• This record comes from PubMed

Annotating Macromolecular Complexes in the Protein Data Bank: Improving the FAIRness of Structure Data

. 2023 Dec 01 ; 10 (1) : 853. [epub] 20231201

Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
Wellcome Trust - United Kingdom

Links

PubMed 38040737
PubMed Central PMC10692154
DOI 10.1038/s41597-023-02778-9
PII: 10.1038/s41597-023-02778-9
Knihovny.cz E-resources

Macromolecular complexes are essential functional units in nearly all cellular processes, and their atomic-level understanding is critical for elucidating and modulating molecular mechanisms. The Protein Data Bank (PDB) serves as the global repository for experimentally determined structures of macromolecules. Structural data in the PDB offer valuable insights into the dynamics, conformation, and functional states of biological assemblies. However, the current annotation practices lack standardised naming conventions for assemblies in the PDB, complicating the identification of instances representing the same assembly. In this study, we introduce a method leveraging resources external to PDB, such as the Complex Portal, UniProt and Gene Ontology, to describe assemblies and contextualise them within their biological settings accurately. Employing the proposed approach, we assigned standard names to over 90% of unique assemblies in the PDB and provided persistent identifiers for each assembly. This standardisation of assembly data enhances the PDB, facilitating a deeper understanding of macromolecular complexes. Furthermore, the data standardisation improves the PDB's FAIR attributes, fostering more effective basic and translational research and scientific education.

See more in PubMed

Ramakrishnan V. Ribosome Structure and the Mechanism of Translation. Cell. 2002;108:557–572. doi: 10.1016/S0092-8674(02)00619-0. PubMed DOI

Hahn, S. Structure and mechanism of the RNA polymerase II transcription machinery. Nat. Struct. Mol. Biol. 11, 394–403 (2004). PubMed PMC

Nooren IMA, Thornton JM. Diversity of protein–protein interactions. EMBO J. 2003;22:3486–3492. doi: 10.1093/emboj/cdg359. PubMed DOI PMC

Acuner Ozbabacan SE, Engin HB, Gursoy A, Keskin O. Transient protein–protein interactions. Protein Eng. Des. Sel. 2011;24:635–648. doi: 10.1093/protein/gzr025. PubMed DOI

Raju RM, Goldberg AL, Rubin EJ. Bacterial proteolytic complexes as therapeutic targets. Nat. Rev. Drug Discov. 2012;11:777–789. doi: 10.1038/nrd3846. PubMed DOI

Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 2017;16:829–842. doi: 10.1038/nrd.2017.178. PubMed DOI PMC

Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design. Annu. Rev. Biochem. 2018;87:451–478. doi: 10.1146/annurev-biochem-062917-011942. PubMed DOI PMC

Abrahams JP, Leslie AGW, Lutter R, Walker JE. Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994;370:621–628. doi: 10.1038/370621a0. PubMed DOI

Bowler MW, Montgomery MG, Leslie AGW, Walker JE. Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9 A resolution. J. Biol. Chem. 2007;282:14238–14242. doi: 10.1074/jbc.M700203200. PubMed DOI

Kabaleeswaran V, et al. Asymmetric Structure of the Yeast F1 ATPase in the Absence of Bound. Nucleotides. J. Biol. Chem. 2009;284:10546–10551. doi: 10.1074/jbc.M900544200. PubMed DOI PMC

Xu F, et al. Structure of an agonist-bound human A2A adenosine receptor. Science. 2011;332:322–327. doi: 10.1126/science.1202793. PubMed DOI PMC

Zhang K, et al. Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature. 2014;509:115–118. doi: 10.1038/nature13083. PubMed DOI PMC

Glukhova A, et al. Structure of the Adenosine A1 Receptor Reveals the Basis for Subtype Selectivity. Cell. 2017;168:867–877.e13. doi: 10.1016/j.cell.2017.01.042. PubMed DOI

Groll M, et al. Structure of 20S proteasome from yeast at 2.4Å resolution. Nature. 1997;386:463–471. doi: 10.1038/386463a0. PubMed DOI

Löwe J, et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science. 1995;268:533–539. doi: 10.1126/science.7725097. PubMed DOI

Schrader J, et al. The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor design. Science. 2016;353:594–598. doi: 10.1126/science.aaf8993. PubMed DOI

Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. The Complete Atomic Structure of the Large Ribosomal Subunit at 2.4 Å Resolution. Science. 2000;289:905–920. doi: 10.1126/science.289.5481.905. PubMed DOI

Wimberly BT, et al. Structure of the 30S ribosomal subunit. Nature. 2000;407:327–339. doi: 10.1038/35030006. PubMed DOI

Yusupova G, Jenner L, Rees B, Moras D, Yusupov M. Structural basis for messenger RNA movement on the ribosome. Nature. 2006;444:391–394. doi: 10.1038/nature05281. PubMed DOI

Karagöz GE, et al. Hsp90-Tau Complex Reveals Molecular Basis for Specificity in Chaperone Action. Cell. 2014;156:963–974. doi: 10.1016/j.cell.2014.01.037. PubMed DOI PMC

Lapinaite A, et al. The structure of the box C/D enzyme reveals regulation of RNA methylation. Nature. 2013;502:519–523. doi: 10.1038/nature12581. PubMed DOI

Huang C, Rossi P, Saio T, Kalodimos CG. Structural basis for the antifolding activity of a molecular chaperone. Nature. 2016;537:202–206. doi: 10.1038/nature18965. PubMed DOI PMC

Rosenzweig R, Moradi S, Zarrine-Afsar A, Glover JR, Kay LE. Unraveling the Mechanism of Protein Disaggregation Through a ClpB-DnaK Interaction. Science. 2013;339:1080–1083. doi: 10.1126/science.1233066. PubMed DOI

Chua EYD, et al. Better, Faster, Cheaper: Recent Advances in Cryo–Electron Microscopy. Annu. Rev. Biochem. 2022;91:1–32. doi: 10.1146/annurev-biochem-032620-110705. PubMed DOI PMC

Guaita M, Watters SC, Loerch S. Recent advances and current trends in cryo-electron microscopy. Curr. Opin. Struct. Biol. 2022;77:102484. doi: 10.1016/j.sbi.2022.102484. PubMed DOI PMC

Srivastava A, Tiwari SP, Miyashita O, Tama F. Integrative/Hybrid Modeling Approaches. for Studying Biomolecules. J. Mol. Biol. 2020;432:2846–2860. doi: 10.1016/j.jmb.2020.01.039. PubMed DOI

Kim SJ, et al. Integrative structure and functional anatomy of a nuclear pore complex. Nature. 2018;555:475–482. doi: 10.1038/nature26003. PubMed DOI PMC

Chou H-T, et al. The Molecular Architecture of Native BBSome Obtained by an Integrated Structural Approach. Structure. 2019;27:1384–1394.e4. doi: 10.1016/j.str.2019.06.006. PubMed DOI PMC

Aryal RP, et al. Macromolecular Assemblies of the Mammalian Circadian Clock. Mol. Cell. 2017;67:770–782.e6. doi: 10.1016/j.molcel.2017.07.017. PubMed DOI PMC

wwPDB consortium Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 2019;47:D520–D528. doi: 10.1093/nar/gky949. PubMed DOI PMC

Berman H, Henrick K, Nakamura H, Markley JL. The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res. 2007;35:D301–D303. doi: 10.1093/nar/gkl971. PubMed DOI PMC

Lawson CL, et al. EMDataBank unified data resource for 3DEM. Nucleic Acids Res. 2016;44:D396–D403. doi: 10.1093/nar/gkv1126. PubMed DOI PMC

Valentini E, Kikhney AG, Previtali G, Jeffries CM, Svergun DI. SASBDB, a repository for biological small-angle scattering data. Nucleic Acids Res. 2015;43:D357–D363. doi: 10.1093/nar/gku1047. PubMed DOI PMC

Hoch JC, et al. Biological Magnetic Resonance Data Bank. Nucleic Acids Res. 2023;51:D368–D376. doi: 10.1093/nar/gkac1050. PubMed DOI PMC

Burley SK, et al. PDB-Dev: a Prototype System for Depositing Integrative/Hybrid Structural Models. Struct. Lond. Engl. 1993. 2017;25:1317–1318. PubMed PMC

Velankar S, et al. PDBe: improved accessibility of macromolecular structure data from PDB and EMDB. Nucleic Acids Res. 2016;44:D385–D395. doi: 10.1093/nar/gkv1047. PubMed DOI PMC

Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007;372:774–797. doi: 10.1016/j.jmb.2007.05.022. PubMed DOI

Ponstingl H, Henrick K, Thornton JM. Discriminating between homodimeric and monomeric proteins in the crystalline state. Proteins Struct. Funct. Bioinforma. 2000;41:47–57. doi: 10.1002/1097-0134(20001001)41:1<47::AID-PROT80>3.0.CO;2-8. PubMed DOI

Capitani G, Duarte JM, Baskaran K, Bliven S, Somody JC. Understanding the fabric of protein crystals: computational classification of biological interfaces and crystal contacts. Bioinformatics. 2016;32:481–489. doi: 10.1093/bioinformatics/btv622. PubMed DOI PMC

Duarte JM, Srebniak A, Schärer MA, Capitani G. Protein interface classification by evolutionary analysis. BMC Bioinformatics. 2012;13:334. doi: 10.1186/1471-2105-13-334. PubMed DOI PMC

Dey S, Ritchie DW, Levy ED. PDB-wide identification of biological assemblies from conserved quaternary structure geometry. Nat. Methods. 2018;15:67–72. doi: 10.1038/nmeth.4510. PubMed DOI

Dana JM, et al. SIFTS: updated Structure Integration with Function, Taxonomy and Sequences resource allows 40-fold increase in coverage of structure-based annotations for proteins. Nucleic Acids Res. 2019;47:D482–D489. doi: 10.1093/nar/gky1114. PubMed DOI PMC

Kalvari I, et al. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 2018;46:D335–D342. doi: 10.1093/nar/gkx1038. PubMed DOI PMC

Meldal BHM, et al. Complex Portal 2022: new curation frontiers. Nucleic Acids Res. 2022;50:D578–D586. doi: 10.1093/nar/gkab991. PubMed DOI PMC

Ruan Z, Orozco IJ, Du J, Lü W. Structures of human pannexin 1 reveal ion pathways and mechanism of gating. Nature. 2020;584:646–651. doi: 10.1038/s41586-020-2357-y. PubMed DOI PMC

Rodnina MV, Fischer N, Maracci C, Stark H. Ribosome dynamics during decoding. Philos. Trans. R. Soc. B Biol. Sci. 2017;372:20160182. doi: 10.1098/rstb.2016.0182. PubMed DOI PMC

Zhou J, Lancaster L, Trakhanov S, Noller HF. Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome. RNA. 2012;18:230–240. doi: 10.1261/rna.031187.111. PubMed DOI PMC

Pagès G, Grudinin S. AnAnaS: Software for Analytical Analysis of Symmetries in Protein Structures. Methods Mol. Biol. Clifton NJ. 2020;2165:245–257. doi: 10.1007/978-1-0716-0708-4_14. PubMed DOI

Bhate MP, Molnar KS, Goulian M, DeGrado WF. Signal Transduction in Histidine Kinases: Insights from New Structures. Struct. Lond. Engl. 1993. 2015;23:981–994. PubMed PMC

Wilkinson MD, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data. 2016;3:160018. doi: 10.1038/sdata.2016.18. PubMed DOI PMC

Dunbar J, Deane CM. ANARCI: antigen receptor numbering and receptor classification. Bioinformatics. 2016;32:298–300. doi: 10.1093/bioinformatics/btv552. PubMed DOI PMC

Westhof, E. & Leontis, N. B. An RNA-centric historical narrative around the Protein Data Bank. J. Biol. Chem. 296, (2021). PubMed PMC

Ashburner M, et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC

The Gene Ontology Consortium The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 2021;49:D325–D334. doi: 10.1093/nar/gkaa1113. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...