Utility of texture analysis for objective quantitative ex vivo assessment of meningioma consistency: method proposal and validation

. 2023 Dec ; 165 (12) : 4203-4211. [epub] 20231204

Jazyk angličtina Země Rakousko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38044374

Grantová podpora
NV19-04-00272 Ministerstvo Zdravotnictví Ceské Republiky
BBMRI-CZ LM2023033 Ministerstvo Zdravotnictví Ceské Republiky
Cooperatio Program Univerzita Karlova v Praze
EF16_013/0001674 European Regional Development Fund-Project BBMRI-CZ Biobank network
MO1012 Ministerstvo Obrany České Republiky

Odkazy

PubMed 38044374
DOI 10.1007/s00701-023-05867-1
PII: 10.1007/s00701-023-05867-1
Knihovny.cz E-zdroje

BACKGROUND: Tumor consistency is considered to be a critical factor for the surgical removal of meningiomas and its preoperative assessment is intensively studied. A significant drawback in the research of predictive methods is the lack of a clear shared definition of tumor consistency, with most authors resorting to subjective binary classification labeling the samples as "soft" and "hard." This classification is highly observer-dependent and its discrete nature fails to capture the fine nuances in tumor consistency. To compensate for these shortcomings, we examined the utility of texture analysis to provide an objective observer-independent continuous measure of meningioma consistency. METHODS: A total of 169 texturometric measurements were conducted using the Brookfield CT3 Texture Analyzer on meningioma samples from five patients immediately after the removal and on the first, second, and seventh postoperative day. The relationship between measured stiffness and time from sample extraction, subjectively assessed consistency grade and histopathological features (amount of collagen and reticulin fibers, presence of psammoma bodies, predominant microscopic morphology) was analyzed. RESULTS: The stiffness measurements exhibited significantly lower variance within a sample than among samples (p = 0.0225) and significant increase with a higher objectively assessed consistency grade (p = 0.0161, p = 0.0055). A significant negative correlation was found between the measured stiffness and the time from sample extraction (p < 0.01). A significant monotonic relationship was revealed between stiffness values and amount of collagen I and reticulin fibers; there were no statistically significant differences between histological phenotypes in regard to presence of psammoma bodies and predominant microscopic morphology. CONCLUSIONS: We conclude that the values yielded by texture analysis are highly representative of an intrinsic consistency-related quality of the sample despite the influence of intra-sample heterogeneity and that our proposed method can be used to conduct quantitative studies on the role of meningioma consistency.

Zobrazit více v PubMed

Alyamany M, Alshardan MM, Jamea AA, ElBakry N, Soualmi L, Orz Y (2018) Meningioma consistency: correlation between magnetic resonance imaging characteristics, operative findings, and histopathological features. Asian J Neurosurg 13(2):324–328. https://doi.org/10.4103/1793-5482.228515 PubMed DOI PMC

Ansari A, Riyaz S (2020) Two-staged approach for giant hypervascular meningioma resection. Asian J Neurosurg 15(2):349–353. https://doi.org/10.4103/ajns.AJNS_364_19 PubMed DOI PMC

Bartsch K, Brandl A, Weber P, Wilke J, Bensamoun SF, Bauermeister W, Klingler W, Schleip R (2023) Assessing reliability and validity of different stiffness measurement tools on a multi-layered phantom tissue model. Sci Rep 13(1):815. https://doi.org/10.1038/s41598-023-27742-w PubMed DOI PMC

Brabec J, Szczepankiewicz F, Lennartsson F, Englund E, Pebdani H, Bengzon J, Knutsson L, Westin CF, Sundgren PC, Nilsson M (2022) Histogram analysis of tensor-valued diffusion MRI in meningiomas: relation to consistency, histological grade and type. NeuroImage Clin 33:102912. https://doi.org/10.1016/j.nicl.2021.102912 PubMed DOI

Chen L, Opara U (2013) Approaches to analysis and modeling texture in fresh and processed foods – a review. J Food Eng 119:497. https://doi.org/10.1016/j.jfoodeng.2013.06.028 DOI

Chen TC, Zee CS, Miller CA, Weiss MH, Tang G, Chin L, Levy ML, Apuzzo ML (1992) Magnetic resonance imaging and pathological correlates of meningiomas. Neurosurgery 31(6):1015–1022. https://doi.org/10.1227/00006123-199212000-00005 PubMed DOI

Fischer AA (1987) Tissue compliance meter for objective, quantitative documentation of soft tissue consistency and pathology. Arch Phys Med Rehabil 68(2):122–125 PubMed

Friedman HH, Whitney JE, Szczesniak AS (1963) The texturometer—a new instrument for objective texture measurement. J Food Sci 28:390–396 DOI

Giuffrè R (1984) Successful radical removal of an intracranial meningioma in 1835 by Professor Pecchioli of Siena. J Neurosurg 60(1):47–51. https://doi.org/10.3171/jns.1984.60.1.0047 PubMed DOI

Hong TH, Choi JI, Park MY, Rha SE, Lee YJ, You YK, Choi MH (2017) Pancreatic hardness: correlation of surgeon’s palpation, durometer measurement and preoperative magnetic resonance imaging features. World J Gastroenterol 23(11):2044–2051. https://doi.org/10.3748/wjg.v23.i11.2044 PubMed DOI PMC

Hughes JD, Fattahi N, Van Gompel J, Arani A, Meyer F, Lanzino G, Link MJ, Ehman R, Huston J (2015) Higher-resolution magnetic resonance elastography in meningiomas to determine intratumoral consistency. Neurosurgery 77(4):653–659. https://doi.org/10.1227/NEU.0000000000000892 PubMed DOI

Itamura K, Chang KE, Lucas J, Donoho DA, Giannotta S, Zada G (2018) Prospective clinical validation of a meningioma consistency grading scheme: association with surgical outcomes and extent of tumor resection. J Neurosurg 1–5. Advance online publication. https://doi.org/10.3171/2018.7.JNS1838

Kashimura H, Inoue T, Ogasawara K, Arai H, Otawara Y, Kanbara Y, Ogawa A (2007) Prediction of meningioma consistency using fractional anisotropy value measured by magnetic resonance imaging. J Neurosurg 107(4):784–787. https://doi.org/10.3171/JNS-07/10/0784 PubMed DOI

Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23(8):1231–1251. https://doi.org/10.1093/neuonc/noab106 PubMed DOI PMC

Maiuri F, Iaconetta G, de Divitiis O, Cirillo S, Di Salle F, De Caro ML (1999) Intracranial meningiomas: correlations between MR imaging and histology. Eur J Radiol 31(1):69–75. https://doi.org/10.1016/s0720-048x(98)00083-7 PubMed DOI

Miyoshi K, Wada T, Uwano I, Sasaki M, Saura H, Fujiwara S, Takahashi F, Tsushima E, Ogasawara K (2020) Predicting the consistency of intracranial meningiomas using apparent diffusion coefficient maps derived from preoperative diffusion-weighted imaging. J Neurosurg 135(3):969–976. https://doi.org/10.3171/2020.6.JNS20740 PubMed DOI

Netuka D, Masopust V, Belšán T, Kramar F, Hána V, Beneš V (2013) Endoscopic endonasal resection of skull base meningiomas. Ceska Slov Neurol Neurochir 76:446–452

Ogasawara C, Philbrick BD, Adamson DC (2021) Meningioma: a review of epidemiology, pathology, diagnosis, treatment, and future directions. Biomedicines 9(3):319. https://doi.org/10.3390/biomedicines9030319 PubMed DOI PMC

Qi H, Joyce K, Boyce M (2003) Durometer hardness and the stress-strain behavior of elastomeric materials. Rubber Chem Technol 76:419–435. https://doi.org/10.5254/1.3547752 DOI

Reiter R, Freise C, Jöhrens K, Kamphues C, Seehofer D, Stockmann M, Somasundaram R, Asbach P, Braun J, Samani A, Sack I (2014) Wideband MRE and static mechanical indentation of human liver specimen: sensitivity of viscoelastic constants to the alteration of tissue structure in hepatic fibrosis. J Biomech 47(7):1665–1674. https://doi.org/10.1016/j.jbiomech.2014.02.034 PubMed DOI

Roo C, Tilleman K, Vercruysse C, Declercq H, T’Sjoen G, Weyers S, Sutter P (2019) Texture profile analysis reveals a stiffer ovarian cortex after testosterone therapy: a pilot study. J Assist Reprod Genet 36. https://doi.org/10.1007/s10815-019-01513-x

Seaman SC, Ali MS, Marincovich A, Li L, Walsh JE, Greenlee JDW (2020) Minimally invasive approaches to anterior skull base meningiomas. J Neurol Surg Part B Skull Base 83(3):254–264. https://doi.org/10.1055/s-0040-1716671 DOI

Shi Y, Huo Y, Pan C, Qi Y, Yin Z, Ehman RL, Li Z, Yin X, Du B, Qi Z, Yang A, Hong Y (2022) Use of magnetic resonance elastography to gauge meningioma intratumoral consistency and histotype. NeuroImage Clin 36:103173. https://doi.org/10.1016/j.nicl.2022.103173 PubMed DOI PMC

Sitthinamsuwan B, Khampalikit I, Nunta-aree S, Srirabheebhat P, Witthiwej T, Nitising A (2012) Predictors of meningioma consistency: a study in 243 consecutive cases. Acta Neurochir 154(8):1383–1389. https://doi.org/10.1007/s00701-012-1427-9 PubMed DOI

Smith KA, Leever JD, Hylton PD, Camarata PJ, Chamoun RB (2017) Meningioma consistency prediction utilizing tumor to cerebellar peduncle intensity on T2-weighted magnetic resonance imaging sequences: TCTI ratio. J Neurosurg 126(1):242–248. https://doi.org/10.3171/2016.1.JNS152329 PubMed DOI

Soyama N, Kuratsu J, Ushio Y (1995) Correlation between magnetic resonance images and histology in meningiomas: T2-weighted images indicate collagen contents in tissues. Neurol Med Chir 35(7):438–441. https://doi.org/10.2176/nmc.35.438 DOI

Suzuki Y, Sugimoto T, Shibuya M, Sugita K, Patel SJ (1994) Meningiomas: correlation between MRI characteristics and operative findings including consistency. Acta Neurochir 129(1–2):39–46. https://doi.org/10.1007/BF01400871 PubMed DOI

Tang HL, Sun HP, Gong Y, Mao Y, Wu JS, Zhang XL, Xie Q, Xie LQ, Zheng MZ, Wang DJ, Zhu HD, Tang WJ, Feng XY, Chen XC, Zhou LF (2012) Preoperative surgical planning for intracranial meningioma resection by virtual reality. Chin Med J 125(11):2057–2061 PubMed

Tang H, Zhang H, Xie Q, Gong Y, Zheng M, Wang D, Zhu H, Chen X, Zhou L (2014) Application of CUSA Excel ultrasonic aspiration system in resection of skull base meningiomas. Chin J Cancer Res = Chung-kuo yen cheng yen chiu 26(6):653–657. https://doi.org/10.3978/j.issn.1000-9604.2014.12.10 PubMed DOI

Tatelbaum AL (2013) A standard method to characterize texture attributes of fresh and processed foods

Thakur JD, Mallari RJ, Corlin A, Yawitz S, Huang W, Eisenberg A, Sivakumar W, Krauss HR, Griffiths C, Barkhoudarian G, Kelly DF (2020) Minimally invasive surgical treatment of intracranial meningiomas in elderly patients (≥ 65 years): outcomes, readmissions, and tumor control. Neurosurg Focus 49(4):E17. https://doi.org/10.3171/2020.7.FOCUS20515 PubMed DOI

vanRossum G (1995) Python reference manual. Department of Computer Science [CS], (R 9525)

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, …, SciPy 1.0 Contributors (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17(3):261–272. https://doi.org/10.1038/s41592-019-0686-2

Yamada H, Tanikawa M, Sakata T, Aihara N, Mase M (2022) Usefulness of T2 relaxation time for quantitative prediction of meningioma consistency. World Neurosurg 157:e484–e491. https://doi.org/10.1016/j.wneu.2021.10.135 PubMed DOI

Yamaguchi N, Kawase T, Sagoh M, Ohira T, Shiga H, Toya S (1997) Prediction of consistency of meningiomas with preoperative magnetic resonance imaging. Surg Neurol 48(6):579–583. https://doi.org/10.1016/s0090-3019(96)00439-9 PubMed DOI

Yogi A, Koga T, Azama K, Higa D, Ogawa K, Watanabe T, Ishiuchi S, Murayama S (2014) Usefulness of the apparent diffusion coefficient (ADC) for predicting the consistency of intracranial meningiomas. Clin Imaging 38(6):802–807. https://doi.org/10.1016/j.clinimag.2014.06.016 PubMed DOI

Yoneoka Y, Fujii Y, Takahashi H, Nakada T (2002) Pre-operative histopathological evaluation of meningiomas by 3 0T T2R MRI. Acta Neurochir 144(10):953–957. https://doi.org/10.1007/s00701-002-1005-7 PubMed DOI

Zada G, Yashar P, Robison A, Winer J, Khalessi A, Mack WJ, Giannotta SL (2013) A proposed grading system for standardizing tumor consistency of intracranial meningiomas. Neurosurg Focus 35(6):E1. https://doi.org/10.3171/2013.8.FOCUS13274 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...