• Something wrong with this record ?

A Methodology to Differentiate Parkinson's Disease and Aging Speech Based on Glottal Flow Acoustic Analysis

A. Gómez-Rodellar, D. Palacios-Alonso, JM. Ferrández Vicente, J. Mekyska, A. Álvarez-Marquina, P. Gómez-Vilda

. 2020 ; 30 (10) : 2050058. [pub] 20200903

Language English Country Singapore

Document type Journal Article

Speech is controlled by axial neuromotor systems, therefore, it is highly sensitive to the effects of neurodegenerative illnesses such as Parkinson's Disease (PD). Patients suffering from PD present important alterations in speech, which are manifested in phonation, articulation, prosody, and fluency. These alterations may be evaluated using statistical methods on features obtained from glottal, spectral, cepstral, or fractal descriptions of speech. This work introduces an evaluation paradigm based on Information Theory (IT) to differentiate the effects of PD and aging on glottal amplitude distributions. The study is conducted on a database including 48 PD patients (24 males, 24 females), 48 age-matched healthy controls (HC, 24 males, 24 females), and 48 mid-age normative subjects (NS, 24 males, 24 females). It may be concluded from the study that Hierarchical Clustering (HiCl) methods produce a clear separation between the phonation of PD patients from NS subjects (accuracy of 89.6% for both male and female subsets), but the separation between PD patients and HC subjects is less efficient (accuracy of 75.0% for the male subset and 70.8% for the female subset). Conversely, using feature selection and Support Vector Machine (SVM) classification, the differentiation between PD and HC is substantially improved (accuracy of 94.8% for the male subset and 92.8% for the female subset). This improvement was mainly boosted by feature selection, at a cost of information and generalization losses. The results point to the possibility that speech deterioration may affect HC phonation with aging, reducing its difference to PD phonation.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21026519
003      
CZ-PrNML
005      
20211026132832.0
007      
ta
008      
211013s2020 si f 000 0|eng||
009      
AR
024    7_
$a 10.1142/S0129065720500586 $2 doi
035    __
$a (PubMed)32880202
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a si
100    1_
$a Gómez-Rodellar, Andrés $u Usher Institute, Medical School, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh, EH8 9AG UK
245    12
$a A Methodology to Differentiate Parkinson's Disease and Aging Speech Based on Glottal Flow Acoustic Analysis / $c A. Gómez-Rodellar, D. Palacios-Alonso, JM. Ferrández Vicente, J. Mekyska, A. Álvarez-Marquina, P. Gómez-Vilda
520    9_
$a Speech is controlled by axial neuromotor systems, therefore, it is highly sensitive to the effects of neurodegenerative illnesses such as Parkinson's Disease (PD). Patients suffering from PD present important alterations in speech, which are manifested in phonation, articulation, prosody, and fluency. These alterations may be evaluated using statistical methods on features obtained from glottal, spectral, cepstral, or fractal descriptions of speech. This work introduces an evaluation paradigm based on Information Theory (IT) to differentiate the effects of PD and aging on glottal amplitude distributions. The study is conducted on a database including 48 PD patients (24 males, 24 females), 48 age-matched healthy controls (HC, 24 males, 24 females), and 48 mid-age normative subjects (NS, 24 males, 24 females). It may be concluded from the study that Hierarchical Clustering (HiCl) methods produce a clear separation between the phonation of PD patients from NS subjects (accuracy of 89.6% for both male and female subsets), but the separation between PD patients and HC subjects is less efficient (accuracy of 75.0% for the male subset and 70.8% for the female subset). Conversely, using feature selection and Support Vector Machine (SVM) classification, the differentiation between PD and HC is substantially improved (accuracy of 94.8% for the male subset and 92.8% for the female subset). This improvement was mainly boosted by feature selection, at a cost of information and generalization losses. The results point to the possibility that speech deterioration may affect HC phonation with aging, reducing its difference to PD phonation.
650    _2
$a senioři $7 D000368
650    _2
$a stárnutí $x fyziologie $7 D000375
650    _2
$a diferenciální diagnóza $7 D003937
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a Parkinsonova nemoc $x komplikace $x patofyziologie $7 D010300
650    _2
$a fonace $x fyziologie $7 D010699
650    _2
$a akustika řeči $7 D013061
650    _2
$a poruchy řeči $x etiologie $x patofyziologie $7 D013064
650    12
$a support vector machine $7 D060388
655    _2
$a časopisecké články $7 D016428
700    1_
$a Palacios-Alonso, Daniel $u Escuela Técnica Superior de Ingeniería Informática, Universidad Rey Juan Carlos, Calle Tulipán, s/n, 28933 Móstoles, Madrid, Spain
700    1_
$a Ferrández Vicente, José M $u Universidad Politécnica de Cartagena, Campus Universitario Muralla del Mar, Pza. Hospital 1, 30202 Cartagena, Spain
700    1_
$a Mekyska, Jiri $u Department of Telecommunications, Brno University of Technology, Technicka 10, 61600 Brno, Czech Republic
700    1_
$a Álvarez-Marquina, Agustín $u Neuromorphic Speech Processing Lab, Center for Biomedical Technology, Universidad, Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
700    1_
$a Gómez-Vilda, Pedro $u Neuromorphic Speech Processing Lab, Center for Biomedical Technology, Universidad, Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
773    0_
$w MED00002342 $t International journal of neural systems $x 1793-6462 $g Roč. 30, č. 10 (2020), s. 2050058
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32880202 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211013 $b ABA008
991    __
$a 20211026132838 $b ABA008
999    __
$a ok $b bmc $g 1715288 $s 1147026
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 30 $c 10 $d 2050058 $e 20200903 $i 1793-6462 $m International journal of neural systems $n Int J Neural Syst $x MED00002342
LZP    __
$a Pubmed-20211013

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...