The extracellular matrix (ECM)-and its mechanobiology-regulates key cellular functions that drive tumor growth and development. Accordingly, mechanotherapy is emerging as an effective approach to treat fibrotic diseases such as cancer. Through restoring the ECM to healthy-like conditions, this treatment aims to improve tissue perfusion, facilitating the delivery of chemotherapies. In particular, the manipulation of ECM is gaining interest as a valuable strategy for developing innovative treatments based on nanoparticles (NPs). However, further progress is required; for instance, it is known that the presence of a dense ECM, which hampers the penetration of NPs, primarily impacts the efficacy of nanomedicines. Furthermore, most 2D in vitro studies fail to recapitulate the physiological deposition of matrix components. To address these issues, a comprehensive understanding of the interactions between the ECM and NPs is needed. This review focuses on the main features of the ECM and its complex interplay with NPs. Recent advances in mechanotherapy are discussed and insights are offered into how its combination with nanomedicine can help improve nanomaterials design and advance their clinical translation.
- MeSH
- extracelulární matrix * metabolismus MeSH
- lidé MeSH
- nádory * terapie MeSH
- nanočástice * chemie MeSH
- nanomedicína * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cancer immunotherapy is increasingly used in clinical practice, but its success rate is reduced by tumor escape from the immune system. This may be due to the genetic instability of tumor cells, which allows them to adapt to the immune response and leads to intratumoral immune heterogeneity. The study investigated spatial immune heterogeneity in the tumor microenvironment and its possible drivers in a mouse model of tumors induced by human papillomaviruses (HPV) following immunotherapy. Gene expression was determined by RNA sequencing and mutations by whole exome sequencing. A comparison of different tumor areas revealed heterogeneity in immune cell infiltration, gene expression, and mutation composition. While the mean numbers of mutations with every impact on gene expression or protein function were comparable in treated and control tumors, mutations with high or moderate impact were increased after immunotherapy. The genes mutated in treated tumors were significantly enriched in genes associated with ECM metabolism, degradation, and interactions, HPV infection and carcinogenesis, and immune processes such as antigen processing and presentation, Toll-like receptor signaling, and cytokine production. Gene expression analysis of DNA damage and repair factors revealed that immunotherapy upregulated Apobec1 and Apobec3 genes and downregulated genes related to homologous recombination and translesion synthesis. In conclusion, this study describes the intratumoral immune heterogeneity, that could lead to tumor immune escape, and suggests the potential mechanisms involved.
- MeSH
- imunoterapie * metody MeSH
- infekce papilomavirem imunologie virologie MeSH
- lidé MeSH
- modely nemocí na zvířatech * MeSH
- mutace * MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové mikroprostředí * imunologie MeSH
- regulace genové exprese u nádorů MeSH
- sekvenování exomu MeSH
- únik nádoru z imunitní kontroly genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: Nonpharmacologic interventions (NPIs) constitute an important part of treatment for older adults, cover a broad and diverse range of interventions, and have advantages over pharmacologic interventions (eg, limited adverse side effects). However, an unambiguous definition of NPIs is still lacking. Defining NPIs may facilitate research on this topic and enhance comparability of results between studies, and might help to face the challenges of recognition, acceptation, funding, and implementation. Therefore, the aim of this review was to provide an overview and comparison of the definitions of NPIs used in the current literature on older adults. DESIGN: A systematic review was performed to provide an overview of the definitions of NPIs that are used in the current literature on older populations and to organize the characteristics involved in the definitions. SETTING AND PARTICIPANTS: People ≥60 years of age were included, not limited to a specific setting. METHODS: A systematic search was performed in the following 5 databases: PubMed, Embase, Clarivate Analytics/Web of Science Core Collection, Cumulative Index to Nursing and Allied Health Literature, and Wiley/Cochrane Library. The time frame within the databases was from inception to December 4, 2023. Review articles, editorials and consensus papers were included. RESULTS: We included 28 articles. We organized the definitions of NPI according to 4 different aspects: types of interventions involved, target population, goals the interventions addressed, and requirements of the interventions. Definitions in the current literature can generally be divided into 2 groups: NPIs described as not involving medication, and more elaborated multidomain definitions. Based on the results, we formulated criteria for types of interventions that can be considered an NPI. CONCLUSIONS AND IMPLICATIONS: Using current descriptions and characteristics, elements for a new definition for NPIs were proposed. To improve research in this field, consensus needs to be reached regarding elements covered by a definition of NPIs.
The small-molecule alkaloid halofuginone (HF) is obtained from febrifugine. Recent studies on HF have aroused widespread attention owing to its universal range of noteworthy biological activities and therapeutic functions, which range from parasite infections and fibrosis to autoimmune diseases. In particular, HF is believed to play an excellent anticancer role by suppressing the proliferation, adhesion, metastasis, and invasion of cancers. This review supports the goal of demonstrating various anticancer effects and molecular mechanisms of HF. In the studies covered in this review, the anticancer molecular mechanisms of HF mainly included transforming growth factor-β (TGF-β)/Smad-3/nuclear factor erythroid 2-related factor 2 (Nrf2), serine/threonine kinase proteins (Akt)/mechanistic target of rapamycin complex 1(mTORC1)/wingless/integrated (Wnt)/β-catenin, the exosomal microRNA-31 (miR-31)/histone deacetylase 2 (HDAC2) signaling pathway, and the interaction of the extracellular matrix (ECM) and immune cells. Notably, HF, as a novel type of adenosine triphosphate (ATP)-dependent inhibitor that is often combined with prolyl transfer RNA synthetase (ProRS) and amino acid starvation therapy (AAS) to suppress the formation of ribosome, further exerts a significant effect on the tumor microenvironment (TME). Additionally, the combination of HF with other drugs or therapies obtained universal attention. Our results showed that HF has significant potential for clinical cancer treatment.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Autorka v príspevku definuje perfuziológiu a ECMO metodiku. Popisuje základné činnosti perfuziológa, charakterizuje ECMO metodiku a dôležitosť rozvoja ECMO na Slovensku. Venuje sa problematike a potrebe vzdelávania na Slovensku.
In the articel, the author defines perfusiology and ECMO issues. It describes the basic activities of a perfusionist, characterizes ECMO methodology and the importance of ECMO development in Slovakia. It deals with the problems and the need for education in Slovakia.
Periodontitis is a globally prevalent chronic inflammatory disease that leads to periodontal pocket formation and eventually destroys tooth-supporting structures. Hence, the drastic increase in dental implants for periodontitis has become a severe clinical issue. Injectable hydrogel based on extracellular matrix (ECM) is highly biocompatible and tissue-regenerative with tailor-made mechanical properties and high payload capacity for in situ delivery of bioactive molecules to treat periodontitis. This therapeutic tool not only enhances the drug release efficiency and treatment efficacy but also reduces operation time. Nevertheless, it remains challenging to optimize the mechanical properties and intelligent control drug release rate of injectable hydrogels to achieve the highest therapeutic outcome. Literature precedent has shown the modulation of polymer backbones (synthetic polymers, natural polysaccharides, and proteins), crosslinking strategies, other bioactive constituents, and potentially the incorporation of nanomaterials that overall improve the desirable physiochemical and biological performances as well as biodegradability. In this review, we summarize the recent advances in the development, design, and material characterizations of common injectable hydrogels. Furthermore, we highlight cutting-edge representative examples of polysaccharide-, protein- and nanocomposite-based hydrogels that mediate regenerative factors and anti-inflammatory drugs for periodontal regeneration. Finally, we express our perspectives on potential challenges and future development of multifunctional injectable hydrogels for periodontitis.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Dysregulation of extracellular matrix (ECM) homeostasis plays a pivotal role in the accelerated degradation of cartilage, presenting a notable challenge for effective osteoarthritis (OA) treatment and cartilage regeneration. In this study, we introduced an injectable hydrogel based on streamlined-zinc oxide (ZnO), which is responsive to matrix metallopeptidase (MMP), for the delivery of miR-17-5p. This approach aimed to address cartilage damage by regulating ECM homeostasis. The ZnO/miR-17-5p composite functions by releasing zinc ions to attract native bone marrow mesenchymal stem cells, thereby fostering ECM synthesis through the proliferation of new chondrocytes. Concurrently, sustained delivery of miR-17-5p targets enzymes responsible for matrix degradation, thereby mitigating the catabolic process. Notably, the unique structure of the streamlined ZnO nanoparticles is distinct from their conventional spherical counterparts, which not only optimizes the rheological and mechanical properties of the hydrogels, but also enhances the efficiency of miR-17-5p transfection. Our male rat model demonstrated that the combination of streamlined ZnO, MMP-responsive hydrogels, and miRNA-based therapy effectively managed the equilibrium between catabolism and anabolism within the ECM, presenting a fresh perspective in the realm of OA treatment.
- MeSH
- buněčná diferenciace * účinky léků MeSH
- chondrocyty metabolismus účinky léků cytologie MeSH
- chrupavka * účinky léků MeSH
- extracelulární matrix * metabolismus účinky léků MeSH
- homeostáza účinky léků MeSH
- hydrogely * chemie MeSH
- kloubní chrupavka účinky léků MeSH
- krysa rodu rattus MeSH
- matrixové metaloproteinasy metabolismus MeSH
- mezenchymální kmenové buňky cytologie účinky léků metabolismus MeSH
- mikro RNA genetika metabolismus MeSH
- osteoartróza terapie patologie MeSH
- oxid zinečnatý chemie MeSH
- potkani Sprague-Dawley MeSH
- regenerace MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The inherent carbohydrate-binding specificities of human galectins can serve as recognition elements in both biotechnological and biomedical applications. The combination of the carbohydrate-recognition domain (CRD) of galectins fused to peptides or proteins for purification, immobilization, and imaging enables multifunctional utilization within a single protein. We present here a library of color-coded galectin fusion proteins that incorporate a His6-tag, a fluorescent protein, and a SpyCatcher or SpyTag unit to enable immobilization procedures. These galectin fusion proteins exhibit similar binding properties to the non-fused galectins with micromolar apparent binding affinities. N- and C-terminal fusion partners do not interfere with the SpyCatcher/SpyTag immobilization. By applying SpyCatcher/SpyTag-mediated SC-ST-Gal-3 conjugates, we show the stepwise formation of a three-layer ECM-like structure in vitro. Additionally, we demonstrate the SpyCatcher/SpyTag-mediated immobilization of galectins in microgels, which can serve as a transport platform for localized targeting applications. The proof of concept is provided by the galectin-mediated binding of microgels to colorectal cancer cells.
- MeSH
- barva MeSH
- biokompatibilní materiály chemie MeSH
- galektiny * chemie metabolismus MeSH
- gely chemie MeSH
- lidé MeSH
- rekombinantní fúzní proteiny * chemie metabolismus genetika MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Extracellular matrix (ECM) is a network of macromolecules which has two forms-perineuronal nets (PNNs) and a diffuse ECM (dECM)-both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility. Two months after oral treatment of rats with 4-methylumbelliferone (4-MU), an inhibitor of hyaluronan (HA) synthesis, we found downregulated staining for PNNs, HA, chondroitin sulfate proteoglycans, and glial fibrillary acidic protein. These changes were enhanced after 4 and 6 months and were reversible after a normal diet. Morphometric analysis further indicated atrophy of astrocytes. Using real-time iontophoretic method dysregulation of ECM resulted in increased ECS volume fraction α in the somatosensory cortex by 35%, from α = 0.20 in control rats to α = 0.27 after the 4-MU diet. Diffusion-weighted magnetic resonance imaging revealed a decrease of mean diffusivity and fractional anisotropy (FA) in the cortex, hippocampus, thalamus, pallidum, and spinal cord. This study shows the increase in ECS volume, a loss of FA, and changes in astrocytes due to modulation of PNNs and dECM that could affect extrasynaptic transmission, cell-to-cell communication, and neural plasticity.
- MeSH
- astrocyty metabolismus MeSH
- chondroitinsulfát proteoglykany metabolismus MeSH
- extracelulární matrix * metabolismus MeSH
- extracelulární prostor * metabolismus MeSH
- gliový fibrilární kyselý protein metabolismus MeSH
- hymekromon farmakologie MeSH
- krysa rodu rattus MeSH
- kyselina hyaluronová MeSH
- mozek metabolismus MeSH
- nervová síť účinky léků diagnostické zobrazování MeSH
- potkani Sprague-Dawley MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Right ventricular dysfunction (RVD) is common in patients with heart failure with reduced ejection fraction, and it is associated with poor prognosis. However, no biomarker reflecting RVD is available for routine clinical use. METHODS: Proteomic analysis of myocardium from the left ventricle and right ventricle (RV) of patients with heart failure with reduced ejection fraction with (n=10) and without RVD (n=10) who underwent heart transplantation was performed. Concentrations of 2 ECM (extracellular matrix) proteins with the highest myocardial upregulation in RVD, FMOD (fibromodulin) and FBLN5 (fibulin-5), were assayed in the blood and tested in a separate cohort of patients with heart failure with reduced ejection fraction (n=232) to test for the association of the 2 proteins with RV function and long-term outcomes. RESULTS: Multivariable linear regression revealed that plasma concentrations of both FMOD and FBLN5 were significantly associated with RV function regardless of the RV function assessment method. No association of FMOD or FBLN5 with left ventricular dysfunction, cardiac index, body mass index, diabetes status, or kidney function was found. Plasma levels of FMOD and FBLN5 were significantly associated with patient outcomes (P=0.005; P=0.004). Area under the curve analysis showed that the addition of FBLN5 or FMOD to RV function assessment had a significantly higher area under the curve after 4 years of follow-up (0.653 and 0.631, respectively) compared with RV function alone (0.570; P<0.05 for both). Similarly, the combination of MAGGIC (Meta-Analysis Global Group in Chronic Heart Failure) score, FBLN5, and FMOD had a significantly larger area under the curve (0.669) than the combination of MAGGIC score+RVD grade (0.572; P=0.02). The Kaplan-Meier analysis demonstrated that patients with the elevation of both FMOD and FBLN5 (ie, FMOD >64 ng/mL and FMOD >27 ng/mL) had a worse prognosis than those with the elevation of either FBLN5 or FMOD (P=0.03) demonstrating the additive prognostic value of both proteins. CONCLUSIONS: Our study proposes that circulating levels of FMOD and FBLN5 may serve as new biomarkers of RVD in patients with heart failure with reduced ejection fraction.
- MeSH
- biologické markery * krev MeSH
- extracelulární matrix - proteiny krev metabolismus MeSH
- fibromodulin * MeSH
- funkce levé komory srdeční fyziologie MeSH
- funkce pravé komory srdeční fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- prognóza MeSH
- proteiny vázající vápník krev metabolismus MeSH
- proteomika * metody MeSH
- senioři MeSH
- srdeční komory patofyziologie metabolismus MeSH
- srdeční selhání * patofyziologie metabolismus krev MeSH
- tepový objem * fyziologie MeSH
- transplantace srdce MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH