Diagnostics, resistance and clinical relevance of non-tuberculous mycobacteria unidentified at the species level by line probe assays: a bi-national study
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2167
Deutsche Forschungsgemeinschaft
23-05622S
Czech Science Foundation
18-0084
Agentúra na Podporu Výskumu a Vývoja
1/0093/22
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
75010330
Grant of Ministry of Health, Czech Republic
PubMed
39962513
PubMed Central
PMC11834575
DOI
10.1186/s12941-025-00781-z
PII: 10.1186/s12941-025-00781-z
Knihovny.cz E-zdroje
- Klíčová slova
- Diagnostics, Non-tuberculous mycobacteria, Novel species, Targeted next-generation sequencing, Whole-genome sequencing,
- MeSH
- antibakteriální látky * farmakologie MeSH
- atypické mykobakteriální infekce * mikrobiologie diagnóza MeSH
- bakteriální léková rezistence MeSH
- dítě MeSH
- dospělí MeSH
- genotyp MeSH
- klinická relevance MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikrobiální testy citlivosti * MeSH
- mladiství MeSH
- netuberkulózní mykobakterie * účinky léků genetika izolace a purifikace MeSH
- předškolní dítě MeSH
- sekvenování celého genomu * MeSH
- senioři MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Slovenská republika epidemiologie MeSH
- Názvy látek
- antibakteriální látky * MeSH
OBJECTIVES: While the reported incidence of non-tuberculous mycobacterial (NTM) infections is increasing, the true prevalence remains uncertain due to limitations in diagnostics and surveillance. The emergence of rare and novel species underscores the need for characterization to improve surveillance, detection, and management. METHODS: We performed whole-genome sequencing (WGS) and/or targeted deep-sequencing using the Deeplex Myc-TB assay on all NTM isolates collected in Slovakia and the Czech Republic between the years 2019 to 2023 that were unidentifiable at the species level by the routine diagnostic line probe assays (LPA) GenoType CM/AS and NTM-DR. Minimal inhibitory concentrations against amikacin, ciprofloxacin, moxifloxacin, clarithromycin, and linezolid were determined, and clinical data were collected. RESULTS: Twenty-eight cultures from different patients were included, of which 9 (32.1%) met the clinically relevant NTM disease criteria. The majority of those had pulmonary involvement, while two children presented with lymphadenitis. Antimycobacterial resistance rates were low. In total, 15 different NTM species were identified, predominantly rare NTM like M. neoaurum, M. kumamotonense and M. arupense. Notably, clinically relevant M. chimaera variants were also identified with WGS and Deeplex-Myc TB, which, unlike other M. chimaera strains, appeared to be undetectable by LPA assays. Deeplex detected four mixed infections that were missed by WGS analysis. In contrast, WGS identified two novel species, M. celatum and M. branderi, which were not detected by Deeplex-Myc TB. Importantly, one of these novel species strains was associated with clinically relevant pulmonary disease. DISCUSSION: Our study demonstrates the clinical relevance of uncommon NTM and the effectiveness of targeted deep-sequencing combined with WGS in identifying rare and novel NTM species.
Department of Genetics and Microbiology Faculty of Science Charles University Prague Czech Republic
Faculty of Health Catholic University Ružomberok Slovakia
German Center for Infection Research Partner Site Hamburg Lübeck Borstel Riems Borstel Germany
International Reference Laboratory of Mycobacteriology Statens Serum Institut Copenhagen Denmark
Molecular and Experimental Mycobacteriology Research Center Borstel Borstel Germany
National Institute of Public Health Prague Czech Republic
National Institute of Tuberculosis Lung Diseases and Thoracic Surgery Vyšné Hágy Slovakia
Zobrazit více v PubMed
Sharma S, Upadhyay V. Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases. Indian J Med Res [Internet]. 2020 [cited 2024 Jul 3];152:185. Available from:/pmc/articles/PMC7881820/ PubMed PMC
Prieto MD, Alam ME, Franciosi AN, Quon BS. Global burden of nontuberculous mycobacteria in the cystic fibrosis population: a systematic review and meta-analysis. ERJ Open Res [Internet]. 2023 [cited 2024 Jul 3];9. Available from: https://openres.ersjournals.com/content/9/1/00336-2022 PubMed PMC
Dahl VN, Mølhave M, Fløe A, van Ingen J, Schön T, Lillebaek T, et al. Global trends of pulmonary infections with nontuberculous mycobacteria: a systematic review. Int J Infect Dis. 2022;125:120–31. PubMed
Pedersen AA, Løkke A, Fløe A, Ibsen R, Johansen IS, Hilberg O. Nationwide Increasing Incidence of Nontuberculous Mycobacterial Diseases Among Adults in Denmark: Eighteen Years of Follow-Up. Chest. 2024. PubMed
Manbenmad V, So-ngern A, Chetchotisakd P, Faksri K, Ato M, Nithichanon A et al. Evaluating anti-GPL-core IgA as a diagnostic tool for non-tuberculous mycobacterial infections in Thai patients with high antibody background. Scientific Reports 2023 13:1 [Internet]. 2023 [cited 2024 Jul 3];13:1–9. Available from: https://www.nature.com/articles/s41598-023-45893-8 PubMed PMC
Zhu Y, Hua W, Liu Z, Zhang M, Wang X, Wu B et al. Identification and characterization of nontuberculous mycobacteria isolated from suspected pulmonary tuberculosis patients in eastern china from 2009 to 2019 using an identification array system. The Brazilian Journal of Infectious Diseases [Internet]. 2022 [cited 2024 Jul 3];26. Available from:/pmc/articles/PMC9387452/ PubMed PMC
Kim H, Kim SH, Shim TS, Kim MN, Bai GH, Park YG et al. Differentiation of Mycobacterium species by analysis of the heat-shock protein 65 gene (hsp65). Int J Syst Evol Microbiol [Internet]. 2005 [cited 2024 Oct 31];55:1649–56. Available from: https://pubmed.ncbi.nlm.nih.gov/16014496/ PubMed
Adékambi T, Colson P, Drancourt M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol [Internet]. 2003 [cited 2024 Oct 31];41:5699–708. Available from: https://pubmed.ncbi.nlm.nih.gov/14662964/ PubMed PMC
Davis JL, Cattamanchi A, Cuevas LE, Hopewell PC, Steingart KR. Diagnostic accuracy of same-day microscopy versus standard microscopy for pulmonary tuberculosis: a systematic review and meta-analysis. Lancet Infect Dis [Internet]. 2013 [cited 2024 Nov 17];13:147–54. Available from: https://pubmed.ncbi.nlm.nih.gov/23099183/ PubMed PMC
Lee AS, Jelfs P, Sintchenko V, Gilbert GL. Identification of non-tuberculous mycobacteria: Utility of the GenoType Mycobacterium CM/AS assay compared with HPLC and 16S rRNA gene sequencing. J Med Microbiol [Internet]. 2009 [cited 2024 Oct 31];58:900–4. Available from: https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.007484-0 PubMed
Huh HJ, Kim SY, Shim HJ, Kim DH, Yoo IY, Kang OK et al. GenoType NTM-DR Performance Evaluation for Identification of Mycobacterium avium Complex and Mycobacterium abscessus and Determination of Clarithromycin and Amikacin Resistance. J Clin Microbiol [Internet]. 2019 [cited 2024 Oct 31];57. Available from: https://pubmed.ncbi.nlm.nih.gov/31167842/ PubMed PMC
Jouet A, Gaudin C, Badalato N, Allix-Béguec C, Duthoy S, Ferré A et al. Deep amplicon sequencing for culture-free prediction of susceptibility or resistance to 13 anti-tuberculous drugs. Eur Respir J [Internet]. 2021 [cited 2024 Jul 8];57. Available from: /pmc/articles/PMC8174722/. PubMed PMC
From clinical sample. to drug resistance profile Deeplex ® Myc-TB USER MANUAL. 2023.
Who. Module 3: Diagnosis WHO operational handbook on tuberculosis Rapid diagnostics for tuberculosis detection Third edition.
Solanki P, Lipman M, McHugh TD, Satta G. Whole genome sequencing and prediction of antimicrobial susceptibilities in non-tuberculous mycobacteria. Front Microbiol. 2022;13:1044515. PubMed PMC
Wetzstein N, Diricks M, Anton TB, Andres S, Kuhns M, Kohl TA et al. Clinical and genomic features of Mycobacterium avium complex: a multi-national European study. Genome Med. 2024;16. PubMed PMC
Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ, Andrejak C et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. European Respiratory Journal [Internet]. 2020 [cited 2025 Jan 14];56. Available from: https://publications.ersnet.org/content/erj/56/1/2000535 PubMed PMC
Union PO. of the E. Handbook on tuberculosis laboratory diagnostic methods in the European Union: updated 2018. 2023 [cited 2025 Jan 16]; Available from: https://op.europa.eu/en/publication-detail/-/publication/aee67ed9-81e1-11ee-99ba-01aa75ed71a1/language-en
Brown-Elliott BA, Woods GL. Antimycobacterial susceptibility testing of nontuberculous mycobacteria [Internet]. J Clin Microbiol. American Society for Microbiology; 2019 [cited 2021 Aug 31]. pp. 834–53. Available from: 10.1128/JCM PubMed PMC
Feldgarden M, Brover V, Gonzalez-Escalona N, Frye JG, Haendiges J, Haft DH et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Scientific Reports 2021 11:1 [Internet]. 2021 [cited 2024 Nov 6];11:1–9. Available from: https://www.nature.com/articles/s41598-021-91456-0 PubMed PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol [Internet]. 2012 [cited 2024 Oct 17];19:455–77. Available from: https://pubmed.ncbi.nlm.nih.gov/22506599/ PubMed PMC
Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics [Internet]. 2013 [cited 2024 Oct 15];14:1–14. Available from: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-60 PubMed PMC
Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res [Internet]. 2022 [cited 2024 Oct 15];50:D801. Available from: /pmc/articles/PMC8728197/ PubMed PMC
Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol. 2015;32:2798–800. PubMed PMC
Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics [Internet]. 2017 [cited 2024 Oct 15];33:2946–7. Available from: https://pubmed.ncbi.nlm.nih.gov/28525531/ PubMed
Kim CK, Choi SI, Jeon BR, Lee YW, Lee YK, Shin HB. Pulmonary Infection Caused by Mycobacterium neoaurum: The First Case in Korea. Ann Lab Med [Internet]. 2014 [cited 2024 Oct 15];34:243. Available from: /pmc/articles/PMC3999325/ PubMed PMC
Weidmann MD, Wu Y, Wu F, Hapani DD, Green DA, Aaron JG et al. A case of novel, rapidly-growing Mycolicibacter kumamotonensis infection in a patient with severe pulmonary disease treated in New York City. BMC Infect Dis [Internet]. 2023 [cited 2024 Oct 15];23:1–7. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-022-07959-2 PubMed PMC
Turvey SL, Tyrrell GJ, Hernandez C, Kabbani D, Doucette K, Cervera C. Mycobacterium branderi infection: case report and literature review of an unusual and difficult-to-treat non-tuberculous mycobacterium. Int J Infect Dis. 2017;58:65–7. PubMed
Manika K, Kontos F, Papavasileiou A, Papaventsis D, Sionidou M, Kioumis I. Severe Pulmonary Disease Caused by Mycolicibacter kumamotonensis. Emerg Infect Dis [Internet]. 2021 [cited 2024 Oct 15];27:962. Available from: /pmc/articles/PMC7920653/ PubMed PMC