A recombinase polymerase amplification-SYBR Green I assay for the rapid and visual detection of Brucella
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
20200402059NC
Jilin Scientific and Technological Development Program
PubMed
38041745
DOI
10.1007/s12223-023-01115-2
PII: 10.1007/s12223-023-01115-2
Knihovny.cz E-zdroje
- Klíčová slova
- BCSP31 gene, Brucella, Recombinase polymerase amplification, SYBR Green I, Visualization,
- MeSH
- Brucella * genetika izolace a purifikace MeSH
- brucelóza * diagnóza mikrobiologie MeSH
- DNA bakterií genetika MeSH
- lidé MeSH
- limita detekce MeSH
- mléko mikrobiologie MeSH
- rekombinasy * metabolismus genetika MeSH
- senzitivita a specificita MeSH
- skot MeSH
- techniky amplifikace nukleových kyselin * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
- rekombinasy * MeSH
Brucellosis is a zoonosis caused by Brucella, which poses a great threat to human health and animal husbandry. Pathogen surveillance is an important measure to prevent brucellosis, but the traditional method is time-consuming and not suitable for field applications. In this study, a recombinase polymerase amplification-SYBR Green I (RPAS) assay was developed for the rapid and visualized detection of Brucella in the field by targeting BCSP31 gene, a conserved marker. The method was highly specific without any cross-reactivity with other common bacteria and its detection limit was 2.14 × 104 CFU/mL or g of Brucella at 40 °C for 20 min. It obviates the need for costly instrumentation and exhibits robustness towards background interference in serum, meat, and milk samples. In summary, the RPAS assay is a rapid, visually intuitive, and user-friendly detection that is highly suitable for use in resource-limited settings. Its simplicity and ease of use enable swift on-site detection of Brucella, thereby facilitating timely implementation of preventive measures.
College of Medicine Dalian University Dalian China
Jilin Academy of Animal Husbandry and Veterinary Medicine Changchun China
Panjin Center for Inspection and Testing Panjin China
Shandong Binzhou Animal Science and Veterinary Medicine Institute Binzhou China
Zobrazit více v PubMed
Atluri VL, Xavier MN, De Jong MF et al (2011) Interactions of the human pathogenic Brucella species with their hosts. Annu Rev Microbiol 65:523–541. https://doi.org/10.1146/annurev-micro-090110-102905 PubMed DOI
Aznar MN, Samartino LE, Humblet M-F, Saegerman C (2014) Bovine brucellosis in Argentina and bordering countries: update. Transbound Emerg Dis 61:121–133. https://doi.org/10.1111/tbed.12018 PubMed DOI
Baily GG, Krahn JB, Drasar BS, Stoker NG (1992) Detection of Brucella melitensis and Brucella abortus by DNA amplification. J Trop Med Hyg 95:271–275 PubMed
Bruijns BB, Tiggelaar RM, Gardeniers JGE (2016) Fluorescent cyanine dyes for the quantification of low amounts of dsDNA. Anal Biochem 511:74–79. https://doi.org/10.1016/j.ab.2016.07.022 PubMed DOI
Cao X, Li Z, Liu Z et al (2018) Molecular epidemiological characterization of Brucella isolates from sheep and yaks in northwest China. Transbound Emerg Dis 65:e425–e433. https://doi.org/10.1111/tbed.12777 PubMed DOI
Chen X, Zhao L, Wang J et al (2022) Rapid visual detection of anisakid nematodes using recombinase polymerase amplification and SYBR Green I. Front Microbiol 13:1026129. https://doi.org/10.3389/fmicb.2022.1026129 PubMed DOI PMC
Chen Z, Wang Y, Wang Z et al (2013) Improvement and advancement of early diagnosis of human brucellosis in window period. Clin Infect Dis 57:322–323. https://doi.org/10.1093/cid/cit198 PubMed DOI
Chlebicz A, Śliżewska K (2018) Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: A review. Int J Environ Res Public Health 15:863. https://doi.org/10.3390/ijerph15050863 PubMed DOI PMC
Daher RK, Stewart G, Boissinot M, Bergeron MG (2016) Recombinase polymerase amplification for diagnostic applications. Clin Chem 62:947–958. https://doi.org/10.1373/clinchem.2015.245829 PubMed DOI PMC
Deqiu S, Donglou X, Jiming Y (2002) Epidemiology and control of brucellosis in China. Vet Microbiol 90:165–182. https://doi.org/10.1016/S0378-1135(02)00252-3 PubMed DOI
Elsohaby I, Kostoulas P, Elsayed AM et al (2022) Bayesian evaluation of three serological tests for diagnosis of Brucella infections in dromedary camels using latent class models. Prev Vet Med 208:105771. https://doi.org/10.1016/j.prevetmed.2022.105771 PubMed DOI
Gumaa MM, Cao X, Li Z et al (2019) Establishment of a recombinase polymerase amplification (RPA) assay for the detection of Brucella spp. Infection Mol Cell Probes 47:101434. https://doi.org/10.1016/j.mcp.2019.101434 PubMed DOI
Khurana SK, Sehrawat A, Tiwari R et al (2021) Bovine brucellosis - a comprehensive review. Vet Q 41:61–88. https://doi.org/10.1080/01652176.2020.1868616 PubMed DOI PMC
Mayfield JE, Bricker BJ, Godfrey H et al (1988) The cloning, expression, and nucleotide sequence of a gene coding for an immunogenic Brucella abortus protein. Gene 63:1–9. https://doi.org/10.1016/0378-1119(88)90540-9 PubMed DOI
Pérez-Sancho M, García-Seco T, Arrogante L et al (2013) Development and evaluation of an IS711-based loop mediated isothermal amplification method (LAMP) for detection of Brucella spp. on clinical samples. Res Vet Sci 95:489–494. https://doi.org/10.1016/j.rvsc.2013.05.002 PubMed DOI
Riley LW (2020) Extraintestinal foodborne pathogens. Annu Rev Food Sci Technol 11:275–294. https://doi.org/10.1146/annurev-food-032519-051618 PubMed DOI
Tao J, Liu W, Ding W et al (2020) A multiplex PCR assay with a common primer for the detection of eleven foodborne pathogens. J Food Sci 85:744–754. https://doi.org/10.1111/1750-3841.15033 PubMed DOI
Whatmore AM, Davison N, Cloeckaert A et al (2014) Brucella papionis sp. nov., isolated from baboons (Papio spp.). Int J Syst Evol Microbiol 64:4120–4128. https://doi.org/10.1099/ijs.0.065482-0 PubMed DOI PMC
Yagupsky P, Morata P, Colmenero JD (2019) Laboratory diagnosis of human brucellosis. Clin Microbiol Rev 33:e00073-e119. https://doi.org/10.1128/CMR.00073-19 PubMed DOI PMC
Yamket W, Sathianpitayakul P, Santanirand P, Ratthawongjirakul P (2023) Implementation of helicase-dependent amplification with SYBR Green I for prompt naked-eye detection of bacterial contaminants in platelet products. Sci Rep 13:3238. https://doi.org/10.1038/s41598-023-30410-8 PubMed DOI PMC
Zhang L, Wu XA, Zhang FL et al (2012) Soluble expression and purification of Brucella cell surface protein (BCSP31) of Brucella melitensis and preparation of anti-BCSP31 monoclonal antibodies. Mol Biol Rep 39:431–438. https://doi.org/10.1007/s11033-011-0755-9 PubMed DOI
Zhang S-J, Wang L-L, Lu S-Y et al (2020) A novel, rapid, and simple PMA-qPCR method for detection and counting of viable Brucella organisms. J Vet Res 64:253–261. https://doi.org/10.2478/jvetres-2020-0033 PubMed DOI PMC
Zheng Y, Hu P, Ren H et al (2021) RPA-SYBR Green I based instrument-free visual detection for pathogenic Yersinia enterocolitica in meat. Anal Biochem 621:114157. https://doi.org/10.1016/j.ab.2021.114157 PubMed DOI