Diagnostics, resistance and clinical relevance of non-tuberculous mycobacteria unidentified at the species level by line probe assays: a bi-national study

. 2025 Feb 17 ; 24 (1) : 14. [epub] 20250217

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39962513

Grantová podpora
2167 Deutsche Forschungsgemeinschaft
23-05622S Czech Science Foundation
18-0084 Agentúra na Podporu Výskumu a Vývoja
1/0093/22 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
75010330 Grant of Ministry of Health, Czech Republic

Odkazy

PubMed 39962513
PubMed Central PMC11834575
DOI 10.1186/s12941-025-00781-z
PII: 10.1186/s12941-025-00781-z
Knihovny.cz E-zdroje

OBJECTIVES: While the reported incidence of non-tuberculous mycobacterial (NTM) infections is increasing, the true prevalence remains uncertain due to limitations in diagnostics and surveillance. The emergence of rare and novel species underscores the need for characterization to improve surveillance, detection, and management. METHODS: We performed whole-genome sequencing (WGS) and/or targeted deep-sequencing using the Deeplex Myc-TB assay on all NTM isolates collected in Slovakia and the Czech Republic between the years 2019 to 2023 that were unidentifiable at the species level by the routine diagnostic line probe assays (LPA) GenoType CM/AS and NTM-DR. Minimal inhibitory concentrations against amikacin, ciprofloxacin, moxifloxacin, clarithromycin, and linezolid were determined, and clinical data were collected. RESULTS: Twenty-eight cultures from different patients were included, of which 9 (32.1%) met the clinically relevant NTM disease criteria. The majority of those had pulmonary involvement, while two children presented with lymphadenitis. Antimycobacterial resistance rates were low. In total, 15 different NTM species were identified, predominantly rare NTM like M. neoaurum, M. kumamotonense and M. arupense. Notably, clinically relevant M. chimaera variants were also identified with WGS and Deeplex-Myc TB, which, unlike other M. chimaera strains, appeared to be undetectable by LPA assays. Deeplex detected four mixed infections that were missed by WGS analysis. In contrast, WGS identified two novel species, M. celatum and M. branderi, which were not detected by Deeplex-Myc TB. Importantly, one of these novel species strains was associated with clinically relevant pulmonary disease. DISCUSSION: Our study demonstrates the clinical relevance of uncommon NTM and the effectiveness of targeted deep-sequencing combined with WGS in identifying rare and novel NTM species.

Zobrazit více v PubMed

Sharma S, Upadhyay V. Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases. Indian J Med Res [Internet]. 2020 [cited 2024 Jul 3];152:185. Available from:/pmc/articles/PMC7881820/ PubMed PMC

Prieto MD, Alam ME, Franciosi AN, Quon BS. Global burden of nontuberculous mycobacteria in the cystic fibrosis population: a systematic review and meta-analysis. ERJ Open Res [Internet]. 2023 [cited 2024 Jul 3];9. Available from: https://openres.ersjournals.com/content/9/1/00336-2022 PubMed PMC

Dahl VN, Mølhave M, Fløe A, van Ingen J, Schön T, Lillebaek T, et al. Global trends of pulmonary infections with nontuberculous mycobacteria: a systematic review. Int J Infect Dis. 2022;125:120–31. PubMed

Pedersen AA, Løkke A, Fløe A, Ibsen R, Johansen IS, Hilberg O. Nationwide Increasing Incidence of Nontuberculous Mycobacterial Diseases Among Adults in Denmark: Eighteen Years of Follow-Up. Chest. 2024. PubMed

Manbenmad V, So-ngern A, Chetchotisakd P, Faksri K, Ato M, Nithichanon A et al. Evaluating anti-GPL-core IgA as a diagnostic tool for non-tuberculous mycobacterial infections in Thai patients with high antibody background. Scientific Reports 2023 13:1 [Internet]. 2023 [cited 2024 Jul 3];13:1–9. Available from: https://www.nature.com/articles/s41598-023-45893-8 PubMed PMC

Zhu Y, Hua W, Liu Z, Zhang M, Wang X, Wu B et al. Identification and characterization of nontuberculous mycobacteria isolated from suspected pulmonary tuberculosis patients in eastern china from 2009 to 2019 using an identification array system. The Brazilian Journal of Infectious Diseases [Internet]. 2022 [cited 2024 Jul 3];26. Available from:/pmc/articles/PMC9387452/ PubMed PMC

Kim H, Kim SH, Shim TS, Kim MN, Bai GH, Park YG et al. Differentiation of Mycobacterium species by analysis of the heat-shock protein 65 gene (hsp65). Int J Syst Evol Microbiol [Internet]. 2005 [cited 2024 Oct 31];55:1649–56. Available from: https://pubmed.ncbi.nlm.nih.gov/16014496/ PubMed

Adékambi T, Colson P, Drancourt M. rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol [Internet]. 2003 [cited 2024 Oct 31];41:5699–708. Available from: https://pubmed.ncbi.nlm.nih.gov/14662964/ PubMed PMC

Davis JL, Cattamanchi A, Cuevas LE, Hopewell PC, Steingart KR. Diagnostic accuracy of same-day microscopy versus standard microscopy for pulmonary tuberculosis: a systematic review and meta-analysis. Lancet Infect Dis [Internet]. 2013 [cited 2024 Nov 17];13:147–54. Available from: https://pubmed.ncbi.nlm.nih.gov/23099183/ PubMed PMC

Lee AS, Jelfs P, Sintchenko V, Gilbert GL. Identification of non-tuberculous mycobacteria: Utility of the GenoType Mycobacterium CM/AS assay compared with HPLC and 16S rRNA gene sequencing. J Med Microbiol [Internet]. 2009 [cited 2024 Oct 31];58:900–4. Available from: https://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm.0.007484-0 PubMed

Huh HJ, Kim SY, Shim HJ, Kim DH, Yoo IY, Kang OK et al. GenoType NTM-DR Performance Evaluation for Identification of Mycobacterium avium Complex and Mycobacterium abscessus and Determination of Clarithromycin and Amikacin Resistance. J Clin Microbiol [Internet]. 2019 [cited 2024 Oct 31];57. Available from: https://pubmed.ncbi.nlm.nih.gov/31167842/ PubMed PMC

Jouet A, Gaudin C, Badalato N, Allix-Béguec C, Duthoy S, Ferré A et al. Deep amplicon sequencing for culture-free prediction of susceptibility or resistance to 13 anti-tuberculous drugs. Eur Respir J [Internet]. 2021 [cited 2024 Jul 8];57. Available from: /pmc/articles/PMC8174722/. PubMed PMC

From clinical sample. to drug resistance profile Deeplex ® Myc-TB USER MANUAL. 2023.

Who. Module 3: Diagnosis WHO operational handbook on tuberculosis Rapid diagnostics for tuberculosis detection Third edition.

Solanki P, Lipman M, McHugh TD, Satta G. Whole genome sequencing and prediction of antimicrobial susceptibilities in non-tuberculous mycobacteria. Front Microbiol. 2022;13:1044515. PubMed PMC

Wetzstein N, Diricks M, Anton TB, Andres S, Kuhns M, Kohl TA et al. Clinical and genomic features of Mycobacterium avium complex: a multi-national European study. Genome Med. 2024;16. PubMed PMC

Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ, Andrejak C et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. European Respiratory Journal [Internet]. 2020 [cited 2025 Jan 14];56. Available from: https://publications.ersnet.org/content/erj/56/1/2000535 PubMed PMC

Union PO. of the E. Handbook on tuberculosis laboratory diagnostic methods in the European Union: updated 2018. 2023 [cited 2025 Jan 16]; Available from: https://op.europa.eu/en/publication-detail/-/publication/aee67ed9-81e1-11ee-99ba-01aa75ed71a1/language-en

Brown-Elliott BA, Woods GL. Antimycobacterial susceptibility testing of nontuberculous mycobacteria [Internet]. J Clin Microbiol. American Society for Microbiology; 2019 [cited 2021 Aug 31]. pp. 834–53. Available from: 10.1128/JCM PubMed PMC

Feldgarden M, Brover V, Gonzalez-Escalona N, Frye JG, Haendiges J, Haft DH et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Scientific Reports 2021 11:1 [Internet]. 2021 [cited 2024 Nov 6];11:1–9. Available from: https://www.nature.com/articles/s41598-021-91456-0 PubMed PMC

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol [Internet]. 2012 [cited 2024 Oct 17];19:455–77. Available from: https://pubmed.ncbi.nlm.nih.gov/22506599/ PubMed PMC

Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics [Internet]. 2013 [cited 2024 Oct 15];14:1–14. Available from: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-60 PubMed PMC

Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res [Internet]. 2022 [cited 2024 Oct 15];50:D801. Available from: /pmc/articles/PMC8728197/ PubMed PMC

Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol. 2015;32:2798–800. PubMed PMC

Kreft L, Botzki A, Coppens F, Vandepoele K, Van Bel M. PhyD3: a phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics [Internet]. 2017 [cited 2024 Oct 15];33:2946–7. Available from: https://pubmed.ncbi.nlm.nih.gov/28525531/ PubMed

Kim CK, Choi SI, Jeon BR, Lee YW, Lee YK, Shin HB. Pulmonary Infection Caused by Mycobacterium neoaurum: The First Case in Korea. Ann Lab Med [Internet]. 2014 [cited 2024 Oct 15];34:243. Available from: /pmc/articles/PMC3999325/ PubMed PMC

Weidmann MD, Wu Y, Wu F, Hapani DD, Green DA, Aaron JG et al. A case of novel, rapidly-growing Mycolicibacter kumamotonensis infection in a patient with severe pulmonary disease treated in New York City. BMC Infect Dis [Internet]. 2023 [cited 2024 Oct 15];23:1–7. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-022-07959-2 PubMed PMC

Turvey SL, Tyrrell GJ, Hernandez C, Kabbani D, Doucette K, Cervera C. Mycobacterium branderi infection: case report and literature review of an unusual and difficult-to-treat non-tuberculous mycobacterium. Int J Infect Dis. 2017;58:65–7. PubMed

Manika K, Kontos F, Papavasileiou A, Papaventsis D, Sionidou M, Kioumis I. Severe Pulmonary Disease Caused by Mycolicibacter kumamotonensis. Emerg Infect Dis [Internet]. 2021 [cited 2024 Oct 15];27:962. Available from: /pmc/articles/PMC7920653/ PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...