Detailed statistical analysis plan for the SafeBoosC III trial: a multinational randomised clinical trial assessing treatment guided by cerebral oxygenation monitoring versus treatment as usual in extremely preterm infants
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dopisy
Grantová podpora
18-3-0133
Elsass Foundation
PubMed
31856902
PubMed Central
PMC6921567
DOI
10.1186/s13063-019-3756-y
PII: 10.1186/s13063-019-3756-y
Knihovny.cz E-zdroje
- Klíčová slova
- Cerebral oximetry, Extremely preterm, Near-infrared spectroscopy, Randomised clinical trial, Statistical analysis plan,
- MeSH
- blízká infračervená spektroskopie přístrojové vybavení metody MeSH
- jednotky intenzivní péče o novorozence MeSH
- klinické zkoušky, fáze III jako téma MeSH
- kyslík metabolismus MeSH
- lidé MeSH
- monitorování fyziologických funkcí přístrojové vybavení metody MeSH
- mozek diagnostické zobrazování metabolismus patologie MeSH
- mozková hypoxie diagnóza epidemiologie terapie MeSH
- multicentrické studie jako téma MeSH
- novorozenci extrémně nezralí * MeSH
- novorozenec MeSH
- pragmatické klinické studie jako téma MeSH
- randomizované kontrolované studie jako téma MeSH
- terapie náhlých příhod metody MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- dopisy MeSH
- Názvy látek
- kyslík MeSH
BACKGROUND: Infants born extremely preterm are at high risk of dying or suffering from severe brain injuries. Treatment guided by monitoring of cerebral oxygenation may reduce the risk of death and neurologic complications. The SafeBoosC III trial evaluates the effects of treatment guided by cerebral oxygenation monitoring versus treatment as usual. This article describes the detailed statistical analysis plan for the main publication, with the aim to prevent outcome reporting bias and data-driven analyses. METHODS/DESIGN: The SafeBoosC III trial is an investigator-initiated, randomised, multinational, pragmatic phase III trial with a parallel group structure, designed to investigate the benefits and harms of treatment based on cerebral near-infrared spectroscopy monitoring compared with treatment as usual. Randomisation will be 1:1 stratified for neonatal intensive care unit and gestational age (lower gestational age (< 26 weeks) compared to higher gestational age (≥ 26 weeks)). The primary outcome is a composite of death or severe brain injury at 36 weeks postmenstrual age. Primary analysis will be made on the intention-to-treat population for all outcomes, using mixed-model logistic regression adjusting for stratification variables. In the primary analysis, the twin intra-class correlation coefficient will not be considered. However, we will perform sensitivity analyses to address this. Our simulation study suggests that the inclusion of multiple births is unlikely to significantly affect our assessment of intervention effects, and therefore we have chosen the analysis where the twin intra-class correlation coefficient will not be considered as the primary analysis. DISCUSSION: In line with the Declaration of Helsinki and the International Conference on Harmonization Good Clinical Practice guidelines, we have developed and published this statistical analysis plan for the SafeBoosC III trial, prior to any data analysis. TRIAL REGISTRATION: ClinicalTrials.org, NCT03770741. Registered on 10 December 2018.
Center for Statistical Science Peking University Beijing China
Department of Cardiology Holbæk Hospital Smedelundsgade 60 4300 Holbæk Denmark
Department of Clinical Sciences and Community Health University of Milan Milan Italy
Department of Neonatology Hospices Civil De Lyon 3 Quai des Célestins 69002 Lyon France
Department of Neonatology La Paz University Hospital Paseo De La Castellana 261 28046 Madrid Spain
Department of Neonatology Oslo University Hospital Kirkeveien 166 0450 Oslo Norway
Department of Neonatology Poznan University of Medical Sciences Polna 33 60 535 Poznań Poland
Department of Neonatology Royal Hospital for Children 1345 Govan Rd Glasgow G51 4TF UK
Department of Neonatology University Hospital Leuven Herestraat 49 Leuven Belgium
Department of Neonatology University Hospital Motol 5 Uvalu 84 150 06 Prague 5 Czech Republic
Department of Pediatrics Medical University of Graz Auenbruggerplatz 30 Graz Austria
Division of Neonatal Perinatal Medicine Mountainside Medical Center Montclair NJ USA
NICU Department of Pediatrics University General Hospital of Patras 265 04 Patras Greece
Zobrazit více v PubMed
Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, et al. Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics. 2010;126:443–456. doi: 10.1542/peds.2009-2959. PubMed DOI PMC
Volpe JJ. Brain injury in the premature infant: overview of clinical aspects, neuropathology, and pathogenesis. Semin Pediatr Neurol. 1998;5:135–151. doi: 10.1016/S1071-9091(98)80030-2. PubMed DOI
Adams-Chapman I, Heyne RJ, DeMauro SB, Duncan AF, Hintz SR, Pappas A, et al. Neurodevelopmental impairment among extremely preterm infants in the neonatal research network. Pediatrics. 2018;141:e20173091. doi: 10.1542/peds.2017-3091. PubMed DOI PMC
Behrman R, Butler AS. Preterm birth: causes, consequences and prevention. Institute of Medicine. Washington, DC: National Academies Press; 2007. PubMed
Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8:110–124. doi: 10.1016/S1474-4422(08)70294-1. PubMed DOI PMC
Hyttel-Sørensen S, Pellicer A, Alderliesten T, Austin T, Van Bel F, Benders M, et al. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ. 2015;350:1–11. doi: 10.1136/bmj.g7635. PubMed DOI PMC
Hyttel-Sørensen S, Greisen G, Als-Nielsen B, Gluud C. Cerebral near-infrared spectroscopy monitoring for prevention of brain injury in very preterm infants. Cochrane Database Syst Rev. 2017;9:CD011506. PubMed PMC
Guideline on Good Clinical Practice E6(R2). London: European Medicines Agency, Committee for Human Medicinal Products. 2017.
World Health Organization. Preterm birth. https://www.who.int/news-room/fact-sheets/detail/preterm-birth. 2018. Accessed 24 Nov 2019.
Hansen ML, Pellicer A, Gluud C, Dempsey E, Mintzer J, Hyttel-Sørensen S, et al. Cerebral near-infrared spectroscopy monitoring versus treatment as usual for extremely preterm infants. A protocol for the SafeBoosC phase III randomized clinical trial. Manuscript accepted for publication in Trials. 2019 PubMed PMC
Pellicer A, Greisen G, Benders M, Claris O, Dempsey E, Fumagally M, et al. The SafeBoosC phase II randomised clinical trial: a treatment guideline for targeted near-infrared-derived cerebral tissue oxygenation versus standard treatment in extremely preterm infants. Neonatology. 2013;104:171–178. doi: 10.1159/000351346. PubMed DOI
Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92:529–534. doi: 10.1016/S0022-3476(78)80282-0. PubMed DOI
Holsti A, Serenius F, Farooqi A. Impact of major neonatal morbidities on adolescents born at 23–25 weeks of gestation. Acta Paediatr. 2018;107:1893–1901. doi: 10.1111/apa.14445. PubMed DOI
Bell MJ, Ternberg JL, Feigin RD, Keating JP, Marshall R, Barton L, et al. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg. 1978;187:1–7. doi: 10.1097/00000658-197801000-00001. PubMed DOI PMC
Valls-I-Soler A, Carnielli V, Claris O, de la Cruz BJ, Halliday HL, Hallman M, Hummler H. Weindling M; Scientific Steering Committee von EuroNeoStat (siehe Anhang). [EuroNeoStat: a European information system on the outcomes of care for very-low-birth-weight infants (< 1500 g)] Z Geburtshilfe Neonatol. 2008;212(3):116–8. doi: 10.1055/s-2008-1076802.German. PubMed DOI
Hintz SR, Barnes PD, Bulas D, Slovis TL, Finer NN, Wrage LA, et al. Neuroimaging and neurodevelopmental outcome in extremely preterm infants. Pediatrics. 2015;135:e32–e42. doi: 10.1542/peds.2014-0898. PubMed DOI PMC
Schmidt B, Roberts RS, Davis PG, Doyle LW, Asztalos EV, Opie G, et al. Prediction of late death or disability at age 5 years using a count of 3 neonatal morbidities in very low birth weight infants. J Pediatr. 2015;167:982–986.e2. doi: 10.1016/j.jpeds.2015.07.067. PubMed DOI
Davidson L, Berkelhamer S. Bronchopulmonary dysplasia: chronic lung disease of infancy and long-term pulmonary outcomes. J Clin Med. 2017;6:4. doi: 10.3390/jcm6010004. PubMed DOI PMC
Vermont Oxford Network. Vermont Oxford Network. 2019. https://public.vtoxford.org/. Accessed 24 Nov 2019.
Jakobsen JC, Gluud C, Winkel P, Lange T, Wetterslev J. The thresholds for statistical and clinical significance – a five-step procedure for evaluation of intervention effects in randomised clinical trials. BMC Med Res Methodol. 2014;14:34. doi: 10.1186/1471-2288-14-34. PubMed DOI PMC
Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. Nature. 2019;567:305–307. doi: 10.1038/d41586-019-00857-9. PubMed DOI
Zhang J, Quan H, Ng J, Stepanavage ME. Some statistical methods for multiple endpoints in clinical trials. Control Clin Trials. 1997;18:204–221. doi: 10.1016/S0197-2456(96)00129-8. PubMed DOI
Goodman SN. Introduction to Bayesian methods I: measuring the strength of evidence. Clin Trials J Soc Clin Trials. 2005;2:282–290. doi: 10.1191/1740774505cn098oa. PubMed DOI
Wasserstein RL, Schirm AL, Lazar NA. Moving to a world beyond “p < 0.05”. Am Stat. 2019;73:1–19. doi: 10.1080/00031305.2019.1583913. DOI
DeMets DL, Lan KKG. Interim analysis: the alpha spending function approach. Stat Med. 1994;13:1341–1352. doi: 10.1002/sim.4780131308. PubMed DOI
Guyatt GH, Briel M, Glasziou P, Bassler D, Montori VM. Problems of stopping trials early. BMJ. 2012;344:e3863. doi: 10.1136/bmj.e3863. PubMed DOI
Jakobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials – a practical guide with flowcharts. BMC Med Res Methodol. 2017;17:162. doi: 10.1186/s12874-017-0442-1. PubMed DOI PMC
Little RJ, D’Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, et al. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367:1355–1360. doi: 10.1056/NEJMsr1203730. PubMed DOI PMC
Groenwold RHH, Moons KGM, Vandenbroucke JP. Randomized trials with missing outcome data: how to analyze and what to report. Can Med Assoc J. 2014;186:1153–1157. doi: 10.1503/cmaj.131353. PubMed DOI PMC
Gates S, Brocklehurst P. How should randomised trials including multiple pregnancies be analysed? BJOG An Int J Obstet Gynaecol. 2004;111:213–219. doi: 10.1111/j.1471-0528.2004.00059.x. PubMed DOI
Yelland LN, Sullivan TR, Collins CT, Price DJ, McPhee AJ, Lee KJ. Accounting for twin births in sample size calculations for randomised trials. Paediatr Perinat Epidemiol. 2018;32:380–387. doi: 10.1111/ppe.12471. PubMed DOI
Shaffer ML, Hiriote S. Analysis of time-to-event and duration outcomes in neonatal clinical trials with twin births. Contemp Clin Trials. 2009;30:150–154. doi: 10.1016/j.cct.2008.11.001. PubMed DOI PMC
Kahan BC, Morris TP. Reporting and analysis of trials using stratified randomisation in leading medical journals: review and reanalysis. BMJ. 2012;345:e5840. doi: 10.1136/bmj.e5840. PubMed DOI PMC
Kahan BC, Morris TP. Improper analysis of trials randomised using stratified blocks or minimisation. Stat Med. 2012;31:328–340. doi: 10.1002/sim.4431. PubMed DOI
Brennan KC. Accounting for centre-effects in multicentre trials with a binary outcome – when, why, and how? BMC Med Res Methodol. 2014;14:1–11. doi: 10.1186/1471-2288-14-1. PubMed DOI PMC
Deeks JJ, Higgins JPT, Altman DG. Chapter 10: analysing data and undertaking meta-analyses. Draft version (29 January 2019) for inclusion. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane handbook for systematic reviews of interventions. London: Cochrane. In Press.
Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869. doi: 10.1136/bmj.c869. PubMed DOI PMC
Li G, Taljaard M, Van den Heuvel ER, Levine MA, Cook DJ, Wells GA, et al. An introduction to multiplicity issues in clinical trials: the what, why, when and how. Int J Epidemiol. 2017;46:746–755. doi: 10.1093/ije/dyx211. PubMed DOI
Abdi H. The Bonferonni and Šidák corrections for multiple comparisons. In: Salkind N, editor. Encyclopedia of measurement and statistics. Thousand Oaks: Sage; 2007. pp. 1–9.
Akobeng AK. Understanding type I and type II errors, statistical power and sample size. Acta Paediatr. 2016;105:605–660. doi: 10.1111/apa.13384. PubMed DOI
Yu Y, Zhang K, Zhang L, Zong H, Meng L, Han R. Cerebral near-infrared spectroscopy (NIRS) for perioperative monitoring of brain oxygenation in children and adults. Cochrane Database Syst Rev. 2018;1:CD010947. PubMed PMC
Taillefer MC, Denault AY. Cerebral near-infrared spectroscopy in adult heart surgery: systematic review of its clinical efficacy. Can J Anaesth. 2005;52:79–87. doi: 10.1007/BF03018586. PubMed DOI
Rothwell PM. External validity of randomised controlled trials: “To whom do the results of this trial apply?”. Lancet. 2005;365:82–93. doi: 10.1016/S0140-6736(04)17670-8. PubMed DOI
Ward RM, Beachy JC. Neonatal complications following preterm birth. BJOG An Int J Obstet Gynaecol. 2003;110:8–16. doi: 10.1046/j.1471-0528.2003.00012.x. PubMed DOI
Savović J, Turner RM, Mawdsley D, Jones HE, Beynon R, Higgins JPT, et al. Association between risk-of-bias assessments and results of randomized trials in Cochrane Reviews: the ROBES Meta-Epidemiologic Study. Am J Epidemiol. 2018;187:1113–1122. doi: 10.1093/aje/kwx344. PubMed DOI PMC
Hrobjartsson A, Thomsen ASS, Emanuelsson F, Tendal B, Hilden J, Boutron I, et al. Observer bias in randomized clinical trials with measurement scale outcomes: a systematic review of trials with both blinded and nonblinded assessors. Can Med Assoc J. 2013;185:E201–E211. doi: 10.1503/cmaj.120744. PubMed DOI PMC
Hróbjartsson A, Thomsen ASS, Emanuelsson F, Tendal B, Rasmussen JV, Hilden J, et al. Observer bias in randomized clinical trials with time-to-event outcomes: systematic review of trials with both blinded and non-blinded outcome assessors. Int J Epidemiol. 2014;43:937–948. doi: 10.1093/ije/dyt270. PubMed DOI
Hróbjartsson A, Emanuelsson F, Skou Thomsen AS, Hilden J, Brorson S. Bias due to lack of patient blinding in clinical trials. A systematic review of trials randomizing patients to blind and nonblind sub-studies. Int J Epidemiol. 2014;43:1272–1283. doi: 10.1093/ije/dyu115. PubMed DOI PMC
EMA (European Medicines Agency). Guideline on multiplicity issues in clinical trials. 2017.
ClinicalTrials.gov
NCT03770741