Candidatus Neoehrlichia mikurensis in ticks and rodents from urban and natural habitats of South-Western Slovakia
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26728197
PubMed Central
PMC4700745
DOI
10.1186/s13071-015-1287-2
PII: 10.1186/s13071-015-1287-2
Knihovny.cz E-zdroje
- MeSH
- Anaplasma phagocytophilum genetika izolace a purifikace MeSH
- Anaplasmataceae genetika izolace a purifikace MeSH
- arachnida jako vektory mikrobiologie MeSH
- ehrlichióza epidemiologie mikrobiologie MeSH
- ekosystém MeSH
- hlodavci MeSH
- infekce bakteriemi čeledi Anaplasmataceae epidemiologie mikrobiologie MeSH
- infestace klíšťaty epidemiologie mikrobiologie MeSH
- klíště mikrobiologie MeSH
- koinfekce MeSH
- lidé MeSH
- riziko MeSH
- zdroje nemoci mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Slovenská republika epidemiologie MeSH
BACKGROUND: Candidatus Neoehrlichia mikurensis (CNM) is an emerging tick-borne pathogen causing severe disease in immunocompromised patients. In Europe, Ixodes ricinus is the primary vector and rodents act as reservoir hosts. New data on the prevalence of CNM in ticks and rodents contribute to the knowledge on the distribution of endemic areas and circulation of the bacterium in natural foci. METHODS: Questing ticks were collected and rodents were trapped in urban/suburban and natural habitats in South-Western Slovakia from 2011 to 2014. DNA from questing and rodent-attached ticks and rodent tissues were screened for CNM by real-time PCR. Rodent spleen samples positive for CNM were characterised at the groEL gene locus. Spatial and temporal differences in CNM prevalence in ticks and rodents and co-infections of ticks with CNM and Anaplasma phagocytophilum were analysed. RESULTS: The presence of CNM was confirmed in questing and rodent-attached I. ricinus ticks and in rodents. Total prevalence in both ticks and rodents was significantly higher in the natural habitat (2.3% and 10.1%, respectively) than in the urban/suburban habitat (1.0% and 3.3%, respectively). No seasonal pattern in CNM prevalence in ticks was observed, but prevalence in rodents was higher in autumn than in spring. CNM was detected in Apodemus flavicollis, Myodes glareolus, Microtus arvalis and Micromys minutus, with the highest prevalence in M. arvalis (30%). By screening CNM dissemination in rodent tissues, infection was detected in lungs of all specimens with positive spleens and in blood, kidney, liver and skin of part of those individuals. Infection with CNM was detected in 1.3% of rodent attached I. ricinus ticks. Sequences of a fragment of the groEL gene from CNM-positive rodents showed a high degree of identity with sequences of the gene amplified from ticks and infected human blood from Europe. Only 0.1% of CNM-positive questing ticks carried A. phagocytophilum. Ticks infected with CNM prevailed in the natural habitat (67.2%), whereas ticks infected with A. phagocytophilum prevailed in the urban/suburban habitat (75.0%). CONCLUSION: The study confirmed the circulation of CNM between I. ricinus ticks and rodents in South-Western Slovakia, and indicates a potential risk of contracting human infections.
Institute of Virology Slovak Academy of Sciences Dúbravská cesta 9 84505 Bratislava Slovakia
Institute of Zoology Slovak Academy of Sciences Dúbravská cesta 9 84506 Bratislava Slovakia
UMR BIPAR Anses 23 Avenue du Général de Gaulle 94700 Maisons Alfort France
Zobrazit více v PubMed
Rar V, Golovjova I. Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia” bacteria: Pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infect Genet Evol. 2011;11:1842–61. doi: 10.1016/j.meegid.2011.09.019. PubMed DOI
Tijsse-Klasen E, Koopmans MPG, Sprong H. Tick-borne pathogen–reversed and conventional discovery of disease. Front Public Health. 2014;2:73. doi: 10.3389/fpubh.2014.00073. PubMed DOI PMC
Wennerås C. Infections with the tick-borne bacterium Candidatus Neoehrlichia mikurensis. Clin Microbiol Infect. 2015;21:621–30. doi: 10.1016/j.cmi.2015.02.030. PubMed DOI
Silaghi C, Beck R, Oteo JA, Pfeffer M, Sprong H. Neoehrlichiosis: an emerging tick-borne zoonosis caused by Candidatus Neoehrlichia mikurensis. Exp Appl Acarol. 2015;DOI 10.1007/s10493-015-9935-y. PubMed
Welinder-Olsson C, Kjellin E, Vaht K, Jacobsson S, Wennerås C. First case of human “Candidatus Neoehrlichia mikurensis” infection in a febrile patient with chronic lymphocytic leukemia. J Clin Microbiol. 2010;48:1956–9. doi: 10.1128/JCM.02423-09. PubMed DOI PMC
Grankvist A, Andersson P-O, Mattsson M, Sender M, Vaht K, Höper L, et al. Infections with the tick-borne bacterium “Candidatus Neoehrlichia mikurensis” mimic noninfectious conditions in patients with B cell malignancies or autoimmune diseases. Clin Infect Dis. 2014;58:1716–22. doi: 10.1093/cid/ciu189. PubMed DOI
Diniz PP, Schulz BS, Hartmann K, Breitschwerdt EB. Candidatus Neoehrlichia mikurensis infection in a dog from Germany. J Clin Microbiol. 2011;49:2059–62. doi: 10.1128/JCM.02327-10. PubMed DOI PMC
Schouls LM, Van De Pol, Rijpkema SG, Schot CS. Detection and identification of Ehrlichia, Borreliaburgdorferi sensu lato, and Bartonella species in Dutch Ixodes ricinus ticks. J Clin Microbiol. 1999;37:2215–22. PubMed PMC
Movila A, Toderas I, Uspenskaia I, Conovalov J. Molecular detection of tick-borne pathogens in Ixodes ricinus from Moldova collected in 1960. Ticks Tick Borne Dis. 2013;4:359–61. doi: 10.1016/j.ttbdis.2012.12.004. PubMed DOI
Lommano E, Bertaiola L, Dupasquier C, Gern L. Infections and coinfections of questing Ixodes ricinus ticks by emerging zoonotic pathogens in western Switzerland. Appl Environ Microbiol. 2012;78:4606–12. doi: 10.1128/AEM.07961-11. PubMed DOI PMC
Fertner ME, Mølbak L, Boye Pihl TP, Fomsgaard A, Bødker R. First detection of tick-borne “Candidatus Neoehrlichia mikurensis” in Denmark 2011. Euro Surveill. 2012;17(8). PubMed
Jahfari S, Fonville M, Hengeveld P, Reusken C, Scholte EJ, Takken W, et al. Prevalence of Neoehrlichia mikurensis in ticks and rodents from north-west Europe. Parasit Vectors. 2012;5:74. doi: 10.1186/1756-3305-5-74. PubMed DOI PMC
Silaghi C, Woll D, Mahling M, Pfister K, Pfeffer M. Candidatus Neoehrlichia mikurensis in rodents in an area with sympatric existence of the hard ticks Ixodes ricinus and Dermacentor reticulatus, Germany. Parasit Vectors. 2012;5:285. doi: 10.1186/1756-3305-5-285. PubMed DOI PMC
Hornok S, Meli ML, Gönczi E, Hofmann-Lehmann R. First evidence of Candidatus Neoehrlichia mikurensis in Hungary. Parasit Vectors. 2013;6:267. doi: 10.1186/1756-3305-6-267. PubMed DOI PMC
Palomar AM, García-Álvarez L, Santibáñez S, Portillo A, Oteo JA. Detection of tick-borne ‘Candidatus Neoehrlichia mikurensis’ and Anaplasma phagocytophilum in Spain in 2013. Parasit Vectors. 2014;7:57. doi: 10.1186/1756-3305-7-57. PubMed DOI PMC
Otranto D, Dantas-Torres F, Giannelli A, Latrofa MS, Cascio A, Cazzin S, et al. Ticks infesting humans in Italy and associated pathogens. Parasit Vectors. 2014;7:328. doi: 10.1186/1756-3305-7-328. PubMed DOI PMC
Krücken J, Schreiber C, Maaz D, Kohn M, Demeler J, Beck S, et al. A novel high-resolution melt PCR assay discriminates Anaplasma phagocytophilum and “Candidatus Neoehrlichia mikurensis”. J Clin Microbiol. 2013;51:1958–61. doi: 10.1128/JCM.00284-13. PubMed DOI PMC
Pangrácová L, Derdáková M, Pekárik L, Hviščová I, Víchová B, Stanko M, et al. Ixodes ricinus abundance and its infection with the tick-borne pathogens in urban and suburban areas of Eastern Slovakia. Parasit Vectors. 2013;6:238. doi: 10.1186/1756-3305-6-238. PubMed DOI PMC
Glatz M, Müllegger RR, Maurer F, Fingerle V, Achermann Y, Wilske B, et al. Detection of Candidatus Neoehrlichia mikurensis, Borrelia burgdorferi sensu lato genospecies and Anaplasma phagocytophilum in a tick population from Austria. Ticks Tick Borne Dis. 2014;5:139–44. doi: 10.1016/j.ttbdis.2013.10.006. PubMed DOI
Obiegala A, Pfeffer M, Pfister K, Tiedemann T, Thiel C, Balling A, et al. Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum: prevalences and investigations on a new transmission path in small mammals and ixodid ticks. Parasit Vectors. 2014;7:563. PubMed PMC
Venclikova K, Rudolf I, Mendel J, Betasova L, Hubalek Z. Rickettsiae in questing Ixodes ricinus ticks in the Czech Republic. Ticks Tick Borne Dis. 2014;5:135–8. doi: 10.1016/j.ttbdis.2013.09.008. PubMed DOI
Welc-Falęciak R, Kowalec M, Karbowiak G, Bajer A, Behnke JM, Siński E. Rickettsiaceae and Anaplasmataceae infections in Ixodes ricinus ticks from urban and natural forested areas of Poland. Parasit Vectors. 2014;7:121. doi: 10.1186/1756-3305-7-121. PubMed DOI PMC
Burri C, Schumann O, Schumann C, Gern L. Are Apodemus spp. mice and Myodes glareolus reservoirs for Borrelia miyamotoi, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, R. monacensis and Anaplasma phagocytophilum? Ticks Tick Borne Dis. 2014;5:245–51. doi: 10.1016/j.ttbdis.2013.11.007. PubMed DOI
Andersson M, Raberg L. Wild rodents and novel human pathogen Candidatus Neoehrlichia mikurensis, Southern Sweden. Emerg Infect Dis. 2011;17:1716–8. doi: 10.3201/eid1709.101058. PubMed DOI PMC
Vayssier-Taussat M, Le Rhun D, Buffet JP, Maaoui N, Galan M, Guivier E, et al. Candidatus Neoehrlichia mikurensis in bank voles, France. Emerg Infect Dis. 2012;18:2063–5. doi: 10.3201/eid1812.120846. PubMed DOI PMC
Földvári G, Jahfari S, Rigó K, Jablonszky M, Szekeres S, Majoros G, et al. Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in urban hedgehogs. Emerg Infect Dis. 2014;20:496–8. doi: 10.3201/eid2003.130935. PubMed DOI PMC
Lommano E, Dvorak C, Vallotton L, Jenni L, Gern L. Tick-borne pathogens in ticks collected from breeding and migratory birds in Switzerland. Ticks Tick Borne Dis. 2014;5:871–82. doi: 10.1016/j.ttbdis.2014.07.001. PubMed DOI
Silaghi C, Pfister K, Overzier E. Molecular investigation for bacterial and protozoan tick borne pathogens in wild boars (Sus scrofa) from southern Germany. Vector Borne Zoonot Dis. 2014;14:371–3. doi: 10.1089/vbz.2013.1495. PubMed DOI PMC
Spitalská E, Literák I, Sparagano OA, Golovchenko M, Kocianová E. Ticks (Ixodidae) from passerine birds in the Carpathian region. Wien Klin Wochenschr. 2006;118:759–64. doi: 10.1007/s00508-006-0729-4. PubMed DOI
Špitalská E, Boldiš V, Košťanová Z, Kocianová E, Štefanidesová K. Incidence of various tick-borne microorganisms in rodents and ticks of central Slovakia. Acta Virol. 2008;52:175–9. PubMed
Víchová B, Majláthová V, Nováková M, Stanko M, Hviščová I, Pangrácová L, et al. Anaplasma infections in ticks and reservoir host in Slovakia. Infect Genet Evol. 2014;22:265–72. doi: 10.1016/j.meegid.2013.06.003. PubMed DOI
Derdáková M, Václav R, Pangrácova-Blaňarová L, Selyemová D, Koči J, Walder G, et al. Candidatus Neoehrlichia mikurensis and its co-circulation with Anaplasma phagocytophilum in Ixodes ricinus ticks across ecologically different habitats of Central Europe. Parasit Vectors. 2014;7:160. doi: 10.1186/1756-3305-7-160. PubMed DOI PMC
Ginsberg HS. Potential effects of mixed infections in ticks on transmission dynamics of pathogens: comparative analysis of published records. Exp Appl Acarol. 2008;46:29–41. doi: 10.1007/s10493-008-9175-5. PubMed DOI
Richter D, Matuschka FR. “Candidatus Neoehrlichia mikurensis,” Anaplasma phagocytophilum, and lyme disease spirochetes in questing European vector ticks and in feeding ticks removed from people. J Clin Microbiol. 2012;50:943–7. doi: 10.1128/JCM.05802-11. PubMed DOI PMC
Coipan EC, Jahfari S, Fonville M, Maassen CB, van der Giessen J, Takken W, et al. Spatio temporal dynamics of emerging pathogens in questing Ixodes ricinus. Front Cell Infect Microbiol. 2013;3:36. PubMed PMC
Svitálková Z, Haruštiaková D, Mahríková L, Berthová L, Slovák M, Kocianová E, et al. Anaplasma phagocytophilum prevalence in ticks and rodents in an urban and natural habitat in South-Western Slovakia. Parasit Vectors. 2015;8:276. doi: 10.1186/s13071-015-0880-8. PubMed DOI PMC
Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Pe˜na A, George JC, et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit Vectors. 2013;6:1. doi: 10.1186/1756-3305-6-1. PubMed DOI PMC
Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubálek Z, Földvári G, et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front Public Health. 2014;2:251. doi: 10.3389/fpubh.2014.00251. PubMed DOI PMC
Maurer FP, Keller PM, Beuret C, Joha C, Achermann Y, Gubler J, et al. Close geographic association of human neoehrlichiosis and tick populations carrying “Candidatus Neoehrlichia mikurensis” in Eastern Switzerland. J Clin Microbiol. 2013;51:169–76. doi: 10.1128/JCM.01955-12. PubMed DOI PMC
Capelli G, Ravagnan S, Montarsi F, Ciocchetta S, Cazzin S, Porcellato E, et al. Occurrence and identification of risk areas of Ixodes ricinus-borne pathogens: a cost-effectiveness analysis in north-eastern Italy. Parasit Vectors. 2012;5:61. doi: 10.1186/1756-3305-5-61. PubMed DOI PMC
Beninati T, Piccolo G, Rizzoli A, Genchi C, Bandi C. Anaplasmataceae in wild rodents and roe deer from Trento Province (northern Italy) Eur J Clin Microbiol Infect Dis. 2006;25:677–8. doi: 10.1007/s10096-006-0196-x. PubMed DOI
Szekeres S, Coipan EC, Rigó K, Majoros G, Jahfari S, Sprong H, et al. Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in natural rodent and tick communities in Southern Hungary. Ticks Tick Borne Dis. 2014;6:111–6. doi: 10.1016/j.ttbdis.2014.10.004. PubMed DOI
Andersson M, Scherman K, Råberg L. Infection dynamics of the tick-borne pathogen “Candidatus Neoehrlichia mikurensis” and coinfections with Borrelia afzelii in bank voles in Southern Sweden. Appl Environ Microbiol. 2014;80:1645–9. doi: 10.1128/AEM.03469-13. PubMed DOI PMC
Kallio ER, Begon M, Henttonen H, Koskela E, Mappes T, Vaheri A, et al. Cyclic hantavirus epidemics in humans predicted by rodent host dynamics. Epidemics. 2009;1:101–7. doi: 10.1016/j.epidem.2009.03.002. PubMed DOI
Kazimírová M, Štibrániová I. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol. 2013;3:121–39. PubMed PMC
Michelet L, Delannoy S, Devillers E, Umhang G, Aspan A, Juremalm M, et al. High-throughput screening of tick-borne pathogens in Europe. Front Cell Infect Microbiol. 2014;4:103. PubMed PMC
von Loewenich FD, Geissdorfer W, Disque C, Matten J, Schett G, Sakka SG, et al. Detection of ‘Candidatus Neoehrlichia mikurensis’ in two patients with severe febrile illnesses: evidence for a European sequence variant. J Clin Microbiol. 2010;48:2630–5. doi: 10.1128/JCM.00588-10. PubMed DOI PMC
Babesia spp. in ticks and wildlife in different habitat types of Slovakia