Understanding temporal variability across trophic levels and spatial scales in freshwater ecosystems
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
2017SGR1643
Agència de Gestió d'Ajuts Universitaris i de Recerca
309496/2021-7
Conselho Nacional de Desenvolvimento Científico e Tecnológico
871128
eLTER PLUS
FADR65
Fish and Wildlife Service and the Division of Wildlife
FADX09
Fish and Wildlife Service and the Division of Wildlife
FADB02
Fish and Wildlife Service and the Division of Wildlife
19/04033-7
Fundação de Amparo à Pesquisa do Estado de São Paulo
2019/06291-3
Fundação de Amparo à Pesquisa do Estado de São Paulo
21/00619-7
Fundação de Amparo à Pesquisa do Estado de São Paulo
P505-20-17305S
Grantová Agentura České Republiky
2047324
National Science Foundation
IOS-1754838
National Science Foundation
#DEB-2025982
NTL LTER
RYC2020-029829-I
Ramón y Cajal Fellowship
RDF-18-UOC-007
Royal Society Te Apārangi
PubMed
38037301
DOI
10.1002/ecy.4219
Knihovny.cz E-zdroje
- Klíčová slova
- Moran effect, community synchrony, compensatory dynamics, international long-term ecological research (ILTER), metacommunities, mobile consumers, portfolio effect, temporal variability,
- MeSH
- biodiverzita MeSH
- časové faktory MeSH
- ekosystém * MeSH
- potravní řetězec * MeSH
- sladká voda MeSH
- Publikační typ
- časopisecké články MeSH
A tenet of ecology is that temporal variability in ecological structure and processes tends to decrease with increasing spatial scales (from locales to regions) and levels of biological organization (from populations to communities). However, patterns in temporal variability across trophic levels and the mechanisms that produce them remain poorly understood. Here we analyzed the abundance time series of spatially structured communities (i.e., metacommunities) spanning basal resources to top predators from 355 freshwater sites across three continents. Specifically, we used a hierarchical partitioning method to disentangle the propagation of temporal variability in abundance across spatial scales and trophic levels. We then used structural equation modeling to determine if the strength and direction of relationships between temporal variability, synchrony, biodiversity, and environmental and spatial settings depended on trophic level and spatial scale. We found that temporal variability in abundance decreased from producers to tertiary consumers but did so mainly at the local scale. Species population synchrony within sites increased with trophic level, whereas synchrony among communities decreased. At the local scale, temporal variability in precipitation and species diversity were associated with population variability (linear partial coefficient, β = 0.23) and population synchrony (β = -0.39) similarly across trophic levels, respectively. At the regional scale, community synchrony was not related to climatic or spatial predictors, but the strength of relationships between metacommunity variability and community synchrony decreased systematically from top predators (β = 0.73) to secondary consumers (β = 0.54), to primary consumers (β = 0.30) to producers (β = 0). Our results suggest that mobile predators may often stabilize metacommunities by buffering variability that originates at the base of food webs. This finding illustrates that the trophic structure of metacommunities, which integrates variation in organismal body size and its correlates, should be considered when investigating ecological stability in natural systems. More broadly, our work advances the notion that temporal stability is an emergent property of ecosystems that may be threatened in complex ways by biodiversity loss and habitat fragmentation.
CCB Nupelia PEA PGB Maringá State University Maringá Brazil
Department of Biological Sciences Southern Illinois University Edwardsville Illinois USA
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Ecology and Genetics University of Oulu Oulu Finland
Department of Environmental Sciences Federal University of São Carlos São Carlos Brazil
Department of Hydrobiology Federal University of São Carlos São Carlos Brazil
Department of Wildlife Fish and Conservation Biology University of California Davis California USA
Ecology and Genetics Research Unit University of Oulu Oulu Finland
Faculty of Biology University of Duisburg Essen Essen Germany
FEHM Lab Institute of Environmental Assessment and Water Research Barcelona Spain
Hancock Biological Station Biological Sciences Murray State University Murray Kentucky USA
INRAE UR RiverLy Centre Lyon Grenoble Auvergne Rhône Alpes Villeurbanne Cedex France
Institute of Biosciences São Paulo State University Rio Claro Brazil
International Institute for Sustainable Development Experimental Lakes Area Kenora Ontario Canada
Northumbria University Newcastle upon Tyne UK
Norwegian Institute for Water Research Oslo Norway
Oulanka Research Station University of Oulu Oulu Finland
School of Aquatic and Fishery Sciences University of Washington Seattle Washington USA
School of Biological Sciences Illinois State University Normal Illinois USA
School of Biological Sciences University of Canterbury Christchurch New Zealand
T G Masaryk Water Research Institute p r i Brno Branch Office Brno Czech Republic
Translational Data Analytics Institute The Ohio State University Columbus Ohio USA
Virginia Institute of Marine Science Gloucester Point Virginia USA
Zobrazit více v PubMed
Abatzoglou, J. T., S. Z. Dobrowski, S. A. Parks, and K. C. Hegewisch. 2018. “TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958 to 2015.” Scientific Data 5: 170191.
Abbott, K. C. 2011. “A Dispersal-Induced Paradox: Synchrony and Stability in Stochastic Metapopulations.” Ecology Letters 14: 1158-1169.
Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. “Fitting Linear Mixed-Effects Models Using lme4.” Journal of Statistical Software 67: 1-48.
da Silva, C. R. B., J. E. Beaman, J. P. Youngblood, V. Kellermann, and S. E. Diamond. 2023. “Vulnerability to Climate Change Increases with Trophic Level in Terrestrial Organisms.” Science of the Total Environment 865: 161049.
Danet, A., M. Mouchet, W. Bonnaffé, E. Thébault, and C. Fontaine. 2021. “Species Richness and Food-Web Structure Jointly Drive Community Biomass and its Temporal Stability in Fish Communities.” Ecology Letters 24: 2364-2377.
Doak, D. F., D. Bigger, E. K. Harding, M. A. Marvier, R. E. O'Malley, and D. Thomson. 1998. “The Statistical Inevitability of Stability-Diversity Relationships in Community Ecology.” The American Naturalist 151: 264-276.
Ellis, E. C. 2021. “Land Use and Ecological Change: A 12,000-Year History.” Annual Review of Environment and Resources 46: 1-33.
Erős, T., J. D. Olden, R. S. Schick, D. Schmera, and M.-J. Fortin. 2012. “Characterizing Connectivity Relationships in Freshwaters Using Patch-Based Graphs.” Landscape Ecology 27: 303-317.
Estes, J. A., J. Terborgh, J. S. Brashares, M. E. Power, J. Berger, W. J. Bond, S. R. Carpenter, et al. 2011. “Trophic Downgrading of Planet Earth.” Science 333: 301-306.
Eveleigh, E. S., K. S. McCann, P. C. McCarthy, S. J. Pollock, C. J. Lucarotti, B. Morin, G. A. McDougall, et al. 2007. “Fluctuations in Density of an Outbreak Species Drive Diversity Cascades in Food Webs.” Proceedings of the National Academy of Sciences 104: 16976-16981.
Fick, S. E., and R. J. Hijmans. 2017. “WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas.” International Journal of Climatology 37: 4302-4315.
Firkowski, C. R., P. L. Thompson, A. Gonzalez, M. W. Cadotte, and M.-J. Fortin. 2022. “Multi-Trophic Metacommunity Interactions Mediate Asynchrony and Stability in Fluctuating Environments.” Ecological Monographs 92: e01484.
Fox, J. W., D. A. Vasseur, S. Hausch, and J. Roberts. 2011. “Phase Locking, the Moran Effect and Distance Decay of Synchrony: Experimental Tests in a Model System.” Ecology Letters 14: 163-168.
Gonzalez, A., and M. Loreau. 2009. “The Causes and Consequences of Compensatory Dynamics in Ecological Communities.” Annual Review of Ecology, Evolution, and Systematics 40: 393-414.
Greig, H. S., S. A. Wissinger, and A. R. McIntosh. 2013. “Top-Down Control of Prey Increases with Drying Disturbance in Ponds: A Consequence of Non-consumptive Interactions?” Journal of Animal Ecology 82: 598-607.
Hammond, M., M. Loreau, C. de Mazancourt, and J. Kolasa. 2020. “Disentangling Local, Metapopulation, and Cross-Community Sources of Stabilization and Asynchrony in Metacommunities.” Ecosphere 11: e03078.
Howeth, J. G., and M. A. Leibold. 2013. “Predation Inhibits the Positive Effect of Dispersal on Intraspecific and Interspecific Synchrony in Pond Metacommunities.” Ecology 94: 2220-2228.
Hu, N., P. E. Bourdeau, C. Harlos, Y. Liu, and J. Hollander. 2022. “Meta-Analysis Reveals Variance in Tolerance to Climate Change across Marine Trophic Levels.” Science of the Total Environment 827: 154244.
Hunt, S. K., M. L. Galatowitsch, and A. R. McIntosh. 2017. “Interactive Effects of Land Use, Temperature, and Predators Determine Native and Invasive Mosquito Distributions.” Freshwater Biology 62: 1564-1577.
Jellyman, P. G., and A. R. McIntosh. 2020. “Disturbance-Mediated Consumer Assemblages Determine Fish Community Structure and Moderate Top-Down Influences through Bottom-up Constraints.” Journal of Animal Ecology 89: 1175-1189.
Kéfi, S., V. Domínguez-García, I. Donohue, C. Fontaine, E. Thébault, and V. Dakos. 2019. “Advancing our Understanding of Ecological Stability.” Ecology Letters 22: 1349-1356.
Lamy, T., N. I. Wisnoski, R. Andrade, M. C. N. Castorani, A. Compagnoni, N. Lany, L. Marazzi, et al. 2021. “The Dual Nature of Metacommunity Variability.” Oikos 130: 2078-2092.
Lande, R. 1993. “Risks of Population Extinction from Demographic and Environmental Stochasticity and Random Catastrophes.” The American Naturalist 142: 911-927.
Lefcheck, J. S. 2016. “piecewiseSEM: Piecewise Structural Equation Modelling in r for Ecology, Evolution, and Systematics.” Methods in Ecology and Evolution 7: 573-579.
Leibold, M. A., and J. M. Chase. 2018. Metacommunity Ecology, Vol. 59. Princeton: Princeton University Press.
Lenth, R. V., P. Buerkner, M. Herve, J. Love, F. Miguez, H. Riebl, and H. Singmann. 2022. “emmeans: Estimated Marginal Means, aka Least-Squares Means.” https://cran.r-project.org/web/packages/emmeans/index.html.
Lytle, D. A. 2001. “Disturbance Regimes and Life-History Evolution.” The American Naturalist 157: 525-536.
McCann, K. S., J. B. Rasmussen, and J. Umbanhowar. 2005. “The Dynamics of Spatially Coupled Food Webs.” Ecology Letters 8: 513-523.
McIntosh, A. R. 2022. “Flood Disturbance Mediates the Strength of Stream Trophic Cascades Caused by Trout.” Limnology and Oceanography Letters 7: 218-226.
Mohseni, O., and H. G. Stefan. 1999. “Stream Temperature/Air Temperature Relationship: A Physical Interpretation.” Journal of Hydrology 218: 128-141.
Mori, A. S., T. Furukawa, and T. Sasaki. 2013. “Response Diversity Determines the Resilience of Ecosystems to Environmental Change.” Biological Reviews 88: 349-364.
Peters, R. H. 1983. The Ecological Implications of Body Size. Cambridge, UK: Cambridge University Press. https://www.cambridge.org/core/books/ecological-implications-of-body-size/4D86337571D7F26E76F885B2548FCBFB.
R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/.
Rezende, F., P. A. P. Antiqueira, O. L. Petchey, L. F. M. Velho, L. C. Rodrigues, and G. Q. Romero. 2021. “Trophic Downgrading Decreases Species Asynchrony and Community Stability Regardless of Climate Warming.” Ecology Letters 24: 2660-2673.
Rip, J. M. K., and K. S. McCann. 2011. “Cross-Ecosystem Differences in Stability and the Principle of Energy Flux.” Ecology Letters 14: 733-740.
Rooney, N., K. McCann, G. Gellner, and J. C. Moore. 2006. “Structural Asymmetry and the Stability of Diverse Food Webs.” Nature 442: 265-269.
Rooney, N., K. S. McCann, and J. C. Moore. 2008. “A Landscape Theory for Food Web Architecture.” Ecology Letters 11: 867-881.
Rosenzweig, M. L. 1971. “Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time.” Science 171: 385-387.
Rosset, V., A. Ruhi, M. T. Bogan, and T. Datry. 2017. “Do Lentic and Lotic Communities Respond Similarly to Drying?” Ecosphere 8: e01809.
Ruhi, A., X. Dong, C. H. McDaniel, D. P. Batzer, and J. L. Sabo. 2018. “Detrimental Effects of a Novel Flow Regime on the Functional Trajectory of an Aquatic Invertebrate Metacommunity.” Global Change Biology 24: 3749-3765.
Sarremejane, R., R. Stubbington, J. England, C. E. M. Sefton, M. Eastman, S. Parry, and A. Ruhi. 2021. “Drought Effects on Invertebrate Metapopulation Dynamics and Quasi-Extinction Risk in an Intermittent River Network.” Global Change Biology 27: 4024-4039.
Schindler, D. E., J. B. Armstrong, and T. E. Reed. 2015. “The Portfolio Concept in Ecology and Evolution.” Frontiers in Ecology and the Environment 13: 257-263.
Schindler, D. E., R. Hilborn, B. Chasco, C. P. Boatright, T. P. Quinn, L. A. Rogers, and M. S. Webster. 2010. “Population Diversity and the Portfolio Effect in an Exploited Species.” Nature 465: 609-612.
Shipley, B. 2000. “A New Inferential Test for Path Models Based on Directed Acyclic Graphs.” Structural Equation Modeling: A Multidisciplinary Journal 7: 206-218.
Siqueira, T., C. P. Hawkins, J. Olden, J. Tonkin, L. Comte, V. S. Saito, T. L. Anderson, et al. 2023. “Code and Data: Understanding Temporal Variability across Trophic Levels and Spatial Scales in Freshwater Ecosystems.” Zenodo. https://doi.org/10.5281/zenodo.8333128.
Sousa, W. P. 1984. “The Role of Disturbance in Natural Communities.” Annual Review of Ecology and Systematics 15: 353-391.
Stefan, H. G., and E. B. Preud'homme. 1993. “Stream Temperature Estimation from Air Temperature1.” JAWRA Journal of the American Water Resources Association 29: 27-45.
Stegen, J. C., A. L. Freestone, T. O. Crist, M. J. Anderson, J. M. Chase, L. S. Comita, H. V. Cornell, et al. 2013. “Stochastic and Deterministic Drivers of Spatial and Temporal Turnover in Breeding Bird Communities.” Global Ecology and Biogeography 22: 202-212.
Steiner, C. F., and M. A. Leibold. 2004. “Cyclic Assembly Trajectories and Scale-Dependent Productivity-Diversity Relationships.” Ecology 85: 107-113.
Steiner, C. F., R. D. Stockwell, V. Kalaimani, and Z. Aqel. 2013. “Population Synchrony and Stability in Environmentally Forced Metacommunities.” Oikos 122: 1195-1206.
Thackeray, S. J., P. A. Henrys, D. Hemming, J. R. Bell, M. S. Botham, S. Burthe, P. Helaouet, et al. 2016. “Phenological Sensitivity to Climate across Taxa and Trophic Levels.” Nature 535: 241-245.
Thibaut, L. M., and S. R. Connolly. 2013. “Understanding Diversity-Stability Relationships: Towards a Unified Model of Portfolio Effects.” Ecology Letters 16: 140-150.
Tonkin, J. D., M. T. Bogan, N. Bonada, B. Rios-Touma, and D. A. Lytle. 2017. “Seasonality and Predictability Shape Temporal Species Diversity.” Ecology 98: 1201-1216.
Vander Zanden, M. J., and W. W. Fetzer. 2007. “Global Patterns of Aquatic Food Chain Length.” Oikos 116: 1378-1388.
Vanschoenwinkel, B., S. Gielen, M. Seaman, and L. Brendonck. 2008. “Any Way the Wind Blows-Frequent Wind Dispersal Drives Species Sorting in Ephemeral Aquatic Communities.” Oikos 117: 125-134.
Vasseur, D. A., and J. W. Fox. 2009. “Phase-Locking and Environmental Fluctuations Generate Synchrony in a Predator-Prey Community.” Nature 460: 1007-1010.
Voigt, W., J. Perner, A. J. Davis, T. Eggers, J. Schumacher, R. Bährmann, B. Fabian, et al. 2003. “Trophic Levels Are Differentially Sensitive to Climate.” Ecology 84: 2444-2453.
Wang, S., T. Lamy, L. M. Hallett, and M. Loreau. 2019. “Stability and Synchrony across Ecological Hierarchies in Heterogeneous Metacommunities: Linking Theory to Data.” Ecography 42: 1200-1211.
Wang, S., and M. Loreau. 2016. “Biodiversity and Ecosystem Stability across Scales in Metacommunities.” Ecology Letters 19: 510-518.
Xu, Q., X. Yang, Y. Yan, S. Wang, M. Loreau, and L. Jiang. 2021. “Consistently Positive Effect of Species Diversity on Ecosystem, but Not Population, Temporal Stability.” Ecology Letters 24: 2256-2266.