Remodeling of the liver fibrosis microenvironment based on nilotinib-loaded multicatalytic nanozymes with boosted antifibrogenic activity
Status PubMed-not-MEDLINE Language English Country Netherlands Media print-electronic
Document type Journal Article
PubMed
38045041
PubMed Central
PMC10692490
DOI
10.1016/j.apsb.2023.08.020
PII: S2211-3835(23)00326-X
Knihovny.cz E-resources
- Keywords
- Collagen, ECM, HSCs, Hypoxia, Liver fibrosis, Microenvironment remodeling, Nanozyme, Nilotinib,
- Publication type
- Journal Article MeSH
Liver fibrosis is a reversible pathological process caused by chronic liver damage and a major risk factor for hepatocellular carcinoma (HCC). Hepatic stellate cell (HSC) activation is considered the main target for liver fibrosis therapy. However, the efficiency of this strategy is limited due to the complex microenvironment of liver fibrosis, including excessive extracellular matrix (ECM) deposition and hypoxia-induced imbalanced ECM metabolism. Herein, nilotinib (NIL)-loaded hyaluronic acid (HA)-coated Ag@Pt nanotriangular nanozymes (APNH NTs) were developed to inhibit HSCs activation and remodel the microenvironment of liver fibrosis. APNH NTs efficiently eliminated intrahepatic reactive oxygen species (ROS) due to their inherent superoxide dismutase (SOD) and catalase (CAT) activities, thereby downregulating the expression of NADPH oxidase-4 (NOX-4) and inhibiting HSCs activation. Simultaneously, the oxygen produced by the APNH NTs further alleviated the hypoxic microenvironment. Importantly, the released NIL promoted collagen depletion by suppressing the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), thus synergistically remodeling the microenvironment of liver fibrosis. Notably, an in vivo study in CCl4-induced mice revealed that APNH NTs exhibited significant antifibrogenic effects without obvious long-term toxicity. Taken together, the data from this work suggest that treatment with the synthesized APNH NTs provides an enlightening strategy for remodeling the microenvironment of liver fibrosis with boosted antifibrogenic activity.
See more in PubMed
Kisseleva T., Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol. 2021;18:151–166. PubMed
Wynn T.A., Ramalingam T.R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18:1028–1040. PubMed PMC
Krenkel O., Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol. 2017;17:306–321. PubMed
Pellicoro A., Ramachandran P., Iredale J.P., Fallowfield J.A. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014;14:181–194. PubMed
Mehal W.Z., Iredale J., Friedman S.L. Scraping fibrosis: expressway to the core of fibrosis. Nat Med. 2011;17:552–553. PubMed PMC
Schuppan D., Kim Y.O. Evolving therapies for liver fibrosis. J Clin Invest. 2013;123:1887–1901. PubMed PMC
Zhang C.Y., Yuan W.G., He P., Lei J.H., Wang C.X. Liver fibrosis and hepatic stellate cells: etiology, pathological hallmarks and therapeutic targets. World J Gastroenterol. 2016;22:10512–10522. PubMed PMC
Rockey D.C., Bell P.D., Hill J.A. Fibrosis—a common pathway to organ injury and failure. N Engl J Med. 2015;372:1138–1149. PubMed
Copple B.L., Bai S., Burgoon L.D., Moon J.O. Hypoxia-inducible factor-1 alpha regulates the expression of genes in hypoxic hepatic stellate cells important for collagen deposition and angiogenesis. Liver Int. 2011;31:230–244. PubMed PMC
Foglia B., Novo E., Protopapa F., Maggiora M., Bocca C., Cannito S., et al. Hypoxia, hypoxia-inducible factors and liver fibrosis. Cells. 2021;10:1764. PubMed PMC
Bataller R., Brenner D.A. Hepatic stellate cells as a target for the treatment of liver fibrosis. Semin Liver Dis. 2001;21:437–451. PubMed
Prakash J., Pinzani M. Fibroblasts and extracellular matrix: targeting and therapeutic tools in fibrosis and cancer Preface. Adv Drug Deliv Rev. 2017;121:1–2. PubMed
Roderfeld M. Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biol. 2018;68–69:452–462. PubMed
Weiskirchen R. Hepatoprotective and anti-fibrotic agents: itʹs time to take the next step. Front Pharmacol. 2016;6:303. PubMed PMC
Shiha G.E., Abu-Elsaad N.M., Zalata K.R., Ibrahim T.M. Tracking anti-fibrotic pathways of nilotinib and imatinib in experimentally induced liver fibrosis: an insight. Clin Exp Pharmacol Physiol. 2014;41:788–797. PubMed
Liu Y.Q., Wang Z., Kwong S.Q., Lui E.L.H., Friedman S.L., Li F.R., et al. Inhibition of PDGF, TGF-beta, and Abl signaling and reduction of liver fibrosis by the small molecule Bcr-Abl tyrosine kinase antagonist Nilotinib. J Hepatol. 2011;55:612–625. PubMed
Andersson P., Von Euler M., Beckert M. Comparable pharmacokineties of 85 mg RightSize nilotinib (XS003) and 150 mg Tasigna in healthy volunteers using a hybrid nariopartick-based formulation platform for protein kinase inhibitors. J Clin Oncol. 2014;32:1. PubMed
Qiao J.B., Fan Q.Q., Xing L., Cui P.F., He Y.J., Zhu J.C., et al. Vitamin A-decorated biocompatible micelles for chemogene therapy of liver fibrosis. J Control Release. 2018;283:113–125. PubMed
Lin L.T., Gong H.Y., Li R., Huang J.J., Cai M.Y., Lan T., et al. Nanodrug with ROS and pH dual-sensitivity ameliorates liver fibrosis via multicellular regulation. Adv Sci. 2020;7 PubMed PMC
Wu P.K., Luo X.P., Wu H., Zhang Q.Y., Dai Y.X., Sun M.J. Efficient and targeted chemo-gene delivery with self-assembled fluoro-nanoparticles for liver fibrosis therapy and recurrence. Biomaterials. 2020;261 PubMed
Qiao J.B., Fan Q.Q., Zhang C.L., Lee J., Byun J., Xing L., et al. Hyperbranched lipoid-based lipid nanoparticles for bidirectional regulation of collagen accumulation in liver fibrosis. J Control Release. 2020;321:629–640. PubMed
Xu Y.C., Chen J., Jiang W., Zhao Y.Y., Yang C., Wu Y., et al. Multiplexing nanodrug ameliorates liver fibrosis via ROS elimination and inflammation suppression. Small. 2022;18 PubMed
Liu R., Luo C., Pang Z., Zhang J., Ruan S., Wu M., et al. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin Chem Lett. 2023;34
Lu Q., Zhou Y., Xu M., Liang X.Y., Jing H.Q., Wang X.X., et al. Sequential delivery for hepatic fibrosis treatment based on carvedilol loaded star-like nanozyme. J Control Release. 2022;341:247–260. PubMed
Tabbasam R., Khursid S., Ishaq Y., Malik A. In vivo evaluation of inorganic nanoparticle complexes against CCL4 induced hepatotoxicity. Curr Drug Deliv. 2021;18:1197–1203. PubMed
Liu Y.F., Cheng Y., Zhang H., Zhou M., Yu Y.J., Lin S.C., et al. Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci Adv. 2020;6 PubMed PMC
Qi G.H., Zhang Y., Wang J.F., Wang D.D., Wang B., Li H.J., et al. Smart plasmonic nanozyme enhances combined chemo-photothermal cancer therapy and reveals tryptophan metabolic apoptotic pathway. Anal Chem. 2019;91:12203–12211. PubMed
Nambara K., Niikura K., Mitomo H., Ninomiya T., Takeuchi C., Wei J.J., et al. Reverse size dependences of the cellular uptake of triangular and spherical gold nanoparticles. Langmuir. 2016;32:12559–12567. PubMed
Li W.H., Zhou C.C., Fu Y., Chen T.J., Liu X., Zhang Z.R., et al. Targeted delivery of hyaluronic acid nanomicelles to hepatic stellate cells in hepatic fibrosis rats. Acta Pharm Sin B. 2020;10:693–710. PubMed PMC
Zhang Q., Li N., Goebl J., Lu Z., Yin Y. A systematic study of the synthesis of silver nanoplates: is citrate a "magic" reagent? J Am Chem Soc. 2011;133:18931–18939. PubMed
Popa A., Samia A.C. Effect of metal precursor on the growth and electrochemical sensing properties of Pt-Ag nanoboxes. Chem Commun. 2014;50:7295–7298. PubMed
Fan Q.Q., Zhang C.L., Qiao J.B., Cui P.F., Xing L., Oh Y.K., et al. Extracellular matrix-penetrating nanodrill micelles for liver fibrosis therapy. Biomaterials. 2020;230 PubMed
Parola M., Robino G. Oxidative stress-related molecules and liver fibrosis. J Hepatol. 2001;35:297–306. PubMed
Wu X.X., Wu X.D., Ma Y.X., Shao F., Tan Y., Tan T., et al. CUG-binding protein 1 regulates HSC activation and liver fibrogenesis. Nat Commun. 2016;7 PubMed PMC
Ebrahimi H., Naderian M., Sohrabpour A.A. New concepts on reversibility and targeting of liver fibrosis; a review. Middle East J Dig Dis. 2018;10:133–148. PubMed PMC
Koyama Y., Xu J., Liu X., Brenner D.A. New developments on the treatment of liver fibrosis. Dig Dis. 2016;34:589–596. PubMed PMC
Lambeth J.D. Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med. 2007;43:332–347. PubMed PMC
Mortezaee K. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and liver fibrosis: a review. Cell Biochem Funct. 2018;36:292–302. PubMed
Crosas-Molist E., Fabregat I. Role of NADPH oxidases in the redox biology of liver fibrosis. Redox Biol. 2015;6:106–111. PubMed PMC
Hu C.J., Wang L.Y., Chodosh L.A., Keith B., Simon M.C. Differential roles of hypoxia-inducible factor 1 alpha (HIF-1 alpha) and HIF-2 alpha in hypoxic gene regulation. Mol Cell Biol. 2003;23:9361–9374. PubMed PMC
Fujii T., Fuchs B.C., Yamada S., Lauwers G.Y., Kulu Y., Goodwin J.M., et al. Mouse model of carbon tetrachloride induced liver fibrosis: histopathological changes and expression of CD133 and epidermal growth factor. BMC Gastroenterol. 2010;10:79. PubMed PMC
Dai Y., Xu C., Sun X., Chen X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev. 2017;46:3830–3852. PubMed PMC
Gan G.N., Jimeno A. Emerging from their burrow: hedgehog pathway inhibitors for cancer. Expet Opin Invest Drugs. 2016;25:1153–1166. PubMed
Duspara K., Bojanic K., Pejic J.I., Kuna L., Kolaric T.O., Nincevic V., et al. Targeting the Wnt signaling pathway in liver fibrosis for drug options: an update. J Clin Transl Hepatol. 2021;9:960–971. PubMed PMC
Khanjarsim V., Karimi J., Khodadadi I., Mohammadalipour A., Goodarzi M.T., Solgi G., et al. Ameliorative effects of nilotinib on CCl4 induced liver fibrosis via attenuation of RAGE/HMGB1 gene expression and oxidative stress in rat. Chonnam Med J. 2017;53:118–126. PubMed PMC
Rosmorduc O., Housset C. Hypoxia: a link between fibrogenesis, angiogenesis, and carcinogenesis in liver disease. Semin Liver Dis. 2010;30:258–270. PubMed
Mochizuki A., Pace A., Rockwell C.E., Roth K.J., Chow A., OʹBrien K.M., et al. Hepatic stellate cells orchestrate clearance of necrotic cells in a hypoxia-inducible factor-1 alpha-dependent manner by modulating macrophage phenotype in mice. J Immunol. 2014;192:3847–3857. PubMed PMC