Introduction of microfluidic mixing technique opens a new door for preparation of the liposomes and lipid-based nanoparticles by on-chip technologies that are applicable in a laboratory and industrial scale. This study demonstrates the role of phospholipid bilayer fragment as the key intermediate in the mechanism of liposome formation by microfluidic mixing in the channel with "herring-bone" geometry used with the instrument NanoAssemblr. The fluidity of the lipid bilayer expressed as fluorescence anisotropy of the probe N,N,N-Trimethyl-4-(6-phenyl-1,3,5-hexatrien-1-yl) was found to be the basic parameter affecting the final size of formed liposomes prepared by microfluidic mixing of an ethanol solution of lipids and water phase. Both saturated and unsaturated lipids together with various content of cholesterol were used for liposome preparation and it was demonstrated, that an increase in fluidity results in a decrease of liposome size as analyzed by DLS. Gadolinium chelating lipids were used to visualize the fine structure of liposomes and bilayer fragments by CryoTEM. Experimental data and theoretical calculations are in good accordance with the theory of lipid disc micelle vesiculation.
- MeSH
- Biocompatible Materials metabolism MeSH
- Cholestyramine Resin metabolism MeSH
- Membrane Fluidity * MeSH
- Fluorescence Polarization MeSH
- Lab-On-A-Chip Devices MeSH
- Liposomes chemical synthesis MeSH
- Microfluidics instrumentation methods MeSH
- Nanostructures * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
New synthetic aminoxy lipids are designed and synthesized as building blocks for the formulation of functionalized nanoliposomes by microfluidization using a NanoAssemblr. Orthogonal binding of hyaluronic acid onto the outer surface of functionalized nanoliposomes via aminoxy coupling ( N-oxy ligation) is achieved at hemiacetal function of hyaluronic acid and the structure of hyaluronic acid-liposomes is visualized by transmission electron microscopy and cryotransmission electron microscopy. Observed structures are in a good correlation with data obtained by dynamic light scattering (size and ζ-potential). In vitro experiments on cell lines expressing CD44 receptors demonstrate selective internalization of fluorochrome-labeled hyaluronic acid-liposomes, while cells with down regulated CD44 receptor levels exhibit very low internalization of hyaluronic acid-liposomes. A method based on microfluidization mixing was developed for preparation of monodispersive unilamellar liposomes containing aminoxy lipids and orthogonal binding of hyaluronic acid onto the liposomal surface was demonstrated. These hyaluronic acid-liposomes represent a potentially new drug delivery platform for CD44-targeted anticancer drugs as well as for immunotherapeutics and vaccines.
- MeSH
- Hyaluronan Receptors analysis metabolism MeSH
- Cell Line MeSH
- Endocytosis MeSH
- Fluorescent Dyes MeSH
- Hyaluronic Acid chemistry metabolism MeSH
- Drug Delivery Systems methods MeSH
- Humans MeSH
- Lipids chemical synthesis MeSH
- Liposomes chemistry therapeutic use MeSH
- Microfluidics MeSH
- Neoplasms drug therapy MeSH
- Antineoplastic Agents administration & dosage MeSH
- Microscopy, Electron, Transmission MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
New synthetic aminooxy lipid was designed and synthesized as a building block for the formulation of functionalised nanoliposomes (presenting onto the outer surface of aminooxy groups) by microfluidic mixing. Orthogonal binding of cellular mannan (Candida glabrata (CCY 26-20-1) onto the outer surface of functionalised nanoliposomes was modified by orthogonal binding of reducing termini of mannans to oxime lipids via a click chemistry reaction based on aminooxy coupling (oxime ligation). The aminooxy lipid was proved as a suitable active component for preparation of functionalised nanoliposomes by the microfluidic mixing method performed with the instrument NanoAssemblrTM. This "on-chip technology" can be easily scaled-up. The structure of mannan-liposomes was visualized by transmission and scanning electron microscopy, including immunogold staining of recombinant mannan receptor bound onto mannosylated-liposomes. The observed structures are in a good correlation with data obtained by DLS, NTA, and TPRS methods. In vitro experiments on human and mouse dendritic cells demonstrate selective internalisation of fluorochrome-labelled mannan-liposomes and their ability to stimulate DC comparable to lipopolysaccharide. We describe a potentially new drug delivery platform for mannan receptor-targeted antimicrobial drugs as well as for immunotherapeutics. Furthermore, the platform based on mannans bound orthogonally onto the surface of nanoliposomes represents a self-adjuvanted carrier for construction of liposome-based recombinant vaccines for both systemic and mucosal routes of administration.
- MeSH
- Adjuvants, Immunologic pharmacology MeSH
- Antigens, Surface metabolism MeSH
- Candida glabrata chemistry MeSH
- Click Chemistry MeSH
- Dendritic Cells immunology MeSH
- Hydroxylamines chemical synthesis chemistry MeSH
- Lectins, C-Type immunology MeSH
- Mannose-Binding Lectins immunology MeSH
- Humans MeSH
- Lipids chemical synthesis chemistry MeSH
- Liposomes chemistry immunology pharmacology MeSH
- Mannans chemistry immunology pharmacology MeSH
- Microfluidics methods MeSH
- Mice, Inbred BALB C MeSH
- Nanoparticles chemistry MeSH
- Receptors, Cell Surface immunology MeSH
- Particle Size MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH