Using Noncovalent Interactions to Test the Precision of Projector-Augmented Wave Data Sets
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
38038278
PubMed Central
PMC10720388
DOI
10.1021/acs.jctc.3c00930
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The projector-augmented wave (PAW) method is one of the approaches that are widely used to approximately treat core electrons and thus to speed up plane-wave basis set electronic structure calculations. However, PAW involves approximations, and it is thus important to understand how they affect the results. Tests of the precision of PAW data sets often use the properties of isolated atoms or atomic solids. While this is sufficient to identify problematic PAW data sets, little information has been gained to understand the origins of the errors and suggest ways to correct them. Here, we show that the interaction energies of molecular dimers are very useful not only to identify problematic PAW data sets but also to uncover the origin of the errors. Using dimers from the S22 and S66 test sets and other dimers, we find that the error in the interaction energy is composed of a short-range component with an exponential decay and a long-range electrostatic part caused by an error in the total charge density. We propose and evaluate a simple improvable scheme to correct the long-range error and find that even in its simple and readily usable form, it is able to reduce the interaction energy errors to less than half on average for hydrogen-bonded dimers.
See more in PubMed
Hamann D. R.; Schlüter M.; Chiang C. Norm-Conserving Pseudopotentials. Phys. Rev. Lett. 1979, 43, 1494–1497. 10.1103/PhysRevLett.43.1494. DOI
Troullier N.; Martins J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006. 10.1103/PhysRevB.43.1993. PubMed DOI
Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895. 10.1103/PhysRevB.41.7892. PubMed DOI
Blöchl P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. 10.1103/PhysRevB.50.17953. PubMed DOI
Blöchl P. E.; Kästner J.; Först C. J.. Handbook of Materials Modeling: Methods; Yip S., Ed.; Springer Netherlands: Dordrecht, 2005; pp 93–119.
Kresse G.; Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. 10.1103/PhysRevB.59.1758. DOI
Rostgaard C.The Projector Augmented-wave Method. 2009, arXiv:0910.1921.
Marsman M.; Kresse G. Relaxed core projector-augmented-wave method. J. Chem. Phys. 2006, 125, 104101.10.1063/1.2338035. PubMed DOI
Martin R. M.Electronic Structure: Basic Theory and Practical Methods; Cambridge University Press, 2004.
Dal Corso A. Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 2014, 95, 337–350. 10.1016/j.commatsci.2014.07.043. DOI
Wimmer E.; Krakauer H.; Weinert M.; Freeman A. J. Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule. Phys. Rev. B 1981, 24, 864–875. 10.1103/PhysRevB.24.864. DOI
Hill J. G. Gaussian basis sets for molecular applications. Int. J. Quantum Chem. 2013, 113, 21–34. 10.1002/qua.24355. DOI
Jensen F. Atomic orbital basis sets. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013, 3, 273–295. 10.1002/wcms.1123. DOI
Lejaeghere K.; Bihlmayer G.; Björkman T.; Blaha P.; Blügel S.; Blum V.; Caliste D.; Castelli I. E.; Clark S. J.; Dal Corso A.; de Gironcoli S.; Deutsch T.; Dewhurst J. K.; Di Marco I.; Draxl C.; Dułak M.; Eriksson O.; Flores-Livas J. A.; Garrity K. F.; Genovese L.; Giannozzi P.; Giantomassi M.; Goedecker S.; Gonze X.; Grånäs O.; Gross E. K. U.; Gulans A.; Gygi F.; Hamann D. R.; Hasnip P. J.; Holzwarth N. A. W.; Iuşan D.; Jochym D. B.; Jollet F.; Jones D.; Kresse G.; Koepernik K.; Küçükbenli E.; Kvashnin Y. O.; Locht I. L. M.; Lubeck S.; Marsman M.; Marzari N.; Nitzsche U.; Nordström L.; Ozaki T.; Paulatto L.; Pickard C. J.; Poelmans W.; Probert M. I. J.; Refson K.; Richter M.; Rignanese G.-M.; Saha S.; Scheffler M.; Schlipf M.; Schwarz K.; Sharma S.; Tavazza F.; Thunström P.; Tkatchenko A.; Torrent M.; Vanderbilt D.; van Setten M. J.; Van Speybroeck V.; Wills J. M.; Yates J. R.; Zhang G.-X.; Cottenier S. Reproducibility in density functional theory calculations of solids. Science 2016, 351, aad3000.10.1126/science.aad3000. PubMed DOI
Lejaeghere K.; Van Speybroeck V.; Van Oost G.; Cottenier S. Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals. Crit. Rev. Solid State Mater. Sci. 2014, 39, 1–24. 10.1080/10408436.2013.772503. DOI
Jollet F.; Torrent M.; Holzwarth N. Generation of Projector Augmented-Wave atomic data: A 71 element validated table in the XML format. Comput. Phys. Commun. 2014, 185, 1246–1254. 10.1016/j.cpc.2013.12.023. DOI
Talirz L.; Kumbhar S.; Passaro E.; Yakutovich A. V.; Granata V.; Gargiulo F.; Borelli M.; Uhrin M.; Huber S. P.; Zoupanos S.; Adorf C. S.; Andersen C. W.; Schütt O.; Pignedoli C. A.; Passerone D.; VandeVondele J.; Schulthess T. C.; Smit B.; Pizzi G.; Marzari N. Materials Cloud, a platform for open computational science. Sci. Data 2020, 7, 299.10.1038/s41597-020-00637-5. PubMed DOI PMC
Paier J.; Hirschl R.; Marsman M.; Kresse G. The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2–1 test set using a plane-wave basis set. J. Chem. Phys. 2005, 122, 234102.10.1063/1.1926272. PubMed DOI
Curtiss L. A.; Raghavachari K.; Redfern P. C.; Pople J. A. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J. Chem. Phys 1997, 106, 1063.10.1063/1.473182. DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Adamo C.; Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. 10.1063/1.478522. DOI
Kendall R. A.; Dunning T. H.; Harrison R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. 10.1063/1.462569. DOI
Dunning T. H.; Peterson K. A.; Wilson A. K. Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited. J. Chem. Phys. 2001, 114, 9244–9253. 10.1063/1.1367373. DOI
Maggio E.; Liu P.; van Setten M. J.; Kresse G. GW100: A Plane Wave Perspective for Small Molecules. J. Chem. Theory Comput. 2017, 13, 635–648. 10.1021/acs.jctc.6b01150. PubMed DOI
Hedin L. New Method for Calculating the One-Particle Green’s Function with Application to the Electron-Gas Problem. Phys. Rev. 1965, 139, A796–A823. 10.1103/PhysRev.139.A796. DOI
van Setten M. J.; Caruso F.; Sharifzadeh S.; Ren X.; Scheffler M.; Liu F.; Lischner J.; Lin L.; Deslippe J. R.; Louie S. G.; Yang C.; Weigend F.; Neaton J. B.; Evers F.; Rinke P. GW100: Benchmarking G0W0 for Molecular Systems. J. Chem. Theory Comput. 2015, 11, 5665–5687. 10.1021/acs.jctc.5b00453. PubMed DOI
Ahmed Adllan A.; Dal Corso A. Ultrasoft pseudopotentials and projector augmented-wave data sets: application to diatomic molecules. J. Condens. Matter Phys. 2011, 23, 425501.10.1088/0953-8984/23/42/425501. PubMed DOI
Tkatchenko A.; Scheffler M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009, 102, 073005.10.1103/PhysRevLett.102.073005. PubMed DOI
Hofierka J.; Klimes J.. Understanding precision of binding energies of molecules and molecular solids. http://quantum.karlov.mff.cuni.cz/~jklimes/pq0519.pdf Accessed on September 22, 2023.
Witte J.; Neaton J. B.; Head-Gordon M. Push it to the limit: comparing periodic and local approaches to density functional theory for intermolecular interactions. Mol. Phys. 2019, 117, 1298–1305. 10.1080/00268976.2018.1542164. DOI
Perdew J. P.; Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249. 10.1103/PhysRevB.45.13244. PubMed DOI
Jurečka P.; Šponer J.; Černý J.; Hobza P. Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys. Chem. Chem. Phys. 2006, 8, 1985–1993. 10.1039/B600027D. PubMed DOI
Tosoni S.; Tuma C.; Sauer J.; Civalleri B.; Ugliengo P. A comparison between plane wave and Gaussian-type orbital basis sets for hydrogen bonded systems: Formic acid as a test case. J. Chem. Phys. 2007, 127, 154102.10.1063/1.2790019. PubMed DOI
Řezáč J.; Riley K. E.; Hobza P. S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures. J. Chem. Theory Comput. 2011, 7, 2427–2438. 10.1021/ct2002946. PubMed DOI PMC
Kresse G.; Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G.; Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. 10.1016/0927-0256(96)00008-0. PubMed DOI
Kresse G.; Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. 10.1103/PhysRevB.54.11169. PubMed DOI
Shishkin M.; Kresse G. Implementation and performance of the frequency-dependent GW method within the PAW framework. Phys. Rev. B 2006, 74, 035101.10.1103/PhysRevB.74.035101. DOI
Dal Corso A.pslibrary, a library of ultrasoft and PAW pseudopotentials. https://dalcorso.github.io/pslibrary/ Accessed on October 6, 2023.
Řezáč J.; Jurečka P.; Riley K. E.; Černý J.; Valdes H.; Pluháčková K.; Berka K.; Řezáč T.; Pitoňák M.; Vondrášek J.; et al. Quantum Chemical Benchmark Energy and Geometry Database for Molecular Clusters and Complex Molecular Systems (www.begdb.com): A Users Manual and Examples. Collect. Czech. Chem. Commun. 2008, 73, 1261–1270. 10.1135/cccc20081261. DOI
Structures, outputs, and processing script. https://github.com/klimes/wirt_paper1 Accessed on October 24, 2023.
Makov G.; Payne M. C. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 1995, 51, 4014–4022. 10.1103/PhysRevB.51.4014. PubMed DOI
Gygi F.; Baldereschi A. Self-consistent Hartree-Fock and screened-exchange calculations in solids: Application to silicon. Phys. Rev. B 1986, 34, 4405–4408. 10.1103/PhysRevB.34.4405. PubMed DOI
Hofierka J.; Klimeš J. Binding energies of molecular solids from fragment and periodic approaches. Electron. Struct. 2021, 3, 034010.10.1088/2516-1075/ac25d6. DOI
Bader R. F. W.Atoms in Molecules—A Quantum Theory; Oxford University Press: Oxford, 1990.
Bultinck P.; Van Alsenoy C.; Ayers P. W.; Carbó-Dorca R. Critical analysis and extension of the Hirshfeld atoms in molecules. J. Chem. Phys. 2007, 126, 144111.10.1063/1.2715563. PubMed DOI
Bultinck P.; Ayers P. W.; Fias S.; Tiels K.; Van Alsenoy C. Uniqueness and basis set dependence of iterative Hirshfeld charges. Chem. Phys. Lett. 2007, 444, 205–208. 10.1016/j.cplett.2007.07.014. DOI
Bučko T.; Lebègue S.; Hafner J.; Ángyán J. G. Improved Density Dependent Correction for the Description of London Dispersion Forces. J. Chem. Theory Comput. 2013, 9, 4293–4299. 10.1021/ct400694h. PubMed DOI
Henkelman G.; Arnaldsson A.; J’onsson H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360. 10.1016/j.commatsci.2005.04.010. DOI
Sanville E.; Kenny S. D.; Smith R.; Henkelman G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899–908. 10.1002/jcc.20575. PubMed DOI
Tang W.; Sanville E.; Henkelman G. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 2009, 21, 084204.10.1088/0953-8984/21/8/084204. PubMed DOI
Yu M.; Trinkle D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111.10.1063/1.3553716. PubMed DOI
Giannozzi P.; Baroni S.; Bonini N.; Calandra M.; Car R.; Cavazzoni C.; Ceresoli D.; Chiarotti G. L.; Cococcioni M.; Dabo I.; Dal Corso A.; de Gironcoli S.; Fabris S.; Fratesi G.; Gebauer R.; Gerstmann U.; Gougoussis C.; Kokalj A.; Lazzeri M.; Martin-Samos L.; Marzari N.; Mauri F.; Mazzarello R.; Paolini S.; Pasquarello A.; Paulatto L.; Sbraccia C.; Scandolo S.; Sclauzero G.; Seitsonen A. P.; Smogunov A.; Umari P.; Wentzcovitch R. M. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.10.1088/0953-8984/21/39/395502. PubMed DOI
Giannozzi P.; Andreussi O.; Brumme T.; Bunau O.; Buongiorno Nardelli M.; Calandra M.; Car R.; Cavazzoni C.; Ceresoli D.; Cococcioni M.; Colonna N.; Carnimeo I.; Dal Corso A.; de Gironcoli S.; Delugas P.; DiStasio R. A.; Ferretti A.; Floris A.; Fratesi G.; Fugallo G.; Gebauer R.; Gerstmann U.; Giustino F.; Gorni T.; Jia J.; Kawamura M.; Ko H.-Y.; Kokalj A.; Küçükbenli E.; Lazzeri M.; Marsili M.; Marzari N.; Mauri F.; Nguyen N. L.; Nguyen H.-V.; Otero-de-la-Roza A.; Paulatto L.; Poncé S.; Rocca D.; Sabatini R.; Santra B.; Schlipf M.; Seitsonen A. P.; Smogunov A.; Timrov I.; Thonhauser T.; Umari P.; Vast N.; Wu X.; Baroni S. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys.: Condens. Matter 2017, 29, 465901.10.1088/1361-648x/aa8f79. PubMed DOI
Giannozzi P.; Baseggio O.; Bonfà P.; Brunato D.; Car R.; Carnimeo I.; Cavazzoni C.; de Gironcoli S.; Delugas P.; Ferrari Ruffino F.; Ferretti A.; Marzari N.; Timrov I.; Urru A.; Baroni S. Quantum ESPRESSO toward the exascale. J. Chem. Phys. 2020, 152, 154105.10.1063/5.0005082. PubMed DOI
Hjorth Larsen A.; Jørgen Mortensen J.; Blomqvist J.; Castelli I. E.; Christensen R.; Dułak M.; Friis J.; Groves M. N.; Hammer B.; Hargus C.; Hermes E. D.; Jennings P. C.; Bjerre Jensen P.; Kermode J.; Kitchin J. R.; Leonhard Kolsbjerg E.; Kubal J.; Kaasbjerg K.; Lysgaard S.; Bergmann Maronsson J.; Maxson T.; Olsen T.; Pastewka L.; Peterson A.; Rostgaard C.; Schiøtz J.; Schütt O.; Strange M.; Thygesen K. S.; Vegge T.; Vilhelmsen L.; Walter M.; Zeng Z.; Jacobsen K. W. The atomic simulation environment a Python library for working with atoms. J. Phys.: Condens. Matter 2017, 29, 273002.10.1088/1361-648x/aa680e. PubMed DOI
Werner H.-J.; Knowles P. J.; Knizia G.; Manby F. R.; Schütz M. Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 242–253. 10.1002/wcms.82. DOI
Werner H.-J.; Knowles P. J.; Manby F. R.; Black J. A.; Doll K.; Heßelmann A.; Kats D.; Köhn A.; Korona T.; Kreplin D. A.; Ma Q.; Miller T. F.; Mitrushchenkov A.; Peterson K. A.; Polyak I.; Rauhut G.; Sibaev M. The Molpro quantum chemistry package. J. Chem. Phys. 2020, 152, 144107.10.1063/5.0005081. PubMed DOI
Balasubramani S. G.; Chen G. P.; Coriani S.; Diedenhofen M.; Frank M. S.; Franzke Y. J.; Furche F.; Grotjahn R.; Harding M. E.; Hättig C.; Hellweg A.; Helmich-Paris B.; Holzer C.; Huniar U.; Kaupp M.; Marefat Khah A.; Karbalaei Khani S.; Müller T.; Mack F.; Nguyen B. D.; Parker S. M.; Perlt E.; Rappoport D.; Reiter K.; Roy S.; Rückert M.; Schmitz G.; Sierka M.; Tapavicza E.; Tew D. P.; van Wüllen C.; Voora V. K.; Weigend F.; Wodyński A.; Yu J. M. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 2020, 152, 184107.10.1063/5.0004635. PubMed DOI PMC
Woon D. E.; Dunning T. H. Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J. Chem. Phys. 1994, 100, 2975–2988. 10.1063/1.466439. DOI
Van Mourik T.; Wilson A. K.; Dunning T. H. Benchmark calculations with correlated molecular wavefunctions. XIII. Potential energy curves for He2, Ne2 and Ar2 using correlation consistent basis sets through augmented sextuple zeta. Mol. Phys. 1999, 96, 529–547. 10.1080/002689799165396. DOI
Boys S.; Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. 10.1080/00268977000101561. DOI
Jensen F. Polarization consistent basis sets: Principles. J. Chem. Phys. 2001, 115, 9113–9125. 10.1063/1.1413524. DOI
Jensen F. Polarization consistent basis sets. II. Estimating the Kohn–Sham basis set limit. J. Chem. Phys. 2002, 116, 7372–7379. 10.1063/1.1465405. DOI
Jeziorski B.; Moszynski R.; Szalewicz K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. Chem. Rev. 1994, 94, 1887–1930. 10.1021/cr00031a008. DOI
Heßelmann A. DFT-SAPT Intermolecular Interaction Energies Employing Exact-Exchange Kohn–Sham Response Methods. J. Chem. Theory Comput. 2018, 14, 1943–1959. 10.1021/acs.jctc.7b01233. PubMed DOI
Heßelmann A.; Jansen G.; Schütz M. Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: A new efficient method to study intermolecular interaction energies. J. Chem. Phys. 2005, 122, 014103.10.1063/1.1824898. PubMed DOI
Görling A. Exact exchange kernel for time-dependent density-functional theory. Int. J. Quantum Chem. 1998, 69, 265–277. 10.1002/(SICI)1097-461X(1998)69:3<265::AID-QUA6>3.0.CO;2-T. DOI
Görling A. Exact exchange-correlation kernel for dynamic response properties and excitation energies in density-functional theory. Phys. Rev. A 1998, 57, 3433–3436. 10.1103/PhysRevA.57.3433. DOI
Blanco M. A.; Martín Pendás A.; Francisco E. Interacting Quantum Atoms: A Correlated Energy Decomposition Scheme Based on the Quantum Theory of Atoms in Molecules. J. Chem. Theory Comput. 2005, 1, 1096–1109. 10.1021/ct0501093. PubMed DOI
Francisco E.; Martín Pendás A.; Blanco M. A. A Molecular Energy Decomposition Scheme for Atoms in Molecules. J. Chem. Theory Comput. 2006, 2, 90–102. 10.1021/ct0502209. PubMed DOI
Keith T. A.AIMAll. Version 19.10.12, 2016;.
Witte J.; Neaton J. B.; Head-Gordon M. Push it to the limit: Characterizing the convergence of common sequences of basis sets for intermolecular interactions as described by density functional theory. J. Chem. Phys. 2016, 144, 194306.10.1063/1.4949536. PubMed DOI
Bučko T.; Lebègue S.; Hafner J.; Ángyán J. G. Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids. Phys. Rev. B 2013, 87, 064110.10.1103/PhysRevB.87.064110. DOI
Thürlemann M.; Böselt L.; Riniker S. Learning Atomic Multipoles: Prediction of the Electrostatic Potential with Equivariant Graph Neural Networks. J. Chem. Theory Comput. 2022, 18, 1701–1710. 10.1021/acs.jctc.1c01021. PubMed DOI
Hintzsche L. E.; Fang C. M.; Marsman M.; Jordan G.; Lamers M. W. P. E.; Weeber A. W.; Kresse G. Defects and defect healing in amorphous Si3N4–xHy: An ab initio density functional theory study. Phys. Rev. B 2013, 88, 155204.10.1103/PhysRevB.88.155204. DOI
Chin H.-T.; Klimes J.; Hu I.-F.; Chen D.-R.; Nguyen H.-T.; Chen T.-W.; Ma S.-W.; Hofmann M.; Liang C.-T.; Hsieh Y.-P. Ferroelectric 2D ice under graphene confinement. Nat. Commun. 2021, 12, 6291.10.1038/s41467-021-26589-x. PubMed DOI PMC
Multi-Level Coupled-Cluster Description of Crystal Lattice Energies