Two novel Bartonella (sub)species isolated from edible dormice (Glis glis): hints of cultivation stress-induced genomic changes

. 2023 ; 14 () : 1289671. [epub] 20231115

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38033559

Bartonelloses are neglected emerging infectious diseases caused by facultatively intracellular bacteria transmitted between vertebrate hosts by various arthropod vectors. The highest diversity of Bartonella species has been identified in rodents. Within this study we focused on the edible dormouse (Glis glis), a rodent with unique life-history traits that often enters households and whose possible role in the epidemiology of Bartonella infections had been previously unknown. We identified and cultivated two distinct Bartonella sub(species) significantly diverging from previously described species, which were characterized using growth characteristics, biochemical tests, and various molecular techniques including also proteomics. Two novel (sub)species were described: Bartonella grahamii subsp. shimonis subsp. nov. and Bartonella gliris sp. nov. We sequenced two individual strains per each described (sub)species. During exploratory genomic analyses comparing two genotypes ultimately belonging to the same species, both factually and most importantly even spatiotemporally, we noticed unexpectedly significant structural variation between them. We found that most of the detected structural variants could be explained either by prophage excision or integration. Based on a detailed study of one such event, we argue that prophage deletion represents the most probable explanation of the observed phenomena. Moreover, in one strain of Bartonella grahamii subsp. shimonis subsp. nov. we identified a deletion related to Bartonella Adhesin A, a major pathogenicity factor that modulates bacteria-host interactions. Altogether, our results suggest that even a limited number of passages induced sufficient selective pressure to promote significant changes at the level of the genome.

Zobrazit více v PubMed

Amori G., Hutterer R., Kryštufek B., Yigit N., Mitsainas G., Muñoz L., et al. . (2021). Glis glis (amended version of 2016 assessment). The IUCN red list of threatened species 2021: e.T39316A197292692. Available at: 10.2305/IUCN.UK.2021-1.RLTS.T39316A197292692.en. (Accessed 06 December 2022). DOI

Andrews S. (2010). FastQC: A quality control tool for high throughput sequence data. Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Aucouturier A., Chain F., Langella P., Bidnenko E. (2018). Characterization of a prophage-free derivative strain of Lactococcus lactis ssp. Lactis IL1403 reveals the importance of prophages for phenotypic plasticity of the host. Frontiers in. Microbiology 9:2032. doi: 10.3389/fmicb.2018.02032, PMID: PubMed DOI PMC

Banerjee R., Shine O., Rajachandran V., Krishnadas G., Minnick M. F., Paul S., et al. . (2020). Gene duplication and deletion, not horizontal transfer, drove intra-species mosaicism of Bartonella henselae. Genomics 112, 467–471. doi: 10.1016/j.ygeno.2019.03.009 PubMed DOI

Berglund E. C., Ellegaard K., Granberg F., Xie Z., Maruyama S., Kosoy M. Y., et al. . (2010). Rapid diversification by recombination in Bartonella grahamii from wild rodents in Asia contrasts with low levels of genomic divergence in northern Europe and America. Mol. Ecol. 19, 2241–2255. doi: 10.1111/j.1365-294X.2010.04646.x, PMID: PubMed DOI

Birtles R. J., Harrison T. G., Saunders N. A., Molyneux D. H. (1995). Proposals to unify the genera Grahamella and Bartonella, with descriptions of Bartonella talpae comb, nov., Bartonella peromysci comb. nov., and three new species, Bartonella grahamii sp. nov., Bartonella taylorii sp. nov., and Bartonella doshiae sp. nov. Int. J. Syst. Evol. Microbiol. 45, 1–8. doi: 10.1099/00207713-45-1-1, PMID: PubMed DOI

Bobay L.-M. (2020). “The prokaryotic species concept and challenges” in The Pangenome. eds. Tettelin H., Medini D. (Cham, Switzerland: Springer International Publishing; ), 21–49. PubMed

Bobay L.-M., Touchon M., Rocha E. P. C. (2014). Pervasive domestication of defective prophages by bacteria. Proc. Natl. Acad. Sci. 111, 12127–12132. doi: 10.1073/pnas.1405336111, PMID: PubMed DOI PMC

Bondy-Denomy J., Davidson A. R. (2014). When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J. Microbiol. 52, 235–242. doi: 10.1007/s12275-014-4083-3 PubMed DOI

Borowiec M. L. (2016). AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ 4:e1660. doi: 10.7717/peerj.1660, PMID: PubMed DOI PMC

Breitschwerdt E. B. (2017). “Bartonellosis, one health and all creatures great and small” in Advances in veterinary dermatology. eds. Torres S. M. F., Roudebush P. (Hoboken, New Jersey, U.S.: John Wiley & Sons, Ltd; ), 111–121. PubMed

Breitschwerdt E. B., Kordick D. L. (2000). Bartonella infection in animals: Carriership, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clin. Microbiol. Rev. 13, 428–438. doi: 10.1128/CMR.13.3.428 PubMed DOI PMC

Breitschwerdt E. B., Maggi R. G., Chomel B. B., Lappin M. R. (2010). Bartonellosis: an emerging infectious disease of zoonotic importance to animals and human beings. J. Vet. Emerg. Crit. Care 20, 8–30. doi: 10.1111/j.1476-4431.2009.00496.x, PMID: PubMed DOI

Brenner D. J., McWhorter A. C., Knutson J. K. L., Steigerwalt A. G. (1982). Escherichia vulneris: a new species of Enterobacteriaceae associated with human wounds. J. Clin. Microbiol. 15, 1133–1140. doi: 10.1128/jcm.15.6.1133-1140.1982, PMID: PubMed DOI PMC

Brenner D. J., O’Connor S. P., Winkler H. H., Steigerwalt A. G. (1993). Proposals to unify the genera Bartonella and Rochalimaea, with descriptions of Bartonella quintana comb. Nov., Bartonella vinsonii comb. Nov., Bartonella henselae comb. Nov., and Bartonella elizabethae comb. Nov., and to remove the family Bartonellaceae from the order Rickettsiales. Int. J. Syst. Bacteriol. 43, 777–786. doi: 10.1099/00207713-43-4-777, PMID: PubMed DOI

Büchner S., Trout R., Adamík P. (2018). Conflicts with Glis glis and Eliomys quercinus in households: a practical guideline for sufferers (Rodentia: Gliridae). Lynx 49, 19–26. doi: 10.2478/lynx-2018-0003 DOI

Busby B., Kristensen D. M., Koonin E. V. (2013). Contribution of phage-derived genomic islands to the virulence of facultative bacterial pathogens: genomics update. Environ. Microbiol. 15, 307–312. doi: 10.1111/j.1462-2920.2012.02886.x, PMID: PubMed DOI PMC

Celebi B., Anani H., Zgheib R., Carhan A., Raoult D., Fournier P.-E. (2021). Genomic characterization of the novel Bartonella refiksaydamii sp. isolated from the blood of a Crocidura suaveolens (Pallas, 1811). Vector Borne Zoonotic Dis. 21, 432–440. doi: 10.1089/vbz.2020.2626 PubMed DOI

Chan J. Z.-M., Halachev M. R., Loman N. J., Constantinidou C., Pallen M. J. (2012). Defining bacterial species in the genomic era: insights from the genus Acinetobacter. BMC Microbiol. 12:302. doi: 10.1186/1471-2180-12-302, PMID: PubMed DOI PMC

Cheslock M. A., Embers M. E. (2019). Human bartonellosis: an underappreciated public health problem?. Trop. Med. Infect. Dis. 4, 69. doi: 10.3390/tropicalmed4020069 PubMed DOI PMC

Cox J., Hein M. Y., Luber C. A., Paron I., Nagaraj N., Mann M. (2014). Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, Termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526. doi: 10.1074/mcp.M113.031591, PMID: PubMed DOI PMC

Cox J., Mann M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372. doi: 10.1038/nbt.1511, PMID: PubMed DOI

Cox J., Neuhauser N., Michalski A., Scheltema R. A., Olsen J. V., Mann M. (2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805. doi: 10.1021/pr101065j, PMID: PubMed DOI

Crossley B. M., Bai J., Glaser A., Maes R., Porter E., Killian M. L., et al. . (2020). Guidelines for sanger sequencing and molecular assay monitoring. J. Vet. Diagn. Invest. 32, 767–775. doi: 10.1177/1040638720905833, PMID: PubMed DOI PMC

Delorenzi M., Speed T. (2002). An HMM model for coiled-coil domains and a comparison with PSSM-based predictions. Bioinformatics 18, 617–625. doi: 10.1093/bioinformatics/18.4.617 PubMed DOI

Diddi K., Chaudhry R., Sharma N., Dhawan B. (2013). Strategy for identification & characterization of Bartonella henselae with conventional & molecular methods. Indian J. Med. Res. 137, 380–387. Available at: https://journals.lww.com/ijmr/Fulltext/2013/37020/Strategy_for_identification___characterization_of.18.aspx. PMID: PubMed PMC

do Amaral R. B., Cardozo M. V., Varani A. d. M., Furquim M. E. C., Dias C. M., Assis W. O., et al. . (2022). First report of Bartonella spp. in marsupials from Brazil, with a description of Bartonella harrusi sp. Nov. and a new proposal for the taxonomic reclassification of species of the genus Bartonella. Microorganisms 10:1609. doi: 10.3390/microorganisms10081609 PubMed DOI PMC

Emms D. M., Kelly S. (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238–214. doi: 10.1186/s13059-019-1832-y, PMID: PubMed DOI PMC

Engel P., Salzburger W., Liesch M., Chang C.-C., Maruyama S., Lanz C., et al. . (2011). Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella. PLoS Genet. 7:e1001296. doi: 10.1371/journal.pgen.1001296, PMID: PubMed DOI PMC

Fischetti V. A. (2008). Bacteriophage lysins as effective antibacterials. Curr. Opin. Microbiol. 11, 393–400. doi: 10.1016/j.mib.2008.09.012, PMID: PubMed DOI PMC

Gabler F., Nam S., Till S., Mirdita M., Steinegger M., Söding J., et al. . (2020). Protein sequence analysis using the MPI bioinformatics toolkit. Curr. Protoc. Bioinformatics 72:108. doi: 10.1002/cpbi.108 PubMed DOI

Gazárková A. H., Adamík P. (2016). Timing of breeding and second litters in edible dormouse (Glis glis). Folia Zool. 65, 165–168. doi: 10.25225/fozo.v65.i2.a12.2016 DOI

Greenrod S. T. E., Stoycheva M., Elphinstone J., Friman V.-P. (2022). Global diversity and distribution of prophages are lineage-specific within the Ralstonia solanacearum species complex. BMC Genomics 23:689. doi: 10.1186/s12864-022-08909-7 PubMed DOI PMC

Gremme G., Steinbiss S., Kurtz S. (2013). GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans. Comput. Biol. Bioinform. 10, 645–656. doi: 10.1109/TCBB.2013.68, PMID: PubMed DOI

Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321. doi: 10.1093/sysbio/syq010, PMID: PubMed DOI

Gutiérrez R., Krasnov B., Morick D., Gottlieb Y., Khokhlova I. S., Harrus S. (2015). Bartonella infection in rodents and their flea Ectoparasites: an overview. Vector Borne Zoonotic Dis. 15, 27–39. doi: 10.1089/vbz.2014.1606 PubMed DOI PMC

Gutiérrez R., Shalit T., Markus B., Yuan C., Nachum-Biala Y., Elad D., et al. . (2020). Bartonella kosoyi sp. Nov. and Bartonella krasnovii sp. Nov., two novel species closely related to the zoonotic Bartonella elizabethae, isolated from black rats and wild desert rodent-fleas. Int. J. Syst. Evol. Microbiol. 70, 1656–1665. doi: 10.1099/ijsem.0.003952, PMID: PubMed DOI

Gutiérrez R., Vayssier-Taussat M., Buffet J.-P., Harrus S. (2017). Guidelines for the isolation, molecular detection, and characterization of Bartonella species. Vector Borne Zoonotic Dis. 17, 42–50. doi: 10.1089/vbz.2016.1956 PubMed DOI

Han H. J., Li Z. M., Li X., Liu J. X., Peng Q. M., Wang R., et al. . (2022). Bats and their ectoparasites (Nycteribiidae and Spinturnicidae) carry diverse novel Bartonella genotypes, China. Transbound. Emerg. Dis. 69, e845–e858. doi: 10.1111/tbed.14357, PMID: PubMed DOI PMC

Harms A., Dehio C. (2012). Intruders below the radar: molecular pathogenesis of Bartonella spp. Clin. Microbiol. Rev. 25, 42–78. doi: 10.1128/CMR.05009-11, PMID: PubMed DOI PMC

Hemsley C. M., O’Neill P. A., Essex-Lopresti A., Norville I. H., Atkins T. P., Titball R. W. (2019). Extensive genome analysis of Coxiella burnetii reveals limited evolution within genomic groups. BMC Genomics 20:441. doi: 10.1186/s12864-019-5833-8, PMID: PubMed DOI PMC

Hoang D. T., Chernomor O., Von Haeseler A., Minh B. Q., Vinh L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522. doi: 10.1093/molbev/msx281, PMID: PubMed DOI PMC

Hoover T. A., Culp D. W., Vodkin M. H., Williams J. C., Thompson H. A. (2002). Chromosomal DNA deletions explain phenotypic characteristics of two antigenic variants, phase II and RSA 514 (crazy), of the Coxiella burnetii nine mile strain. Infect. Immun. 70, 6726–6733. doi: 10.1128/IAI.70.12.6726-2733.2002 PubMed DOI PMC

Hyatt D., Chen G.-L., LoCascio P. F., Land M. L., Larimer F. W., Hauser L. J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. doi: 10.1186/1471-2105-11-119, PMID: PubMed DOI PMC

Iannino F., Salucci S., Di Provvido A., Paolini A., Ruggieri E. (2018). Bartonella infections in humans dogs and cats. Vet. Ital. 54, 63–72. doi: 10.12834/VetIt.398.1883.2 PubMed DOI

Iranzadeh A., Mulder N. J. (2019). “Bacterial Pan-genomics” in Microbial genomics in sustainable agroecosystems. eds. Tripathi V., Kumar P., Tripathi P., Kishore A. (Singapore: Springer Singapore; ), 21–38.

Jacomo V., Kelly P. J., Raoult D. (2002). Natural history of Bartonella infections (an exception to Koch’s postulate). Clin. Vaccine Immunol. 9, 8–18. doi: 10.1128/CDLI.9.1.8-18.2002, PMID: PubMed DOI PMC

Jain C., Rhie A., Hansen N. F., Koren S., Phillippy A. M. (2022). Long-read mapping to repetitive reference sequences using Winnowmap2. Nat. Methods 19, 705–710. doi: 10.1038/s41592-022-01457-8, PMID: PubMed DOI PMC

Kalyaanamoorthy S., Minh B. Q., Wong T. K., Von Haeseler A., Jermiin L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589. doi: 10.1038/nmeth.4285, PMID: PubMed DOI PMC

Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. doi: 10.1093/molbev/mst010, PMID: PubMed DOI PMC

Kersh G. J., Oliver L. D., Self J. S., Fitzpatrick K. A., Massung R. F. (2011). Virulence of pathogenic Coxiella burnetii strains after growth in the absence of host cells. Vector Borne Zoonotic Dis. 11, 1433–1438. doi: 10.1089/vbz.2011.0670, PMID: PubMed DOI

Knap N., Duh D., Birtles R., Trilar T., Petrovec M., Avšic-Županc T. (2007). Molecular detection of Bartonella species infecting rodents in Slovenia. FEMS Immunol. Med. Microbiol. 50, 45–50. doi: 10.1111/j.1574-695X.2007.00226.x PubMed DOI

Kordick D. L., Swaminathan B., Greene C. E., Wilson K. H., Whitney A. M., O’Connor S., et al. . (1996). Bartonella vinsonii subsp. Berkhoffii subsp. Nov., isolated from dogs; Bartonella vinsonii subsp. Vinsonii; and emended description of Bartonella vinsonii. Int. J. Syst. Bacteriol. 46, 704–709. doi: 10.1099/00207713-46-3-704, PMID: PubMed DOI

Krügel M., Król N., Kempf V. A., Pfeffer M., Obiegala A. (2022). Emerging rodent-associated Bartonella: a threat for human health? Parasit. Vectors 15:113. doi: 10.1186/s13071-022-05162-5, PMID: PubMed DOI PMC

Krumsiek J., Arnold R., Rattei T. (2007). Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23, 1026–1028. doi: 10.1093/bioinformatics/btm039, PMID: PubMed DOI

Kryštufek B. (2010). Glis glis (Rodentia: Gliridae). Mamm. Species 42, 195–206. doi: 10.1644/865.1 DOI

Land M., Hauser L., Jun S.-R., Nookaew I., Leuze M. R., Ahn T.-H., et al. . (2015). Insights from 20 years of bacterial genome sequencing. Funct. Integr. Genomics 15, 141–161. doi: 10.1007/s10142-015-0433-4, PMID: PubMed DOI PMC

Lee I., Ouk Kim Y., Park S.-C., Chun J. (2016). OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66, 1100–1103. doi: 10.1099/ijsem.0.000760, PMID: PubMed DOI

Letunic I., Bork P. (2021). Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296. doi: 10.1093/nar/gkab301 PubMed DOI PMC

Li H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv [Preprint].

Low L. Y., Yang C., Perego M., Osterman A., Liddington R. (2011). Role of net charge on catalytic domain and influence of Cell Wall binding domain on bactericidal activity, specificity, and host range of phage Lysins. J. Biol. Chem. 286, 34391–34403. doi: 10.1074/jbc.M111.244160, PMID: PubMed DOI PMC

Majerová K., Gutiérrez R., Fonville M., Hönig V., Papežík P., Hofmannová L., et al. . (2021). Hedgehogs and squirrels as hosts of zoonotic Bartonella species. Pathogens 10:686. doi: 10.3390/pathogens10060686, PMID: PubMed DOI PMC

Mardosaitė-Busaitienė D., Radzijevskaja J., Balčiauskas L., Bratchikov M., Jurgelevičius V., Paulauskas A. (2019). Prevalence and diversity of Bartonella species in small rodents from coastal and continental areas. Sci. Rep. 9:12349. doi: 10.1038/s41598-019-48715-y, PMID: PubMed DOI PMC

May M., Brown D. R. (2011). Diversity of expressed vlhA Adhesin sequences and intermediate Hemagglutination phenotypes in Mycoplasma synoviae. J. Bacteriol. 193, 2116–2121. doi: 10.1128/JB.00022-11, PMID: PubMed DOI PMC

Minh B. Q., Hahn M. W., Lanfear R. (2020). New methods to calculate concordance factors for Phylogenomic datasets. Mol. Biol. Evol. 37, 2727–2733. doi: 10.1093/molbev/msaa106, PMID: PubMed DOI PMC

Minnick M. F., Anderson B. E. (2015). “Bartonella” in Molecular Medical Microbiology Eds. Tang Y-W., Sussman M., Liu D., Poxton I., Schwartzman J. (Academic Press resides in Cambridge, Massachusetts: Elsevier; ), 1911–1939.

Molia S., Kasten R. W., Stuckey M. J., Boulouis H. J., Allen J., Borgo G. M., et al. . (2016). Isolation of Bartonella henselae, Bartonella koehlerae subsp. Koehlerae, Bartonella koehlerae subsp. Bothieri and a new subspecies of B. koehlerae from free-ranging lions (Panthera leo) from South Africa, cheetahs (Acinonyx jubatus) from Namibia and captive cheetahs from California. Epidemiol. Infect. 144, 3237–3243. doi: 10.1017/S0950268816001394, PMID: PubMed DOI PMC

Müller N. F., Kaiser P. O., Linke D., Schwarz H., Riess T., Schäfer A., et al. . (2011). Trimeric autotransporter adhesin-dependent adherence of Bartonella henselae, Bartonella quintana, and Yersinia enterocolitica to matrix components and endothelial cells under static and dynamic flow conditions. Infect. Immun. 79, 2544–2553. doi: 10.1128/IAI.01309, PMID: PubMed DOI PMC

Nguyen L.-T., Schmidt H. A., von Haeseler A., Minh B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. doi: 10.1093/molbev/msu300, PMID: PubMed DOI PMC

Obiegala A., Jeske K., Augustin M., Król N., Fischer S., Mertens-Scholz K., et al. . (2019). Highly prevalent bartonellae and other vector-borne pathogens in small mammal species from the Czech Republic and Germany. Parasit. Vectors 12:332. doi: 10.1186/s13071-019-3576-7, PMID: PubMed DOI PMC

Okaro U., Addisu A., Casanas B., Anderson B. (2017). Bartonella species, an emerging cause of blood-culture-negative endocarditis. Clin. Microbiol. Rev. 30, 709–746. doi: 10.1128/CMR.00013-17, PMID: PubMed DOI PMC

Okaro U., Green R., Mohapatra S., Anderson B. (2019). The trimeric autotransporter adhesin BadA is required for in vitro biofilm formation by Bartonella henselae. NPJ Biofilms Microbiomes 5:10. doi: 10.1038/s41522-019-0083-8, PMID: PubMed DOI PMC

Parte A. C., Sardà Carbasse J., Meier-Kolthoff J. P., Reimer L. C., Göker M. (2020). List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 70, 5607–5612. doi: 10.1099/ijsem.0.004332, PMID: PubMed DOI PMC

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., et al. . (2019). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450. doi: 10.1093/nar/gky1106, PMID: PubMed DOI PMC

Pilastro A., Tavecchia G., Marin G. (2003). Long living and reproduction skipping in the fat dormouse. Ecology 84, 1784–1792. doi: 10.1890/0012-9658(2003)084[1784:LLARSI]2.0.CO;2 DOI

Pitassi L. H. U., de Paiva Diniz P. P. V., Scorpio D. G., Drummond M. R., Lania B. G., Barjas-Castro M. L., et al. . (2015). Bartonella spp. bacteremia in blood donors from Campinas, Brazil. PLoS Neglected Trop Dis 9:e0003467. doi: 10.1371/journal.pntd.0003467, PMID: PubMed DOI PMC

Posada D. (2008). jModelTest: phylogenetic model averaging. Mol. Biol. Evol 25, 1253–1256. doi: 10.1093/molbev/msn083, PMID: PubMed DOI

Portillo A., Maggi R., Oteo J. A., Bradley J., García-Álvarez L., San-Martín M., et al. . (2020). Bartonella spp. prevalence (serology, culture, and PCR) in sanitary workers in La Rioja Spain. Pathogens 9:189. doi: 10.3390/pathogens9030189, PMID: PubMed DOI PMC

Québatte M., Dehio C. (2019). Bartonella gene transfer agent: evolution, function, and proposed role in host adaptation. Cell. Microbiol. 21:e13068. doi: 10.1111/cmi.13068, PMID: PubMed DOI PMC

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Richter M., Rosselló-Móra R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. 106, 19126–19131. doi: 10.1073/pnas.0906412106, PMID: PubMed DOI PMC

Riess T., Andersson S. G. E., Lupas A., Schaller M., Schäfer A., Kyme P., et al. . (2004). Bartonella Adhesin a mediates a proangiogenic host cell response. J. Exp. Med. 200, 1267–1278. doi: 10.1084/jem.20040500, PMID: PubMed DOI PMC

Riess T., Dietrich F., Schmidt K. V., Kaiser P. O., Schwarz H., Schäfer A., et al. . (2008). Analysis of a novel insect cell culture medium-based growth medium for Bartonella species. Appl. Environ. Microbiol. 74, 5224–5227. doi: 10.1128/AEM.00621-08, PMID: PubMed DOI PMC

Riley M. A., Lizotte-Waniewski M. (2009). “Population genomics and the bacterial species concept” in Horizontal Gene Transfer. eds. Gogarten M. B., Gogarten J. P., Olendzenski L. C., vol. 532 (Totowa, New Jersey, U.S.: Humana Press; ), 367–377. PubMed PMC

Robinson J. T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E. S., Getz G., et al. . (2011). Integrative genomics viewer. Nat. Biotechnol. 29, 24–26. doi: 10.1038/nbt.1754, PMID: PubMed DOI PMC

Sedlazeck F. J., Rescheneder P., Smolka M., Fang H., Nattestad M., von Haeseler A., et al. . (2018). Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468. doi: 10.1038/s41592-018-0001-7 PubMed DOI PMC

Seemann T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069. doi: 10.1093/bioinformatics/btu153, PMID: PubMed DOI

Simonsen A. K. (2022). Environmental stress leads to genome streamlining in a widely distributed species of soil bacteria. ISME J. 16, 423–434. doi: 10.1038/s41396-021-01082-x, PMID: PubMed DOI PMC

Snipen L., Liland K. H. (2015). Micropan: an R-package for microbial pan-genomics. BMC Bioinformatics 16:79. doi: 10.1186/s12859-015-0517-0 PubMed DOI PMC

Song W., Sun H.-X., Zhang C., Cheng L., Peng Y., Deng Z., et al. . (2019). Prophage hunter: an integrative hunting tool for active prophages. Nucleic Acids Res. 47, W74–W80. doi: 10.1093/nar/gkz380, PMID: PubMed DOI PMC

Sperlea T., Muth L., Martin R., Weigel C., Waldminghaus T., Heider D. (2020). gammaBOriS: identification and taxonomic classification of origins of replication in Gammaproteobacteria using motif-based machine learning. Sci. Rep. 10:6727. doi: 10.1038/s41598-020-63424-7 PubMed DOI PMC

Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E. P., Zaslavsky L., et al. . (2016). NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624. doi: 10.1093/nar/gkw569, PMID: PubMed DOI PMC

Tettelin H., Riley D., Cattuto C., Medini D. (2008). Comparative genomics: the bacterial pan-genome. Curr. Opin. Microbiol. 11, 472–477. doi: 10.1016/j.mib.2008.09.006 PubMed DOI

Thibau A., Hipp K., Vaca D. J., Chowdhury S., Malmström J., Saragliadis A., et al. . (2022). Long-read sequencing reveals genetic adaptation of Bartonella Adhesin a among different Bartonella henselae isolates. Front. Microbiol. 13:838267. doi: 10.3389/fmicb.2022.838267, PMID: PubMed DOI PMC

Tołkacz K., Alsarraf M., Kowalec M., Dwużnik D., Grzybek M., Behnke J. M., et al. . (2018). Bartonella infections in three species of Microtus: prevalence and genetic diversity, vertical transmission and the effect of concurrent Babesia microti infection on its success. Parasit. Vectors 11:491. doi: 10.1186/s13071-018-3047-6, PMID: PubMed DOI PMC

Van Houdt R., Leplae R., Lima-Mendez G., Mergeay M., Toussaint A. (2012). Towards a more accurate annotation of tyrosine-based site-specific recombinases in bacterial genomes. Mob. DNA 3:6. doi: 10.1186/1759-8753-3-6, PMID: PubMed DOI PMC

Wang X., Kim Y., Ma Q., Hong S. H., Pokusaeva K., Sturino J. M., et al. . (2010). Cryptic prophages help bacteria cope with adverse environments. Nat. Commun. 1:147. doi: 10.1038/ncomms1146, PMID: PubMed DOI PMC

Welch D. F., Carroll K. C., Hofmeister E. K., Persing D. H., Robison D. A., Steigerwalt A. G., et al. . (1999). Isolation of a new subspecies, Bartonella vinsonii subsp. arupensis, from a cattle rancher: identity with isolates found in conjunction with Borrelia burgdorferi and Babesia microti among naturally infected mice. J. Clin. Microbiol. 37, 2598–2601. doi: 10.1128/JCM.37.8.2598-2601.1999, PMID: PubMed DOI PMC

Wick R. R., Judd L. M., Holt K. E. (2019). Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 20:129. doi: 10.1186/s13059-019-1727-y, PMID: PubMed DOI PMC

Withenshaw S. M., Devevey G., Pedersen A. B., Fenton A. (2016). Multihost Bartonella parasites display covert host specificity even when transmitted by generalist vectors. J. Anim. Ecol. 85, 1442–1452. doi: 10.1111/1365-2656.12568, PMID: PubMed DOI PMC

Wu L., Wang H., Xia Y., Xi R. (2020). CNV-BAC: copy number variation detection in bacterial circular genome. Bioinformatics 36, 3890–3891. doi: 10.1093/bioinformatics/btaa208, PMID: PubMed DOI

Zimin A. V., Puiu D., Luo M.-C., Zhu T., Koren S., Marçais G., et al. . (2017). Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 27, 787–792. doi: 10.1101/gr.213405.116, PMID: PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...