ; 11 (30) : 10980-10992. [epub] 20230720

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37538293

Non-oxidative ethanol dehydrogenation is a renewable source of acetaldehyde and hydrogen. The reaction is often catalyzed by supported copper catalysts with high selectivity. The activity and long-term stability depend on many factors, including particle size, choice of support, doping, etc. Herein, we present four different synthetic pathways to prepare Cu/SiO2 catalysts (∼2.5 wt % Cu) with varying copper distribution: hydrolytic sol-gel (sub-nanometer clusters), dry impregnation (A̅ = 3.4 nm; σ = 0.9 nm and particles up to 32 nm), strong electrostatic adsorption (A̅ = 3.1 nm; σ = 0.6 nm), and solvothermal hot injection followed by Cu particle deposition (A̅ = 4.0 nm; σ = 0.8 nm). All materials were characterized by ICP-OES, XPS, N2 physisorption, STEM-EDS, XRD, RFC N2O, and H2-TPR and tested in ethanol dehydrogenation from 185 to 325 °C. The sample prepared by hydrolytic sol-gel exhibited high Cu dispersion and, accordingly, the highest catalytic activity. Its acetaldehyde productivity (2.79 g g-1 h-1 at 255 °C) outperforms most of the Cu-based catalysts reported in the literature, but it lacks stability and tends to deactivate over time. On the other hand, the sample prepared by simple and cost-effective dry impregnation, despite having Cu particles of various sizes, was still highly active (2.42 g g-1 h-1 acetaldehyde at 255 °C). Importantly, it was the most stable sample out of the studied materials. The characterization of the spent catalyst confirmed its exceptional properties: it showed the lowest extent of both coking and particle sintering.

Zobrazit více v PubMed

Veleva V.; Ellenbecker M. Indicators of Sustainable Production: Framework and Methodology. J. Cleaner Prod. 2001, 9, 519–549. 10.1016/S0959-6526(01)00010-5. DOI

Ueda W. Functions and Activities of Catalysis Research Center, Hokkaido University, for Catalysis Research Communities. Catal. Surv. Asia 2009, 13, 143–146. 10.1007/s10563-009-9073-9. DOI

Grison C.; Lock Toy Ki Y. Ecocatalysis, a New Vision of Green and Sustainable Chemistry. Curr. Opin. Green Sustainable Chem. 2021, 29, 100461 10.1016/j.cogsc.2021.100461. DOI

White W. C. Butadiene Production Process Overview. Chem.-Biol. Interact. 2007, 166, 10–14. 10.1016/j.cbi.2007.01.009. PubMed DOI

Cespi D.; Passarini F.; Vassura I.; Cavani F. Butadiene from Biomass, a Life Cycle Perspective to Address Sustainability in the Chemical Industry. Green Chem. 2016, 18, 1625–1638. 10.1039/C5GC02148K. DOI

Pomalaza G.; Capron M.; Ordomsky V.; Dumeignil F. Recent Breakthroughs in the Conversion of Ethanol to Butadiene. Catalysts 2016, 6, 203. 10.3390/catal6120203. DOI

Pomalaza G.; Arango Ponton P.; Capron M.; Dumeignil F. Ethanol-to-Butadiene: The Reaction and Its Catalysts. Catal. Sci. Technol. 2020, 10, 4860–4911. 10.1039/D0CY00784F. DOI

Shylesh S.; Gokhale A. A.; Scown C. D.; Kim D.; Ho C. R.; Bell A. T. From Sugars to Wheels: The Conversion of Ethanol to 1,3-Butadiene over Metal-Promoted Magnesia-Silicate Catalysts. ChemSusChem 2016, 9, 1462–1472. 10.1002/cssc.201600195. PubMed DOI

Jira R. Acetaldehyde from Ethylene-A Retrospective on the Discovery of the Wacker Process. Angew. Chem., Int. Ed. 2009, 48, 9034–9037. 10.1002/anie.200903992. PubMed DOI

Seifzadeh Haghighi S.; Rahimpour M. R.; Raeissi S.; Dehghani O. Investigation of Ethylene Production in Naphtha Thermal Cracking Plant in Presence of Steam and Carbon Dioxide. Chem. Eng. J. 2013, 228, 1158–1167. 10.1016/j.cej.2013.05.048. DOI

Fernandes R. A.; Jha A. K.; Kumar P. Recent Advances in Wacker Oxidation: From Conventional to Modern Variants and Applications. Catal. Sci. Technol. 2020, 10, 7448–7470. 10.1039/D0CY01820A. DOI

Lebedev Process . InComprehensive Organic Name Reactions and Reagents; John Wiley & Sons, Inc.: Hoboken, NJ, USA, NJ, USA, 2010.

Cheong J. L.; Shao Y.; Tan S. J. R.; Li X.; Zhang Y.; Lee S. S. Highly Active and Selective Zr/MCF Catalyst for Production of 1,3-Butadiene from Ethanol in a Dual Fixed Bed Reactor System. ACS Sustainable Chem. Eng. 2016, 4, 4887–4894. 10.1021/acssuschemeng.6b01193. DOI

Yuan E.; Ni P.; Xie J.; Jian P.; Hou X. Highly Efficient Dehydrogenation of 2,3-Butanediol Induced by Metal–Support Interface over Cu-SiO 2 Catalysts. ACS Sustainable Chem. Eng. 2020, 8, 15716–15731. 10.1021/acssuschemeng.0c05589. DOI

Hradsky D.; Machac P.; Skoda D.; Leonova L.; Sazama P.; Pastvova J.; Kaucky D.; Vsiansky D.; Moravec Z.; Styskalik A. Catalytic Performance of Micro-Mesoporous Zirconosilicates Prepared by Non-Hydrolytic Sol-Gel in Ethanol-Acetaldehyde Conversion to Butadiene and Related Reactions. Appl. Catal., A 2023, 652, 119037 10.1016/j.apcata.2023.119037. DOI

Angelici C.; Velthoen M. E. Z.; Weckhuysen B. M.; Bruijnincx P. C. A. Influence of Acid–Base Properties on the Lebedev Ethanol-to-Butadiene Process Catalyzed by SiO DOI

Kyriienko P. I.; Larina O. V.; Soloviev S. O.; Orlyk S. M.; Calers C.; Dzwigaj S. Ethanol Conversion into 1,3-Butadiene by the Lebedev Method over MTaSiBEA Zeolites (M = Ag, Cu, Zn). ACS Sustainable Chem. Eng. 2017, 5, 2075–2083. 10.1021/acssuschemeng.6b01728. DOI

Sun J.; Wang Y. Recent Advances in Catalytic Conversion of Ethanol to Chemicals. ACS Catal. 2014, 4, 1078–1090. 10.1021/cs4011343. DOI

Zhang H.; Tan H.-R.; Jaenicke S.; Chuah G.-K. Highly Efficient and Robust Cu Catalyst for Non-Oxidative Dehydrogenation of Ethanol to Acetaldehyde and Hydrogen. J. Catal. 2020, 389, 19–28. 10.1016/j.jcat.2020.05.018. DOI

Yu D.; Dai W.; Wu G.; Guan N.; Li L. Stabilizing Copper Species Using Zeolite for Ethanol Catalytic Dehydrogenation to Acetaldehyde. Chin. J. Catal. 2019, 40, 1375–1384. 10.1016/S1872-2067(19)63378-4. DOI

Ob-eye J.; Praserthdam P.; Jongsomjit B. Dehydrogenation of Ethanol to Acetaldehyde over Different Metals Supported on Carbon Catalysts. Catalysts 2019, 9, 66. 10.3390/catal9010066. DOI

Campisano I. S. P.; Rodella C. B.; Sousa Z. S. B.; Henriques C. A.; Teixeira da Silva V. Influence of Thermal Treatment Conditions on the Characteristics of Cu-Based Metal Oxides Derived from Hydrotalcite-like Compounds and Their Performance in Bio-Ethanol Dehydrogenation to Acetaldehyde. Catal. Today 2018, 306, 111–120. 10.1016/j.cattod.2017.03.017. DOI

Amokrane S.; Boualouache A.; Simon P.; Capron M.; Otmanine G.; Allam D.; Hocine S. Effect of Adding Transition Metals to Copper on the Dehydrogenation Reaction of Ethanol. Catal. Lett. 2021, 151, 2864–2883. 10.1007/s10562-020-03517-0. DOI

Church J. M.; Joshi H. K. Acetaldehyde by Dehydrogenation of Ethyl Alcohol. Ind. Eng. Chem. 1951, 43, 1804–1811. 10.1021/ie50500a035. DOI

Volanti D. P.; Sato A. G.; Orlandi M. O.; Bueno J. M. C.; Longo E.; Andrés J. Insight into Copper-Based Catalysts: Microwave-Assisted Morphosynthesis, In Situ Reduction Studies, and Dehydrogenation of Ethanol. ChemCatChem 2011, 3, 839–843. 10.1002/cctc.201000462. DOI

Wang Q. N.; Shi L.; Lu A. H. Highly Selective Copper Catalyst Supported on Mesoporous Carbon for the Dehydrogenation of Ethanol to Acetaldehyde. ChemCatChem 2015, 7, 2846–2852. 10.1002/cctc.201500501. DOI

Zhang P.; Wang Q. N.; Yang X.; Wang D.; Li W. C.; Zheng Y.; Chen M.; Lu A. H. A Highly Porous Carbon Support Rich in Graphitic-N Stabilizes Copper Nanocatalysts for Efficient Ethanol Dehydrogenation. ChemCatChem 2017, 9, 505–510. 10.1002/cctc.201601373. DOI

Cheng S. Q.; Weng X. F.; Wang Q. N.; Zhou B. C.; Li W. C.; Li M. R.; He L.; Wang D. Q.; Lu A. H. Defect-Rich BN-Supported Cu with Superior Dispersion for Ethanol Conversion to Aldehyde and Hydrogen. Chin. J. Catal. 2022, 43, 1092–1100. 10.1016/S1872-2067(21)63891-3. DOI

Freitas I. C.; Damyanova S.; Oliveira D. C.; Marques C. M. P.; Bueno J. M. C. Effect of Cu Content on the Surface and Catalytic Properties of Cu/ZrO2 Catalyst for Ethanol Dehydrogenation. J. Mol. Catal. A: Chem. 2014, 381, 26–37. 10.1016/j.molcata.2013.09.038. DOI

Fujita S.; Iwasa N.; Tani H.; Nomura W.; Arai M.; Takezawa N. Dehydrogenation Of Ethanol Over Cu / Zno Catalysts. React. Kinet. Catal. Lett. 2001, 73, 367–372. 10.1023/A:1014192214324. DOI

Yergaziyeva G. Y.; Dossumov K.; Mambetova M. M.; Strizhak P. Y.; Kurokawa H.; Baizhomartov B. Effect of Ni, La, and Ce Oxides on a Cu/Al DOI

Tu Y.-J.; Chen Y.-W. Effects of Alkali Metal Oxide Additives on Cu/SiO DOI

Li M.-Y.; Lu W.-D.; He L.; Schüth F.; Lu A.-H. Tailoring the Surface Structure of Silicon Carbide Support for Copper Catalyzed Ethanol Dehydrogenation. ChemCatChem 2019, 11, 481. 10.1002/cctc.201801742. DOI

Wong A.; Liu Q.; Griffin S.; Nicholls A.; Regalbuto J. R. Synthesis of Ultrasmall, Homogeneously Alloyed, Bimetallic Nanoparticles on Silica Supports. Science 2017, 358, 1427–1430. 10.1126/science.aao6538. PubMed DOI

Vykoukal V.; Halasta V.; Babiak M.; Bursik J.; Pinkas J. Morphology Control in AgCu Nanoalloy Synthesis by Molecular Cu(I) Precursors. Inorg. Chem. 2019, 58, 15246–15254. 10.1021/acs.inorgchem.9b02172. PubMed DOI

Sopousek J.; Vrestal J.; Pinkas J.; Broz P.; Bursik J.; Styskalik A.; Skoda D.; Zobac O.; Lee J. Cu-Ni Nanoalloy Phase Diagram - Prediction and Experiment. Calphad 2014, 45, 33–39. 10.1016/j.calphad.2013.11.004. DOI

Sopoušek J.; Pinkas J.; Brož P.; Buršík J.; Vykoukal V.; Škoda D.; Stýskalík A.; Zobač O.; Vřešt’ál J.; Hrdlička A.; Šimbera J. Ag-Cu Colloid Synthesis: Bimetallic Nanoparticle Characterisation and Thermal Treatment. J. Nanomater. 2014, 2014, 1. 10.1155/2014/638964. DOI

Wang Z.; Liu Q.; Yu J.; Wu T.; Wang G. Surface Structure and Catalytic Behavior of Silica-Supported Copper Catalysts Prepared by Impregnation and Sol–Gel Methods. Appl. Catal., A 2003, 239, 87–94. 10.1016/S0926-860X(02)00421-0. DOI

Makshina E. V.; Janssens W.; Sels B. F.; Jacobs P. A. Catalytic Study of the Conversion of Ethanol into 1,3-Butadiene. Catal. Today 2012, 198, 338–344. 10.1016/j.cattod.2012.05.031. DOI

Bhattacharyya S. K.; Avasthi B. N. One-Step Catalytic Conversion of Ethanol to Butadiene in a Fluidized Bed. Ind. Eng. Chem. Process Des. Dev. 1963, 2, 45–51. 10.1021/i260005a010. DOI

Angelici C.; Weckhuysen B. M.; Bruijnincx P. C. A. Chemocatalytic Conversion of Ethanol into Butadiene and Other Bulk Chemicals. ChemSusChem 2013, 6, 1595–1614. 10.1002/cssc.201300214. PubMed DOI

Dochain D. D.; Stýskalik A.; Debecker D. P. Ag- and Cu-Promoted Mesoporous Ta-SiO2 Catalysts Prepared by Non-Hydrolytic Sol-Gel for the Conversion of Ethanol to Butadiene. Catalysts 2019, 9, 920. 10.3390/catal9110920. DOI

Makshina E. V.; Dusselier M.; Janssens W.; Degrève J.; Jacobs P. A.; Sels B. F. Review of Old Chemistry and New Catalytic Advances in the On-Purpose Synthesis of Butadiene. Chem. Soc. Rev. 2014, 43, 7917–7953. 10.1039/C4CS00105B. PubMed DOI

Jiao L.; Regalbuto J. R. The Synthesis of Highly Dispersed Noble and Base Metals on Silica via Strong Electrostatic Adsorption: I. Amorphous Silica. J. Catal. 2008, 260, 329–341. 10.1016/j.jcat.2008.09.022. DOI

Schneider C. A.; Rasband W. S.; Eliceiri K. W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. 10.1038/nmeth.2089. PubMed DOI PMC

Scotti N.; Finocchio E.; Evangelisti C.; Marelli M.; Psaro R.; Ravasio N.; Zaccheria F. Some Insight on the Structure/Activity Relationship of Metal Nanoparticles in Cu/SiO2 Catalysts. Chin. J. Catal. 2019, 40, 1788–1794. 10.1016/S1872-2067(19)63392-9. DOI

Scotti N.; Dangate M.; Gervasini A.; Evangelisti C.; Ravasio N.; Zaccheria F. Unraveling the Role of Low Coordination Sites in a Cu Metal Nanoparticle: A Step toward the Selective Synthesis of Second Generation Biofuels. ACS Catal. 2014, 4, 2818. 10.1021/cs500581a. DOI

Mori K.; Hara T.; Mizugaki T.; Ebitani K.; Kaneda K. Hydroxyapatite-Supported Palladium Nanoclusters: A Highly Active Heterogeneous Catalyst for Selective Oxidation of Alcohols by Use of Molecular Oxygen. J. Am. Chem. Soc. 2004, 126, 10657. 10.1021/ja0488683. PubMed DOI

Dvořák B.; Hudec A.; Pašek J. Measurements of Specific Copper Surface Area by a Pulse Chromatographic Technique. Collect. Czech. Chem. Commun. 1989, 54, 1514–1529. 10.1135/cccc19891514. DOI

Chinchen G. C.; Hay C. M.; Vandervell H. D.; Waugh K. C. The Measurement of Copper Surface Areas by Reactive Frontal Chromatography. J. Catal. 1987, 103, 79–86. 10.1016/0021-9517(87)90094-7. DOI

Kriesel J. W.; Sander M. S.; Tilley T. D. Block Copolymer-Assisted Synthesis of Mesoporous, Multicomponent Oxides by Nonhydrolytic, Thermolytic Decomposition of Molecular Precursors in Nonpolar Media. Chem. Mater. 2001, 13, 3554–3563. 10.1021/cm010068t. DOI

Guerreiro E. D.; Gorriz O. F.; Rivarola J. B.; Arrúa L. A. Characterization of Cu/SiO2 Catalysts Prepared by Ion Exchange for Methanol Dehydrogenation. Appl. Catal. A 1997, 165, 259–271. 10.1016/S0926-860X(97)00207-X. DOI

Kohler M. A.; Lee J. C.; Trimm D. L.; Cant N. W.; Wainwright M. S. Preparation of Cu/SiO2 Catalysts by the Ion-Exchange Technique. Appl. Catal. 1987, 31, 309–321. 10.1016/S0166-9834(00)80699-5. DOI

Zaccheria F.; Scotti N.; Marelli M.; Psaro R.; Ravasio N. Unravelling the Properties of Supported Copper Oxide: Can the Particle Size Induce Acidic Behaviour?. Dalton Trans. 2013, 42, 1319–1328. 10.1039/C2DT32454G. PubMed DOI

Wang K.-W.; Yeh C.-T. Temperature-Programmed Reduction Study on Carbon-Supported Platinum–Gold Alloy Catalysts. J. Colloid Interface Sci. 2008, 325, 203–206. 10.1016/j.jcis.2008.04.069. PubMed DOI

Sato A. G.; Volanti D. P.; de Freitas I. C.; Longo E.; Bueno J. M. C. Site-Selective Ethanol Conversion over Supported Copper Catalysts. Catal. Commun. 2012, 26, 122–126. 10.1016/j.catcom.2012.05.008. DOI

Wang Q.-N.; Shi L.; Li W.; Li W.-C.; Si R.; Schüth F.; Lu A.-H. Cu Supported on Thin Carbon Layer-Coated Porous SiO 2 for Efficient Ethanol Dehydrogenation. Catal. Sci. Technol. 2018, 8, 472–479. 10.1039/C7CY02057K. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Copper Phosphinate Complexes as Molecular Precursors for Ethanol Dehydrogenation Catalysts

. 2023 Dec 11 ; 62 (49) : 19871-19886. [epub] 20231130

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...