Diversity and composition of active and total bacteria in rhizospheric soil in response to continuous cropping years of Panax notoginseng
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
No. 31960630
National Natural Science Foundation of China
31960232
National Natural Science Foundation of China
PubMed
38038798
DOI
10.1007/s12223-023-01109-0
PII: 10.1007/s12223-023-01109-0
Knihovny.cz E-zdroje
- Klíčová slova
- Panax notoginseng, Continuous cropping obstacle, High-throughput sequencing, Total DNA, Total RNA,
- MeSH
- Bacteria * klasifikace genetika izolace a purifikace MeSH
- biodiverzita * MeSH
- DNA bakterií genetika MeSH
- fylogeneze * MeSH
- kořeny rostlin mikrobiologie MeSH
- nemoci rostlin mikrobiologie MeSH
- Panax notoginseng * mikrobiologie MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- rhizosféra * MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
- půda MeSH
- RNA ribozomální 16S MeSH
The synchronous research and analysis of total and active soil microbial communities can provide insight into how these communities are impacted by continuous cropping years and pathogen infection. The diversity of total and active bacteria in rhizospheric soil of 2-year-old and 3-year-old healthy and diseased Panax notoginseng can comprehensively reveal the bacterial response characteristics in continuous cropping practice. The results showed that 4916 operational taxonomic units (OTUs) were found in the rhizospheric soil bacterial community of P. notoginseng at the DNA level, but only 2773 OTUs were found at the RNA level. The rhizospheric environment had significant effects on the active and bacterial communities, as indicated by the number of OTUs, Shannon, Chao1, Faith's phylogenetic diversity (Faith's PD), and Simpson's diversity indexes. The DNA level can better show the difference in diversity level before and after infection with root rot. The bacterial Chao1 and Faith's PD diversity indexes of 2-year-old root rot-diseased P. notoginseng rhizospheric soil (D2) were higher than that of healthy plants, while the bacterial Shannon diversity index of 3-year-old root rot-diseased P. notoginseng rhizospheric soil (D3) was the lowest in the total bacteria. Principal coordinate analysis (PCoA) illustrated that the total bacterial species composition changed markedly after root rot disease. There were significant differences in the composition of active bacterial species between the 2-year and 3-year rhizospheres. In conclusion, the total and active edaphic rhizospheric bacterial communities could provide important opportunities to understand the responses of bacteria to continuous cropping of P. notoginseng.
Zobrazit více v PubMed
Baldrian P, Kolarik M, Stursova M, Kopecky J, Valaskova V, Vetrovsky T, Zifcakova L, Snajdr J, Ridl J, Vlcek C, Voriskova J (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6(2):248–258. https://doi.org/10.1038/ismej.2011.95 PubMed DOI
Banning NC, Gleeson DB, Grigg AH, Grant CD, Murphy DV (2011) Soil microbial community successional patterns during forest ecosystem restoration. Appl Environ Microbiol 77(17):6158–6164. https://doi.org/10.1128/AEM.00764-11 PubMed DOI PMC
Blazewicz SJ, Barnard RL, Daly RA, Firestone MK (2013) Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J 7(11):2061–2068. https://doi.org/10.1038/ismej.2013.102 PubMed DOI PMC
Commission CNP (2015) China Pharmacopoeia. Part I. China Pharmacop Sci Technol Publ House, Beijing
De Feudis M, Cardelli V, Massaccesi L, Hofmann D, Berns AE, Bol R, Cocco S, Corti G, Agnelli A (2017) Altitude affects the quality of the water-extractable organic matter (WEOM) from rhizosphere and bulk soil in European beech forests. Geoderma 302:6–13. https://doi.org/10.1016/j.geoderma.2017.04.015 DOI
Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–998. https://doi.org/10.1038/nmeth.2604 PubMed DOI
Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61(1):1–10. https://doi.org/10.1016/0006-3207(92)91201-3 DOI
Gao J, Wang Y, Wang CW, Lu BH (2014) First report of bacterial root rot of ginseng caused by Pseudomonas aeruginosa in China. Plant Dis 98(11):1577. https://doi.org/10.1094/PDIS-03-14-0276-PDN PubMed DOI
Gu Y, Ding Y, Ren C, Sun Z, Jiang W (2010) Reconstruction of xylose utilization pathway and regulons in Firmicutes. BMC Genom 11(1):255. https://doi.org/10.1186/1471-2164-11-255
Guan HL, Chen YJ, Liu SQ, Zhang WD, Xia CF (2006) On the relationship between root rot in Panax notoginseng and soil microbes. J Southwest Agric Univ 28(5):706–709
Harris JA (2009) Soil microbial communities and restoration ecology: facilitators or followers? Sci 325(5940):573–574. https://doi.org/10.1126/science.1172975 DOI
He SM, Wurtzel O, Singh K, Froula JL, Yilmaz S, Tringe SG, Wang Z, Chen F, Lindquist EA, Sorek R, Hugenholtz P (2010) Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nat Methods 7(10):807–812. https://doi.org/10.1038/nmeth.1507 PubMed DOI
Jia Z, Conrad R (2009) Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11(7):1658–1671. https://doi.org/10.1111/j.1462-2920.2009.01891.x PubMed DOI
Jiang JL, Yu M, Li L, Jiao CJ, Xu H, Ren XM, Yang LJ (2018) Relationship between occurrence of root-rot and changes of bacterial community structure in rhizosphere soil of Panax quinquefolius. Chin Tradit Herb Drugs 49(18):4399–4407. https://doi.org/10.7501/j.issn.0253-2670.2018.18.027 DOI
Li H, Su JQ, Yang XR, Zhu YG (2019a) Distinct rhizosphere effect on active and total bacterial communities in paddy soils. Sci Total Environ 649:422–430. https://doi.org/10.1016/j.scitotenv.2018.08.373 PubMed DOI
Li H, Wang J, Liu Q, Zhou Z, Chen F, Xiang D (2019b) Metagenomic analysis of the bacterial and fungal community associated to the rhizosphere of Tabebuia chrysantha and T. billbergii. J Basic Microbiol 59(2):181–191. https://doi.org/10.1007/s00284-019-01725-5
Ostle N, Whiteley AS, Bailey MJ, Sleep D, Ineson P, Manefield M (2003) Active microbial RNA turnover in a grassland soil estimated using a DOI
Peralta RM, Ahn C, Gillevet PM (2013) Characterization of soil bacterial community structure and physicochemical properties in created and natural wetlands. Sci Total Environ 443:725–732. https://doi.org/10.1016/j.scitotenv.2012.11.052 PubMed DOI
Price MN, Dehal PS, Arkin AP (2010) FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5(3):e9490. https://doi.org/10.1371/journal.pone.0009490 PubMed DOI PMC
Purahong W, Orrù L, Donati I, Perpetuini G, Cellini A (2018) Plant microbiome and its link to plant health: host species, organs and Pseudomonas syringae pv. actinidiae infection Shaping bacterial phyllosphere communities of Kiwifruit plants. Front Plant Sci 9:1563. https://doi.org/10.3389/fpls.2018.01563
Quast C, Pruesse E, Yilmaz P, Gerken J, Glckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596. https://doi.org/10.1093/nar/gks1219 PubMed DOI PMC
Rousk J, Brookes PC, Baath E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75(6):1589–1596. https://doi.org/10.1128/AEM.02775-08 PubMed DOI PMC
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60 PubMed DOI PMC
Shang Q, Hao X, Liu Z (2013) Chen K and Liu J (2013) Oral Panax notoginseng preparation for coronary heart disease: a systematic review of randomized controlled trials. Evid-Based Complement Altern Med 1:940125. https://doi.org/10.1155/2013/940125 DOI
Shen G, Zhang S, Liu X, Jiang Q, Ding W (2018) Soil acidification amendments change the rhizosphere bacterial community of tobacco in a bacterial wilt affected field. Appl Microbiol Biotechnol 102(22):9781–9791. https://doi.org/10.1007/s00253-018-9347-0 PubMed DOI PMC
Sun M, Ye LQ, Zhang ZL (2015a) Progress on the cause of continuous cropping obstacle of Panax notoginseng and its countermeasures. J Mt Agric Biol 34(3):63–67. https://doi.org/10.15958/j.cnki.sdnyswxb.2015.03.012
Sun XT, Li L, Long GQ, Zhang GH, Chen JW (2015b) The progress and prospect on consecutive monoculture problems of Panax notoginseng. Chin J Ecol 34(3):885–893. https://doi.org/10.13292/j.1000-4890.2015.0119
Tan G, Liu Y, Peng S, Yin H, Zhou Z (2021) Soil potentials to resist continuous cropping obstacle: three field cases. Environ Res 200:111319. https://doi.org/10.1016/j.envres.2021.111319 PubMed DOI
Tan Y, Cui YS, Li HY, Kuang AX, Li XR, Wei YL, Ji XL (2017) Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices. J Basic Microbiol 57(4):337. https://doi.org/10.1002/jobm.201600464 PubMed DOI
White DC, Sutton SD, Ringelberg DB (1996) The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 7(3):301. https://doi.org/10.1016/S0958-1669(96)80034-6 PubMed DOI
Xiao CP, Yang LM, Zhang LX, Liu CJ, Han M (2016) Effects of cultivation ages and modes on microbial diversity in the rhizosphere soil of Panax ginseng. J Ginseng Res 40(1):28–37. https://doi.org/10.1016/j.jgr.2015.04.004 PubMed DOI
Youssef N, Sheik CS, Krumholz LR, Najar FZ, Roe BA, Elshahed MS (2009) Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Appl Environ Microbiol 75(16):5227. https://doi.org/10.1128/AEM.00592-09
Zhang JH, Yang J, Ji GH, Wang YF, Zhang RQ, Dai ZL, Liu Q, Wei LF (2020) Bacterial pathogen identification of Panax notoginseng root rot in Yunnan Province. J South Agric 51(3):586–592. https://doi.org/10.3969/j.issn.2095-1191.2020.03.014 DOI
Zhang ZL, Wang WQ, Miu ZQ, Li SD, Yang JZ (2013) Application of principal component analysis in comprehensive assessment of soil quality under Panax notoginseng continuous planting. Chin J Ecol 32 (6):1636–1644. https://doi.org/10.13292/j.1000-4890.2013.0259
Zhao HS, Zhu XC, Li C, Wei Y, Zhao GX, Jiang YM (2017) Improving the accuracy of the hyperspectral model for apple canopy water content prediction using the equidistant sampling method. Sci Rep 7(1):11192. https://doi.org/10.1038/s41598-017-11545-x PubMed DOI PMC
Zhu LF, Zhang YY, Cui XY, Zhu YD, Dai QL, Chen H, Liu GQ, Yao R, Yang ZS (2021) Host bias in diet-source microbiome transmission in wild cohabitating herbivores: new knowledge for the evolution of herbivory and plant defense. Microbiol Spectr 9(1):e00756-e821. https://doi.org/10.1128/Spectrum.00756-21 DOI