Two novel Bartonella (sub)species isolated from edible dormice (Glis glis): hints of cultivation stress-induced genomic changes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38033559
PubMed Central
PMC10684924
DOI
10.3389/fmicb.2023.1289671
Knihovny.cz E-zdroje
- Klíčová slova
- Bartonella Adhesin A, Bartonella gliris, Bartonella grahamii subsp. shimonis, cultivation-related genomic changes, gene deletion,
- Publikační typ
- časopisecké články MeSH
Bartonelloses are neglected emerging infectious diseases caused by facultatively intracellular bacteria transmitted between vertebrate hosts by various arthropod vectors. The highest diversity of Bartonella species has been identified in rodents. Within this study we focused on the edible dormouse (Glis glis), a rodent with unique life-history traits that often enters households and whose possible role in the epidemiology of Bartonella infections had been previously unknown. We identified and cultivated two distinct Bartonella sub(species) significantly diverging from previously described species, which were characterized using growth characteristics, biochemical tests, and various molecular techniques including also proteomics. Two novel (sub)species were described: Bartonella grahamii subsp. shimonis subsp. nov. and Bartonella gliris sp. nov. We sequenced two individual strains per each described (sub)species. During exploratory genomic analyses comparing two genotypes ultimately belonging to the same species, both factually and most importantly even spatiotemporally, we noticed unexpectedly significant structural variation between them. We found that most of the detected structural variants could be explained either by prophage excision or integration. Based on a detailed study of one such event, we argue that prophage deletion represents the most probable explanation of the observed phenomena. Moreover, in one strain of Bartonella grahamii subsp. shimonis subsp. nov. we identified a deletion related to Bartonella Adhesin A, a major pathogenicity factor that modulates bacteria-host interactions. Altogether, our results suggest that even a limited number of passages induced sufficient selective pressure to promote significant changes at the level of the genome.
Department of Biology University of Hradec Králové Hradec Králové Czechia
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czechia
Department of Parasitology Faculty of Science Charles University Prague Czechia
Department of Zoology Faculty of Science Palacký University Olomouc Czechia
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czechia
Military Health Institute Military Medical Agency Prague Czechia
Zobrazit více v PubMed
Amori G., Hutterer R., Kryštufek B., Yigit N., Mitsainas G., Muñoz L., et al. . (2021). Glis glis (amended version of 2016 assessment). The IUCN red list of threatened species 2021: e.T39316A197292692. Available at: 10.2305/IUCN.UK.2021-1.RLTS.T39316A197292692.en. (Accessed 06 December 2022). DOI
Andrews S. (2010). FastQC: A quality control tool for high throughput sequence data. Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Aucouturier A., Chain F., Langella P., Bidnenko E. (2018). Characterization of a prophage-free derivative strain of Lactococcus lactis ssp. Lactis IL1403 reveals the importance of prophages for phenotypic plasticity of the host. Frontiers in. Microbiology 9:2032. doi: 10.3389/fmicb.2018.02032, PMID: PubMed DOI PMC
Banerjee R., Shine O., Rajachandran V., Krishnadas G., Minnick M. F., Paul S., et al. . (2020). Gene duplication and deletion, not horizontal transfer, drove intra-species mosaicism of Bartonella henselae. Genomics 112, 467–471. doi: 10.1016/j.ygeno.2019.03.009 PubMed DOI
Berglund E. C., Ellegaard K., Granberg F., Xie Z., Maruyama S., Kosoy M. Y., et al. . (2010). Rapid diversification by recombination in Bartonella grahamii from wild rodents in Asia contrasts with low levels of genomic divergence in northern Europe and America. Mol. Ecol. 19, 2241–2255. doi: 10.1111/j.1365-294X.2010.04646.x, PMID: PubMed DOI
Birtles R. J., Harrison T. G., Saunders N. A., Molyneux D. H. (1995). Proposals to unify the genera Grahamella and Bartonella, with descriptions of Bartonella talpae comb, nov., Bartonella peromysci comb. nov., and three new species, Bartonella grahamii sp. nov., Bartonella taylorii sp. nov., and Bartonella doshiae sp. nov. Int. J. Syst. Evol. Microbiol. 45, 1–8. doi: 10.1099/00207713-45-1-1, PMID: PubMed DOI
Bobay L.-M. (2020). “The prokaryotic species concept and challenges” in The Pangenome. eds. Tettelin H., Medini D. (Cham, Switzerland: Springer International Publishing; ), 21–49. PubMed
Bobay L.-M., Touchon M., Rocha E. P. C. (2014). Pervasive domestication of defective prophages by bacteria. Proc. Natl. Acad. Sci. 111, 12127–12132. doi: 10.1073/pnas.1405336111, PMID: PubMed DOI PMC
Bondy-Denomy J., Davidson A. R. (2014). When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J. Microbiol. 52, 235–242. doi: 10.1007/s12275-014-4083-3 PubMed DOI
Borowiec M. L. (2016). AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ 4:e1660. doi: 10.7717/peerj.1660, PMID: PubMed DOI PMC
Breitschwerdt E. B. (2017). “Bartonellosis, one health and all creatures great and small” in Advances in veterinary dermatology. eds. Torres S. M. F., Roudebush P. (Hoboken, New Jersey, U.S.: John Wiley & Sons, Ltd; ), 111–121. PubMed
Breitschwerdt E. B., Kordick D. L. (2000). Bartonella infection in animals: Carriership, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clin. Microbiol. Rev. 13, 428–438. doi: 10.1128/CMR.13.3.428 PubMed DOI PMC
Breitschwerdt E. B., Maggi R. G., Chomel B. B., Lappin M. R. (2010). Bartonellosis: an emerging infectious disease of zoonotic importance to animals and human beings. J. Vet. Emerg. Crit. Care 20, 8–30. doi: 10.1111/j.1476-4431.2009.00496.x, PMID: PubMed DOI
Brenner D. J., McWhorter A. C., Knutson J. K. L., Steigerwalt A. G. (1982). Escherichia vulneris: a new species of Enterobacteriaceae associated with human wounds. J. Clin. Microbiol. 15, 1133–1140. doi: 10.1128/jcm.15.6.1133-1140.1982, PMID: PubMed DOI PMC
Brenner D. J., O’Connor S. P., Winkler H. H., Steigerwalt A. G. (1993). Proposals to unify the genera Bartonella and Rochalimaea, with descriptions of Bartonella quintana comb. Nov., Bartonella vinsonii comb. Nov., Bartonella henselae comb. Nov., and Bartonella elizabethae comb. Nov., and to remove the family Bartonellaceae from the order Rickettsiales. Int. J. Syst. Bacteriol. 43, 777–786. doi: 10.1099/00207713-43-4-777, PMID: PubMed DOI
Büchner S., Trout R., Adamík P. (2018). Conflicts with Glis glis and Eliomys quercinus in households: a practical guideline for sufferers (Rodentia: Gliridae). Lynx 49, 19–26. doi: 10.2478/lynx-2018-0003 DOI
Busby B., Kristensen D. M., Koonin E. V. (2013). Contribution of phage-derived genomic islands to the virulence of facultative bacterial pathogens: genomics update. Environ. Microbiol. 15, 307–312. doi: 10.1111/j.1462-2920.2012.02886.x, PMID: PubMed DOI PMC
Celebi B., Anani H., Zgheib R., Carhan A., Raoult D., Fournier P.-E. (2021). Genomic characterization of the novel Bartonella refiksaydamii sp. isolated from the blood of a Crocidura suaveolens (Pallas, 1811). Vector Borne Zoonotic Dis. 21, 432–440. doi: 10.1089/vbz.2020.2626 PubMed DOI
Chan J. Z.-M., Halachev M. R., Loman N. J., Constantinidou C., Pallen M. J. (2012). Defining bacterial species in the genomic era: insights from the genus Acinetobacter. BMC Microbiol. 12:302. doi: 10.1186/1471-2180-12-302, PMID: PubMed DOI PMC
Cheslock M. A., Embers M. E. (2019). Human bartonellosis: an underappreciated public health problem?. Trop. Med. Infect. Dis. 4, 69. doi: 10.3390/tropicalmed4020069 PubMed DOI PMC
Cox J., Hein M. Y., Luber C. A., Paron I., Nagaraj N., Mann M. (2014). Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, Termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526. doi: 10.1074/mcp.M113.031591, PMID: PubMed DOI PMC
Cox J., Mann M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372. doi: 10.1038/nbt.1511, PMID: PubMed DOI
Cox J., Neuhauser N., Michalski A., Scheltema R. A., Olsen J. V., Mann M. (2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805. doi: 10.1021/pr101065j, PMID: PubMed DOI
Crossley B. M., Bai J., Glaser A., Maes R., Porter E., Killian M. L., et al. . (2020). Guidelines for sanger sequencing and molecular assay monitoring. J. Vet. Diagn. Invest. 32, 767–775. doi: 10.1177/1040638720905833, PMID: PubMed DOI PMC
Delorenzi M., Speed T. (2002). An HMM model for coiled-coil domains and a comparison with PSSM-based predictions. Bioinformatics 18, 617–625. doi: 10.1093/bioinformatics/18.4.617 PubMed DOI
Diddi K., Chaudhry R., Sharma N., Dhawan B. (2013). Strategy for identification & characterization of Bartonella henselae with conventional & molecular methods. Indian J. Med. Res. 137, 380–387. Available at: https://journals.lww.com/ijmr/Fulltext/2013/37020/Strategy_for_identification___characterization_of.18.aspx. PMID: PubMed PMC
do Amaral R. B., Cardozo M. V., Varani A. d. M., Furquim M. E. C., Dias C. M., Assis W. O., et al. . (2022). First report of Bartonella spp. in marsupials from Brazil, with a description of Bartonella harrusi sp. Nov. and a new proposal for the taxonomic reclassification of species of the genus Bartonella. Microorganisms 10:1609. doi: 10.3390/microorganisms10081609 PubMed DOI PMC
Emms D. M., Kelly S. (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238–214. doi: 10.1186/s13059-019-1832-y, PMID: PubMed DOI PMC
Engel P., Salzburger W., Liesch M., Chang C.-C., Maruyama S., Lanz C., et al. . (2011). Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella. PLoS Genet. 7:e1001296. doi: 10.1371/journal.pgen.1001296, PMID: PubMed DOI PMC
Fischetti V. A. (2008). Bacteriophage lysins as effective antibacterials. Curr. Opin. Microbiol. 11, 393–400. doi: 10.1016/j.mib.2008.09.012, PMID: PubMed DOI PMC
Gabler F., Nam S., Till S., Mirdita M., Steinegger M., Söding J., et al. . (2020). Protein sequence analysis using the MPI bioinformatics toolkit. Curr. Protoc. Bioinformatics 72:108. doi: 10.1002/cpbi.108 PubMed DOI
Gazárková A. H., Adamík P. (2016). Timing of breeding and second litters in edible dormouse (Glis glis). Folia Zool. 65, 165–168. doi: 10.25225/fozo.v65.i2.a12.2016 DOI
Greenrod S. T. E., Stoycheva M., Elphinstone J., Friman V.-P. (2022). Global diversity and distribution of prophages are lineage-specific within the Ralstonia solanacearum species complex. BMC Genomics 23:689. doi: 10.1186/s12864-022-08909-7 PubMed DOI PMC
Gremme G., Steinbiss S., Kurtz S. (2013). GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans. Comput. Biol. Bioinform. 10, 645–656. doi: 10.1109/TCBB.2013.68, PMID: PubMed DOI
Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321. doi: 10.1093/sysbio/syq010, PMID: PubMed DOI
Gutiérrez R., Krasnov B., Morick D., Gottlieb Y., Khokhlova I. S., Harrus S. (2015). Bartonella infection in rodents and their flea Ectoparasites: an overview. Vector Borne Zoonotic Dis. 15, 27–39. doi: 10.1089/vbz.2014.1606 PubMed DOI PMC
Gutiérrez R., Shalit T., Markus B., Yuan C., Nachum-Biala Y., Elad D., et al. . (2020). Bartonella kosoyi sp. Nov. and Bartonella krasnovii sp. Nov., two novel species closely related to the zoonotic Bartonella elizabethae, isolated from black rats and wild desert rodent-fleas. Int. J. Syst. Evol. Microbiol. 70, 1656–1665. doi: 10.1099/ijsem.0.003952, PMID: PubMed DOI
Gutiérrez R., Vayssier-Taussat M., Buffet J.-P., Harrus S. (2017). Guidelines for the isolation, molecular detection, and characterization of Bartonella species. Vector Borne Zoonotic Dis. 17, 42–50. doi: 10.1089/vbz.2016.1956 PubMed DOI
Han H. J., Li Z. M., Li X., Liu J. X., Peng Q. M., Wang R., et al. . (2022). Bats and their ectoparasites (Nycteribiidae and Spinturnicidae) carry diverse novel Bartonella genotypes, China. Transbound. Emerg. Dis. 69, e845–e858. doi: 10.1111/tbed.14357, PMID: PubMed DOI PMC
Harms A., Dehio C. (2012). Intruders below the radar: molecular pathogenesis of Bartonella spp. Clin. Microbiol. Rev. 25, 42–78. doi: 10.1128/CMR.05009-11, PMID: PubMed DOI PMC
Hemsley C. M., O’Neill P. A., Essex-Lopresti A., Norville I. H., Atkins T. P., Titball R. W. (2019). Extensive genome analysis of Coxiella burnetii reveals limited evolution within genomic groups. BMC Genomics 20:441. doi: 10.1186/s12864-019-5833-8, PMID: PubMed DOI PMC
Hoang D. T., Chernomor O., Von Haeseler A., Minh B. Q., Vinh L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522. doi: 10.1093/molbev/msx281, PMID: PubMed DOI PMC
Hoover T. A., Culp D. W., Vodkin M. H., Williams J. C., Thompson H. A. (2002). Chromosomal DNA deletions explain phenotypic characteristics of two antigenic variants, phase II and RSA 514 (crazy), of the Coxiella burnetii nine mile strain. Infect. Immun. 70, 6726–6733. doi: 10.1128/IAI.70.12.6726-2733.2002 PubMed DOI PMC
Hyatt D., Chen G.-L., LoCascio P. F., Land M. L., Larimer F. W., Hauser L. J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. doi: 10.1186/1471-2105-11-119, PMID: PubMed DOI PMC
Iannino F., Salucci S., Di Provvido A., Paolini A., Ruggieri E. (2018). Bartonella infections in humans dogs and cats. Vet. Ital. 54, 63–72. doi: 10.12834/VetIt.398.1883.2 PubMed DOI
Iranzadeh A., Mulder N. J. (2019). “Bacterial Pan-genomics” in Microbial genomics in sustainable agroecosystems. eds. Tripathi V., Kumar P., Tripathi P., Kishore A. (Singapore: Springer Singapore; ), 21–38.
Jacomo V., Kelly P. J., Raoult D. (2002). Natural history of Bartonella infections (an exception to Koch’s postulate). Clin. Vaccine Immunol. 9, 8–18. doi: 10.1128/CDLI.9.1.8-18.2002, PMID: PubMed DOI PMC
Jain C., Rhie A., Hansen N. F., Koren S., Phillippy A. M. (2022). Long-read mapping to repetitive reference sequences using Winnowmap2. Nat. Methods 19, 705–710. doi: 10.1038/s41592-022-01457-8, PMID: PubMed DOI PMC
Kalyaanamoorthy S., Minh B. Q., Wong T. K., Von Haeseler A., Jermiin L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589. doi: 10.1038/nmeth.4285, PMID: PubMed DOI PMC
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. doi: 10.1093/molbev/mst010, PMID: PubMed DOI PMC
Kersh G. J., Oliver L. D., Self J. S., Fitzpatrick K. A., Massung R. F. (2011). Virulence of pathogenic Coxiella burnetii strains after growth in the absence of host cells. Vector Borne Zoonotic Dis. 11, 1433–1438. doi: 10.1089/vbz.2011.0670, PMID: PubMed DOI
Knap N., Duh D., Birtles R., Trilar T., Petrovec M., Avšic-Županc T. (2007). Molecular detection of Bartonella species infecting rodents in Slovenia. FEMS Immunol. Med. Microbiol. 50, 45–50. doi: 10.1111/j.1574-695X.2007.00226.x PubMed DOI
Kordick D. L., Swaminathan B., Greene C. E., Wilson K. H., Whitney A. M., O’Connor S., et al. . (1996). Bartonella vinsonii subsp. Berkhoffii subsp. Nov., isolated from dogs; Bartonella vinsonii subsp. Vinsonii; and emended description of Bartonella vinsonii. Int. J. Syst. Bacteriol. 46, 704–709. doi: 10.1099/00207713-46-3-704, PMID: PubMed DOI
Krügel M., Król N., Kempf V. A., Pfeffer M., Obiegala A. (2022). Emerging rodent-associated Bartonella: a threat for human health? Parasit. Vectors 15:113. doi: 10.1186/s13071-022-05162-5, PMID: PubMed DOI PMC
Krumsiek J., Arnold R., Rattei T. (2007). Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23, 1026–1028. doi: 10.1093/bioinformatics/btm039, PMID: PubMed DOI
Kryštufek B. (2010). Glis glis (Rodentia: Gliridae). Mamm. Species 42, 195–206. doi: 10.1644/865.1 DOI
Land M., Hauser L., Jun S.-R., Nookaew I., Leuze M. R., Ahn T.-H., et al. . (2015). Insights from 20 years of bacterial genome sequencing. Funct. Integr. Genomics 15, 141–161. doi: 10.1007/s10142-015-0433-4, PMID: PubMed DOI PMC
Lee I., Ouk Kim Y., Park S.-C., Chun J. (2016). OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66, 1100–1103. doi: 10.1099/ijsem.0.000760, PMID: PubMed DOI
Letunic I., Bork P. (2021). Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296. doi: 10.1093/nar/gkab301 PubMed DOI PMC
Li H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv [Preprint].
Low L. Y., Yang C., Perego M., Osterman A., Liddington R. (2011). Role of net charge on catalytic domain and influence of Cell Wall binding domain on bactericidal activity, specificity, and host range of phage Lysins. J. Biol. Chem. 286, 34391–34403. doi: 10.1074/jbc.M111.244160, PMID: PubMed DOI PMC
Majerová K., Gutiérrez R., Fonville M., Hönig V., Papežík P., Hofmannová L., et al. . (2021). Hedgehogs and squirrels as hosts of zoonotic Bartonella species. Pathogens 10:686. doi: 10.3390/pathogens10060686, PMID: PubMed DOI PMC
Mardosaitė-Busaitienė D., Radzijevskaja J., Balčiauskas L., Bratchikov M., Jurgelevičius V., Paulauskas A. (2019). Prevalence and diversity of Bartonella species in small rodents from coastal and continental areas. Sci. Rep. 9:12349. doi: 10.1038/s41598-019-48715-y, PMID: PubMed DOI PMC
May M., Brown D. R. (2011). Diversity of expressed vlhA Adhesin sequences and intermediate Hemagglutination phenotypes in Mycoplasma synoviae. J. Bacteriol. 193, 2116–2121. doi: 10.1128/JB.00022-11, PMID: PubMed DOI PMC
Minh B. Q., Hahn M. W., Lanfear R. (2020). New methods to calculate concordance factors for Phylogenomic datasets. Mol. Biol. Evol. 37, 2727–2733. doi: 10.1093/molbev/msaa106, PMID: PubMed DOI PMC
Minnick M. F., Anderson B. E. (2015). “Bartonella” in Molecular Medical Microbiology Eds. Tang Y-W., Sussman M., Liu D., Poxton I., Schwartzman J. (Academic Press resides in Cambridge, Massachusetts: Elsevier; ), 1911–1939.
Molia S., Kasten R. W., Stuckey M. J., Boulouis H. J., Allen J., Borgo G. M., et al. . (2016). Isolation of Bartonella henselae, Bartonella koehlerae subsp. Koehlerae, Bartonella koehlerae subsp. Bothieri and a new subspecies of B. koehlerae from free-ranging lions (Panthera leo) from South Africa, cheetahs (Acinonyx jubatus) from Namibia and captive cheetahs from California. Epidemiol. Infect. 144, 3237–3243. doi: 10.1017/S0950268816001394, PMID: PubMed DOI PMC
Müller N. F., Kaiser P. O., Linke D., Schwarz H., Riess T., Schäfer A., et al. . (2011). Trimeric autotransporter adhesin-dependent adherence of Bartonella henselae, Bartonella quintana, and Yersinia enterocolitica to matrix components and endothelial cells under static and dynamic flow conditions. Infect. Immun. 79, 2544–2553. doi: 10.1128/IAI.01309, PMID: PubMed DOI PMC
Nguyen L.-T., Schmidt H. A., von Haeseler A., Minh B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. doi: 10.1093/molbev/msu300, PMID: PubMed DOI PMC
Obiegala A., Jeske K., Augustin M., Król N., Fischer S., Mertens-Scholz K., et al. . (2019). Highly prevalent bartonellae and other vector-borne pathogens in small mammal species from the Czech Republic and Germany. Parasit. Vectors 12:332. doi: 10.1186/s13071-019-3576-7, PMID: PubMed DOI PMC
Okaro U., Addisu A., Casanas B., Anderson B. (2017). Bartonella species, an emerging cause of blood-culture-negative endocarditis. Clin. Microbiol. Rev. 30, 709–746. doi: 10.1128/CMR.00013-17, PMID: PubMed DOI PMC
Okaro U., Green R., Mohapatra S., Anderson B. (2019). The trimeric autotransporter adhesin BadA is required for in vitro biofilm formation by Bartonella henselae. NPJ Biofilms Microbiomes 5:10. doi: 10.1038/s41522-019-0083-8, PMID: PubMed DOI PMC
Parte A. C., Sardà Carbasse J., Meier-Kolthoff J. P., Reimer L. C., Göker M. (2020). List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 70, 5607–5612. doi: 10.1099/ijsem.0.004332, PMID: PubMed DOI PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., et al. . (2019). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450. doi: 10.1093/nar/gky1106, PMID: PubMed DOI PMC
Pilastro A., Tavecchia G., Marin G. (2003). Long living and reproduction skipping in the fat dormouse. Ecology 84, 1784–1792. doi: 10.1890/0012-9658(2003)084[1784:LLARSI]2.0.CO;2 DOI
Pitassi L. H. U., de Paiva Diniz P. P. V., Scorpio D. G., Drummond M. R., Lania B. G., Barjas-Castro M. L., et al. . (2015). Bartonella spp. bacteremia in blood donors from Campinas, Brazil. PLoS Neglected Trop Dis 9:e0003467. doi: 10.1371/journal.pntd.0003467, PMID: PubMed DOI PMC
Posada D. (2008). jModelTest: phylogenetic model averaging. Mol. Biol. Evol 25, 1253–1256. doi: 10.1093/molbev/msn083, PMID: PubMed DOI
Portillo A., Maggi R., Oteo J. A., Bradley J., García-Álvarez L., San-Martín M., et al. . (2020). Bartonella spp. prevalence (serology, culture, and PCR) in sanitary workers in La Rioja Spain. Pathogens 9:189. doi: 10.3390/pathogens9030189, PMID: PubMed DOI PMC
Québatte M., Dehio C. (2019). Bartonella gene transfer agent: evolution, function, and proposed role in host adaptation. Cell. Microbiol. 21:e13068. doi: 10.1111/cmi.13068, PMID: PubMed DOI PMC
R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Richter M., Rosselló-Móra R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. 106, 19126–19131. doi: 10.1073/pnas.0906412106, PMID: PubMed DOI PMC
Riess T., Andersson S. G. E., Lupas A., Schaller M., Schäfer A., Kyme P., et al. . (2004). Bartonella Adhesin a mediates a proangiogenic host cell response. J. Exp. Med. 200, 1267–1278. doi: 10.1084/jem.20040500, PMID: PubMed DOI PMC
Riess T., Dietrich F., Schmidt K. V., Kaiser P. O., Schwarz H., Schäfer A., et al. . (2008). Analysis of a novel insect cell culture medium-based growth medium for Bartonella species. Appl. Environ. Microbiol. 74, 5224–5227. doi: 10.1128/AEM.00621-08, PMID: PubMed DOI PMC
Riley M. A., Lizotte-Waniewski M. (2009). “Population genomics and the bacterial species concept” in Horizontal Gene Transfer. eds. Gogarten M. B., Gogarten J. P., Olendzenski L. C., vol. 532 (Totowa, New Jersey, U.S.: Humana Press; ), 367–377. PubMed PMC
Robinson J. T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E. S., Getz G., et al. . (2011). Integrative genomics viewer. Nat. Biotechnol. 29, 24–26. doi: 10.1038/nbt.1754, PMID: PubMed DOI PMC
Sedlazeck F. J., Rescheneder P., Smolka M., Fang H., Nattestad M., von Haeseler A., et al. . (2018). Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468. doi: 10.1038/s41592-018-0001-7 PubMed DOI PMC
Seemann T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069. doi: 10.1093/bioinformatics/btu153, PMID: PubMed DOI
Simonsen A. K. (2022). Environmental stress leads to genome streamlining in a widely distributed species of soil bacteria. ISME J. 16, 423–434. doi: 10.1038/s41396-021-01082-x, PMID: PubMed DOI PMC
Snipen L., Liland K. H. (2015). Micropan: an R-package for microbial pan-genomics. BMC Bioinformatics 16:79. doi: 10.1186/s12859-015-0517-0 PubMed DOI PMC
Song W., Sun H.-X., Zhang C., Cheng L., Peng Y., Deng Z., et al. . (2019). Prophage hunter: an integrative hunting tool for active prophages. Nucleic Acids Res. 47, W74–W80. doi: 10.1093/nar/gkz380, PMID: PubMed DOI PMC
Sperlea T., Muth L., Martin R., Weigel C., Waldminghaus T., Heider D. (2020). gammaBOriS: identification and taxonomic classification of origins of replication in Gammaproteobacteria using motif-based machine learning. Sci. Rep. 10:6727. doi: 10.1038/s41598-020-63424-7 PubMed DOI PMC
Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E. P., Zaslavsky L., et al. . (2016). NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624. doi: 10.1093/nar/gkw569, PMID: PubMed DOI PMC
Tettelin H., Riley D., Cattuto C., Medini D. (2008). Comparative genomics: the bacterial pan-genome. Curr. Opin. Microbiol. 11, 472–477. doi: 10.1016/j.mib.2008.09.006 PubMed DOI
Thibau A., Hipp K., Vaca D. J., Chowdhury S., Malmström J., Saragliadis A., et al. . (2022). Long-read sequencing reveals genetic adaptation of Bartonella Adhesin a among different Bartonella henselae isolates. Front. Microbiol. 13:838267. doi: 10.3389/fmicb.2022.838267, PMID: PubMed DOI PMC
Tołkacz K., Alsarraf M., Kowalec M., Dwużnik D., Grzybek M., Behnke J. M., et al. . (2018). Bartonella infections in three species of Microtus: prevalence and genetic diversity, vertical transmission and the effect of concurrent Babesia microti infection on its success. Parasit. Vectors 11:491. doi: 10.1186/s13071-018-3047-6, PMID: PubMed DOI PMC
Van Houdt R., Leplae R., Lima-Mendez G., Mergeay M., Toussaint A. (2012). Towards a more accurate annotation of tyrosine-based site-specific recombinases in bacterial genomes. Mob. DNA 3:6. doi: 10.1186/1759-8753-3-6, PMID: PubMed DOI PMC
Wang X., Kim Y., Ma Q., Hong S. H., Pokusaeva K., Sturino J. M., et al. . (2010). Cryptic prophages help bacteria cope with adverse environments. Nat. Commun. 1:147. doi: 10.1038/ncomms1146, PMID: PubMed DOI PMC
Welch D. F., Carroll K. C., Hofmeister E. K., Persing D. H., Robison D. A., Steigerwalt A. G., et al. . (1999). Isolation of a new subspecies, Bartonella vinsonii subsp. arupensis, from a cattle rancher: identity with isolates found in conjunction with Borrelia burgdorferi and Babesia microti among naturally infected mice. J. Clin. Microbiol. 37, 2598–2601. doi: 10.1128/JCM.37.8.2598-2601.1999, PMID: PubMed DOI PMC
Wick R. R., Judd L. M., Holt K. E. (2019). Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 20:129. doi: 10.1186/s13059-019-1727-y, PMID: PubMed DOI PMC
Withenshaw S. M., Devevey G., Pedersen A. B., Fenton A. (2016). Multihost Bartonella parasites display covert host specificity even when transmitted by generalist vectors. J. Anim. Ecol. 85, 1442–1452. doi: 10.1111/1365-2656.12568, PMID: PubMed DOI PMC
Wu L., Wang H., Xia Y., Xi R. (2020). CNV-BAC: copy number variation detection in bacterial circular genome. Bioinformatics 36, 3890–3891. doi: 10.1093/bioinformatics/btaa208, PMID: PubMed DOI
Zimin A. V., Puiu D., Luo M.-C., Zhu T., Koren S., Marçais G., et al. . (2017). Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 27, 787–792. doi: 10.1101/gr.213405.116, PMID: PubMed DOI PMC