Highly prevalent bartonellae and other vector-borne pathogens in small mammal species from the Czech Republic and Germany

. 2019 Jul 03 ; 12 (1) : 332. [epub] 20190703

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31269975
Odkazy

PubMed 31269975
PubMed Central PMC6610854
DOI 10.1186/s13071-019-3576-7
PII: 10.1186/s13071-019-3576-7
Knihovny.cz E-zdroje

BACKGROUND: Rodents are important reservoirs for zoonotic vector-borne agents. Thus, the distribution of rodents and their vicinity to humans and companion animals may have an important impact on human and animal health. However, the reservoir potential of some rodent genera, e.g. Microtus, has not yet been precisely examined concerning tick-borne pathogens in Central Europe. Therefore, we examined small mammals from Germany and the Czech Republic for the following vector-borne pathogens: Babesia spp., Bartonella spp., Anaplasma phagocytophilum, "Candidatus Neoehrlichia mikurensis" (CNM) and Coxiella burnetii. Spleen DNA from 321 small mammals belonging to four genera, Myodes (n = 78), Apodemus (n = 56), Microtus (n = 149), Sorex (n = 38), collected during 2014 in Germany and the Czech Republic were available for this study. DNA samples were examined for the presence of Babesia and Bartonella DNA by conventional PCR targeting the 18S rRNA gene and the 16S-23S rRNA intergenic spacer region, respectively. For the detection of CNM, A. phagocytophilum and C. burnetii real-time PCR assays were performed. RESULTS: Bartonella spp. DNA was detected in 216 specimens (67.3%) with 102/174 (58.6%) positive in Germany and 114/147 (77.6%) in the Czech Republic. The prevalence in each genus was 44.9% for Myodes, 63.2% for Sorex, 77.2% for Microtus and 75% for Apodemus. Four Bartonella species, i.e. Bartonella sp. N40, B. grahamii, B. taylorii and B. doshiae, as well as uncultured bartonellae, were detected. The Bartonella species diversity was higher in rodents than in shrews. In total, 27/321 (8.4%) small mammals were positive for CNM and 3/321 (0.9%) for A. phagocytophilum (S. coronatus and M. glareolus). All samples were negative for Babesia spp. and Coxiella spp. CONCLUSIONS: While the detected high prevalence for Bartonella in Apodemus and Myodes spp. is confirmatory with previous findings, the prevalence in Microtus spp. was unexpectedly high. This indicates that individuals belonging to this genus may be regarded as potential reservoirs. Interestingly, only Sorex spp. and M. glareolus were positive for A. phagocytophilum in the present study, suggesting a possible importance of the latter for the maintenance of certain A. phagocytophilum strains in nature.

Zobrazit více v PubMed

Karesh WB, Dobson A, Lloyd-Smith JO, Lubroth J, Dixon MA, Bennett M, et al. Ecology of zoonoses: natural and unnatural histories. Lancet. 2012;380:1936–1945. doi: 10.1016/S0140-6736(12)61678-X. PubMed DOI PMC

Liz JS, Anderes L, Sumner JW, Massung RF, Gern L, Rutti B, et al. PCR detection of granulocytic ehrlichiae in Ixodes ricinus ticks and wild small mammals in western Switzerland. J Clin Microbiol. 2000;38:1002–1007. PubMed PMC

Breitschwerdt EB. Bartonellosis: one health perspectives for an emerging infectious disease. ILAR J. 2014;55:46–58. doi: 10.1093/ilar/ilu015. PubMed DOI

Chomel BB, Boulouis HJ, Maruyama S, Breitschwerdt EB. Bartonella spp. in pets and effect on human health. Emerg Infect Dis. 2006;12:389. doi: 10.3201/eid1203.050931. PubMed DOI PMC

Gutiérrez R, Krasnov B, Morick D, Gottlieb Y, Khokhlova IS, Harrus S. Bartonella infection in rodents and their flea ectoparasites: an overview. Vector Borne Zoonotic Dis. 2015;15:27–39. doi: 10.1089/vbz.2014.1606. PubMed DOI PMC

Silaghi C, Pfeffer M, Kiefer D, Kiefer M, Obiegala A. Bartonella, rodents, fleas and ticks: a molecular field study on host–vector–pathogen associations in Saxony, Eastern Germany. Microb Ecol. 2016;72:965–974. doi: 10.1007/s00248-016-0787-8. PubMed DOI

Welc-Falęciak R, Bajer A, Behnke JM, Siński E. The ecology of Bartonella spp. infections in two rodent communities in the Mazury Lake District region of Poland. Parasitology. 2010;137:1069–1077. doi: 10.1017/S0031182009992058. PubMed DOI

Huitu O, Aaltonen K, Henttonen H, Hirvelä-Koski V, Forbes K, Perez-Vera C, et al. Field voles Microtus agrestis as reservoirs of Bartonella spp. Genes, ecosystems and risk of infection (GERI), 21–23 April 2015, Heraklion, Crete, Greece. Abstracts.

Schmidt S, Essbauer SS, Mayer-Scholl A, Poppert S, Schmidt-Chanasit J, Klempa B, et al. Multiple infections of rodents with zoonotic pathogens in Austria. Vector Borne Zoonotic Dis. 2014;14:467–475. doi: 10.1089/vbz.2013.1504. PubMed DOI PMC

Rar V, Golovljova I. Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia” bacteria: pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infect Genet Evol. 2011;11:1842–1861. doi: 10.1016/j.meegid.2011.09.019. PubMed DOI

Obiegala A, Silaghi C. Candidatus Neoehrlichia mikurensis—recent insights and future perspectives on clinical cases, vectors, and reservoirs in Europe. Curr Clin Microbiol Rep. 2018;5:1–9. doi: 10.1007/s40588-018-0085-y. DOI

Dumler JS, Choi KS, Garcia-Garcia JC, Barat NS, Scorpio DG, Garyu JW, et al. Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerg Infect Dis. 2005;11:1828. doi: 10.3201/eid1112.050898. PubMed DOI PMC

Obiegala A, Pfeffer M, Pfister K, Tiedemann T, Thiel C, Balling A, et al. Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum: prevalences and investigations on a new transmission path in small mammals and ixodid ticks. Parasites Vectors. 2014;7:563. PubMed PMC

Jahfari S, Fonville M, Hengeveld P, Reusken C, Scholte EJ, Takken W, et al. Prevalence of Neoehrlichia mikurensis in ticks and rodents from north-west Europe. Parasites Vectors. 2012;5:74. doi: 10.1186/1756-3305-5-74. PubMed DOI PMC

Andersson M, Råberg L. Wild rodents and novel human pathogen Candidatus Neoehrlichia mikurensis, southern Sweden. Emerg Infect Dis. 2011;17:1716. doi: 10.3201/eid1709.101058. PubMed DOI PMC

Silaghi C, Woll D, Hamel D, Pfister K, Mahling M, Pfeffer M. Babesia spp. and Anaplasma phagocytophilum in questing ticks, ticks parasitizing rodents and the parasitized rodents—analyzing the host–pathogen–vector interface in a metropolitan area. Parasites Vectors. 2012;5:191. doi: 10.1186/1756-3305-5-191. PubMed DOI PMC

Bown KJ, Lambin X, Ogden NH, Begon M, Telford G, Woldehiwet Z, et al. Delineating Anaplasma phagocytophilum ecotypes in coexisting, discrete enzootic cycles. Emerg Infect Dis. 2009;15:1948. doi: 10.3201/eid1512.090178. PubMed DOI PMC

Pluta S, Hartelt K, Oehme R, Mackenstedt U, Kimmig P. Prevalence of Coxiella burnetii and Rickettsia spp. in ticks and rodents in southern Germany. Ticks Tick Borne Dis. 2010;1:145–147. doi: 10.1016/j.ttbdis.2010.04.001. PubMed DOI

Gray J, Von Stedingk LV, Gürtelschmid M, Granström M. Transmission studies of Babesia microti in Ixodes ricinus ticks and gerbils. J Clin Microbiol. 2002;40:1259–1263. doi: 10.1128/JCM.40.4.1259-1263.2002. PubMed DOI PMC

Hildebrandt A, Hunfeld KP, Baier M, Krumbholz A, Sachse S, Lorenzen T, et al. First confirmed autochthonous case of human Babesia microti infection in Europe. Eur J Clin Microbiol Infect Dis. 2007;26:595–601. doi: 10.1007/s10096-007-0333-1. PubMed DOI

Jeske K, Tomaso H, Imholt C, Schulz J, Beerli O, Suchomel J, et al. Detection of Francisella tularensis in three vole species in central Europe. Transbound Emerg Dis. 2018 doi: 10.1111/tbed.13078. PubMed DOI

Bajer A, Bednarska M, Pawełczyk A, Behnke JM, Gilbert FS, Sinski E. Prevalence and abundance of Cryptosporidium parvum and Giardia spp. in wild rural rodents from the Mazury Lake District region of Poland. Parasitology. 2002;125:21–34. doi: 10.1017/S0031182002001865. PubMed DOI

Baláž I, Ambros M. Shrews (Sorex spp.) somatometry and reproduction in Slovakia. Biologia. 2006;61:611–620. doi: 10.2478/s11756-006-0098-5. DOI

Kosoy M, McKee C, Albayrak L, Fofanov Y. Genotyping of Bartonella bacteria and their animal hosts: current status and perspectives. Parasitology. 2018;145:543–562. doi: 10.1017/S0031182017001263. PubMed DOI

Schorn S, Pfister K, Reulen H, Mahling M, Silaghi C. Occurrence of Babesia spp., Rickettsia spp. and Bartonella spp. in Ixodes ricinus in Bavarian public parks, Germany. Parasites Vectors. 2011;4:135. doi: 10.1186/1756-3305-4-135. PubMed DOI PMC

Maggi RG, Diniz PP, Cadenas MB, Breitschwerdt EB. The use of molecular diagnostic techniques to detect Anaplasma, Bartonella and Ehrlichia species in arthropods or patients. In: The international canine vector-borne disease symposium, April 18th–20th 2006, Billesley, Alcester, UK. p. 9–14.

Casati S, Sager H, Gern L, Piffaretti JC. Presence of potentially pathogenic Babesia sp. for human in Ixodes ricinus in Switzerland. Ann Agric Environ Med. 2006;13:65–70. PubMed

Silaghi C, Kauffmann M, Passos LM, Pfister K, Zweygarth E. Isolation, propagation and preliminary characterisation of Anaplasma phagocytophilum from roe deer (Capreolus capreolus) in the tick cell line IDE8. Ticks Tick Borne Dis. 2011;2:204–208. doi: 10.1016/j.ttbdis.2011.09.002. PubMed DOI

Courtney JW, Kostelnik LM, Zeidner NS, Massung RF. Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J Clin Microbiol. 2004;42:3164–3168. doi: 10.1128/JCM.42.7.3164-3168.2004. PubMed DOI PMC

Klee SR, Tyczka J, Ellerbrok H, Franz T, Linke S, Baljer G, et al. Highly sensitive real-time PCR for specific detection and quantification of Coxiella burnetii. BMC Microbiol. 2006;6:2. doi: 10.1186/1471-2180-6-2. PubMed DOI PMC

R Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2016.

Harms A, Dehio C. Intruders below the radar: molecular pathogenesis of Bartonella spp. Clin Microbiol Rev. 2012;25:42–78. doi: 10.1128/CMR.05009-11. PubMed DOI PMC

Obiegala A, Heuser E, Ryll R, Imholt C, Fürst J, Prautsch L-M, et al. Norway and black rats in Europe: potential reservoirs for zoonotic arthropod-borne pathogens? Pest Manag Sci. 2019 doi: 10.1002/ps.5323. PubMed DOI

Holmberg M, Mills JN, McGill S, Benjamin G, Ellis BA. Bartonella infection in sylvatic small mammals of central Sweden. Epidemiol Infect. 2003;130:149–157. doi: 10.1017/S0950268802008075. PubMed DOI PMC

Paziewska A, Harris PD, Zwolińska L, Bajer A, Siński E. Differences in the ecology of Bartonella infections of Apodemus flavicollis and Myodes glareolus in a boreal forest. Parasitology. 2012;139:881–893. doi: 10.1017/S0031182012000170. PubMed DOI

Rodríguez-Pastor R, Escudero R, Lambin X, Vidal MD, Gil H, Jado I, et al. Zoonotic pathogens in fluctuating common vole (Microtus arvalis) populations: occurrence and dynamics. Parasitology. 2019;146:389–398. doi: 10.1017/S0031182018001543. PubMed DOI

Tołkacz K, Alsarraf M, Kowalec M, Dwużnik D, Grzybek M, Behnke JM, Bajer A. Bartonella infections in three species of Microtus: prevalence and genetic diversity, vertical transmission and the effect of concurrent Babesia microti infection on its success. Parasites Vectors. 2018;11:491. doi: 10.1186/s13071-018-3047-6. PubMed DOI PMC

Bray DP, Bown KJ, Stockley P, Hurst JL, Bennett M, Birtles RJ. Haemoparasites of common shrews (Sorex araneus) in northwest England. Parasitology. 2007;134:819–826. doi: 10.1017/S0031182007002302. PubMed DOI

Kosoy M, Bai Y, Sheff K, Morway C, Baggett H, Maloney SA, et al. Identification of Bartonella infections in febrile human patients from Thailand and their potential animal reservoirs. Am J Trop Med Hyg. 2010;82:1140–1145. doi: 10.4269/ajtmh.2010.09-0778. PubMed DOI PMC

Víchová B, Majláthová V, Nováková M, Stanko M, Hviščová I, Pangrácová L, et al. Anaplasma infections in ticks and reservoir host from Slovakia. Infect Genet Evol. 2014;22:265–272. doi: 10.1016/j.meegid.2013.06.003. PubMed DOI

Vayssier-Taussat M, Le Rhun D, Buffet JP, Maaoui N, Galan M, Guivier E, et al. Candidatus Neoehrlichia mikurensis in bank voles, France. Emerg Infect Dis. 2012;18:2063. doi: 10.3201/eid1812.120846. PubMed DOI PMC

Svitálková ZH, Haruštiaková D, Mahríková L, Mojšová M, Berthová L, Slovák M, et al. Candidatus Neoehrlichia mikurensis in ticks and rodents from urban and natural habitats of south-western Slovakia. Parasites Vectors. 2016;9:2. doi: 10.1186/s13071-015-1287-2. PubMed DOI PMC

Hughes VL, Randolph SE. Testosterone increases the transmission potential of tick-borne parasites. Parasitology. 2001;123:365–371. doi: 10.1017/S0031182001008599. PubMed DOI

Matei IA, D’Amico G, Ionică AM, Kalmár Z, Corduneanu A, Sándor AD, et al. New records for Anaplasma phagocytophilum infection in small mammal species. Parasites Vectors. 2018;11:193. doi: 10.1186/s13071-018-2791-y. PubMed DOI PMC

Bown KJ, Lambin X, Telford G, Heyder-Bruckner D, Ogden NH, Birtles RJ. The common shrew (Sorex araneus): a neglected host of tick-borne infections? Vector Borne Zoonotic Dis. 2011;11:947–953. doi: 10.1089/vbz.2010.0185. PubMed DOI

Reusken C, van der Plaats R, Opsteegh M, de Bruin A, Swart A. Coxiella burnetii (Q fever) in Rattus norvegicus and Rattus rattus at livestock farms and urban locations in the Netherlands; could Rattus spp. represent reservoirs for (re) introduction? Prev Vet Med. 2011;101:124–130. doi: 10.1016/j.prevetmed.2011.05.003. PubMed DOI

Barandika JF, Hurtado A, García-Esteban C, Gil H, Escudero R, Barral M, et al. Tick-borne zoonotic bacteria in wild and domestic small mammals in northern Spain. Appl Environ Microbiol. 2007;73:6166–6171. doi: 10.1128/AEM.00590-07. PubMed DOI PMC

Burri C, Dupasquier C, Bastic V, Gern L. Pathogens of emerging tick-borne diseases, Anaplasma phagocytophilum, Rickettsia spp., and Babesia spp., in Ixodes ticks collected from rodents at four sites in Switzerland (Canton of Bern) Vector Borne Zoonotic Dis. 2011;11:939–944. doi: 10.1089/vbz.2010.0215. PubMed DOI

Obiegala A, Pfeffer M, Pfister K, Karnath C, Silaghi C. Molecular examinations of Babesia microti in rodents and rodent-attached ticks from urban and sylvatic habitats in Germany. Ticks Tick Borne Dis. 2015;6:445–449. doi: 10.1016/j.ttbdis.2015.03.005. PubMed DOI

Siński E, Bajer A, Welc R, Pawełczyk A, Ogrzewalska M, Behnke JM. Babesia microti: prevalence in wild rodents and Ixodes ricinus ticks from the Mazury Lakes District of north-eastern Poland. Int J Med Microbiol. 2006;296:137–143. doi: 10.1016/j.ijmm.2006.01.015. PubMed DOI

Karbowiak G, Stanko M, Rychlik L, Nowakowski W, Siuda K. The new data about zoonotic reservoir of Babesia microti in small mammals in Poland. Acta Parasitol. 1999;44:142–144.

Rudolf I, Golovchenko M, Sikutová S, Rudenko N. Babesia microti (Piroplasmida: Babesiidae) in nymphal Ixodes ricinus (Acari: Ixodidae) in the Czech Republic. Folia Parasitol. 2005;52:274–276. doi: 10.14411/fp.2005.036. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...