NK92 Expressing Anti-BCMA CAR and Secreted TRAIL for the Treatment of Multiple Myeloma: Preliminary In Vitro Assessment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
SGS04/PrF/2023, SGS22/LF/2023
Student's grant system of the University of Ostrava
NU21-03-00032
Ministry of Health of the Czech Republic
FNOs/2022
MH CZ -DRO -FNOs/2022
FNOs/2023
MH CZ -DRO -FNOs/2023
NU23-03-00374
Czech Health Research Council
CZ.02.1.01/0.0/0.0/17_049/0008440
Cell Coolab Ostrava-Research and Development Center for Cell Therapy in Hematology and Oncology
TN02000132
Národní centrum pro nové metody diagnostiky, sledování, léčby a prevence geneticky podmíněných nemocí
PubMed
38067177
PubMed Central
PMC10706019
DOI
10.3390/cells12232748
PII: cells12232748
Knihovny.cz E-zdroje
- Klíčová slova
- allogenic, cancer, chimeric antigen receptor, immunotherapy, multiple myeloma, natural killer,
- MeSH
- bortezomib farmakologie terapeutické užití MeSH
- chimerické antigenní receptory * metabolismus MeSH
- imunoterapie adoptivní MeSH
- kvalita života MeSH
- lidé MeSH
- maturační antigen B-buněk metabolismus MeSH
- mnohočetný myelom * patologie terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bortezomib MeSH
- chimerické antigenní receptory * MeSH
- maturační antigen B-buněk MeSH
Multiple myeloma (MM) has witnessed improved patient outcomes through advancements in therapeutic approaches. Notably, allogeneic stem cell transplantation, proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies have contributed to enhanced quality of life. Recently, a promising avenue has emerged with chimeric antigen receptor (CAR) T cells targeting B-cell maturation antigen (BCMA), expressed widely on MM cells. To mitigate risks associated with allogenic T cells, we investigated the potential of BCMA CAR expression in natural killer cells (NKs), known for potent cytotoxicity and minimal side effects. Using the NK-92 cell line, we co-expressed BCMA CAR and soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) employing the piggyBac transposon system. Engineered NK cells (CAR-NK-92-TRAIL) demonstrated robust cytotoxicity against a panel of MM cell lines and primary patient samples, outperforming unmodified NK-92 cells with a mean difference in viability of 45.1% (±26.1%, depending on the target cell line). Combination therapy was explored with the proteasome inhibitor bortezomib (BZ) and γ-secretase inhibitors (GSIs), leading to a significant synergistic effect in combination with CAR-NK-92-TRAIL cells. This synergy was evident in cytotoxicity assays where a notable decrease in MM cell viability was observed in combinatorial therapy compared to single treatment. In summary, our study demonstrates the therapeutic potential of the CAR-NK-92-TRAIL cells for the treatment of MM. The synergistic impact of combining these engineered NK cells with BZ and GSI supports further development of allogeneic CAR-based products for effective MM therapy.
Department of Haematooncology University Hospital Ostrava 708 00 Ostrava Czech Republic
Faculty of Science University of Ostrava 701 00 Ostrava Czech Republic
Zobrazit více v PubMed
Nakaya A., Fujita S., Satake A., Nakanishi T., Azuma Y., Tsubokura Y., Hotta M., Yoshimura H., Ishii K., Ito T., et al. Impact of CRAB Symptoms in Survival of Patients with Symptomatic Myeloma in Novel Agent Era. Hematol. Rep. 2017;9:6887. doi: 10.4081/hr.2017.6887. PubMed DOI PMC
Bansal R., Rakshit S., Kumar S. Extramedullary disease in multiple myeloma. Blood Cancer J. 2021;11:161. doi: 10.1038/s41408-021-00527-y. PubMed DOI PMC
Zhang S., Kulkarni A.A., Xu B., Chu H., Kourelis T., Go R.S., Wang M.L., Bachanova V., Wang Y. Bortezomib-based consolidation or maintenance therapy for multiple myeloma: A meta-analysis. Blood Cancer J. 2020;10:33. doi: 10.1038/s41408-020-0298-1. PubMed DOI PMC
Punke A.P., Waddell J.A., Solimando D.A., Jr. Lenalidomide, Bortezomib, and Dexamethasone (RVD) Regimen for Multiple Myeloma. Hosp. Pharm. 2017;52:27–32. doi: 10.1310/hpj5201-27. PubMed DOI PMC
Quach H., Ritchie D., Stewart A.K., Neeson P., Harrison S., Smyth M.J., Prince H.M. Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia. 2010;24:22–32. doi: 10.1038/leu.2009.236. PubMed DOI PMC
Kervoëlen C., Ménoret E., Gomez-Bougie P., Bataille R., Godon C., Marionneau-Lambot S., Moreau P., Pellat-Deceunynck C., Amiot M. Dexamethasone-induced cell death is restricted to specific molecular subgroups of multiple myeloma. Oncotarget. 2015;6:26922–26934. doi: 10.18632/oncotarget.4616. PubMed DOI PMC
Singh S., Kumar N.K., Dwiwedi P., Charan J., Kaur R., Sidhu P., Chugh V.K. Monoclonal Antibodies: A Review. Curr. Clin. Pharmacol. 2018;13:85–99. doi: 10.2174/1574884712666170809124728. PubMed DOI
Gauthier M., Laroye C., Bensoussan D., Boura C., Decot V. Natural Killer cells and monoclonal antibodies: Two partners for successful antibody dependent cytotoxicity against tumor cells. Crit. Rev. Oncol. 2021;160:103261. doi: 10.1016/j.critrevonc.2021.103261. PubMed DOI
Wudhikarn K., Wills B., Lesokhin A.M. Monoclonal antibodies in multiple myeloma: Current and emerging targets and mechanisms of action. Best Pract. Res. Clin. Haematol. 2020;33:101143. doi: 10.1016/j.beha.2020.101143. PubMed DOI PMC
Alexander M., Culos K., Roddy J., Shaw J.R., Bachmeier C., Shigle T.L., Mahmoudjafari Z. Chimeric Antigen Receptor T Cell Therapy: A Comprehensive Review of Clinical Efficacy, Toxicity, and Best Practices for Outpatient Administration. Transplant. Cell. Ther. 2021;27:558–570. doi: 10.1016/j.jtct.2021.01.014. PubMed DOI
Sengsayadeth S., Savani B.N., Oluwole O., Dholaria B. Overview of approved CAR-T therapies, ongoing clinical trials, and its impact on clinical practice. EJHaem. 2021;3((Suppl. S1)):6–10. doi: 10.1002/jha2.338. PubMed DOI PMC
Kim D.W., Cho J.Y. Recent Advances in Allogeneic CAR-T Cells. Biomolecules. 2020;10:263. doi: 10.3390/biom10020263. PubMed DOI PMC
Teoh P.J., Chng W.J. CAR T-cell therapy in multiple myeloma: More room for improvement. Blood Cancer J. 2021;11:84. doi: 10.1038/s41408-021-00469-5. PubMed DOI PMC
Munshi N.C., Anderson L.D., Jr., Shah N., Madduri D., Berdeja J., Lonial S., Raje N., Lin Y., Siegel D., Oriol A., et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021;384:705–716. doi: 10.1056/NEJMoa2024850. PubMed DOI
Sanber K., Savani B., Jain T. Graft-versus-host disease risk after chimeric antigen receptor T-cell therapy: The diametric opposition of T cells. Br. J. Haematol. 2021;195:660–668. doi: 10.1111/bjh.17544. PubMed DOI
Yan Z., Zhang H., Cao J., Zhang C., Liu H., Huang H., Cheng H., Qiao J., Wang Y., Wang Y., et al. Characteristics and Risk Factors of Cytokine Release Syndrome in Chimeric Antigen Receptor T Cell Treatment. Front. Immunol. 2021;12:611366. doi: 10.3389/fimmu.2021.611366. PubMed DOI PMC
Allen E.S., Stroncek D.F., Ren J., Eder A.F., West K.A., Fry T.J., Lee D.W., Mackall C.L., Conry-Cantilena C. Autologous lymphapheresis for the production of chimeric antigen receptor T cells. Transfusion. 2017;57:1133–1141. doi: 10.1111/trf.14003. PubMed DOI PMC
Brudno J.N., Kochenderfer J.N. Toxicities of chimeric antigen receptor T cells: Recognition and management. Blood. 2016;127:3321–3330. doi: 10.1182/blood-2016-04-703751. PubMed DOI PMC
Vadakekolathu J., Rutella S. T-Cell Manipulation Strategies to Prevent Graft-Versus-Host Disease in Haploidentical Stem Cell Transplantation. Biomedicines. 2017;5:33. doi: 10.3390/biomedicines5020033. PubMed DOI PMC
Gargett T., Brown M.P. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front. Pharmacol. 2014;5:235. doi: 10.3389/fphar.2014.00235. PubMed DOI PMC
Pascal V., Schleinitz N., Brunet C., Ravet S., Bonnet E., Lafarge X., Touinssi M., Reviron D., Viallard J.F., Moreau J.F., et al. Comparative analysis of NK cell subset distribution in normal and lymphoproliferative disease of granular lymphocyte conditions. Eur. J. Immunol. 2004;34:2930–2940. doi: 10.1002/eji.200425146. PubMed DOI
Paul S., Lal G. The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy. Front. Immunol. 2017;8:1124. doi: 10.3389/fimmu.2017.01124. PubMed DOI PMC
Voskoboinik I., Whisstock J.C., Trapani J.A. Perforin and granzymes: Function, dysfunction and human pathology. Nat. Rev. Immunol. 2015;15:388–400. doi: 10.1038/nri3839. PubMed DOI
Xie G., Dong H., Liang Y., Ham J.D., Rizwan R., Chen J. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine. 2020;59:102975. doi: 10.1016/j.ebiom.2020.102975. PubMed DOI PMC
Zhang Y., Wallace D.L., De Lara C.M., Ghattas H., Asquith B., Worth A., Griffin G.E., Taylor G.P., Tough D.F., Beverley P.C., et al. In vivo kinetics of human natural killer cells: The effects of ageing and acute and chronic viral infection. Immunology. 2007;121:258–265. doi: 10.1111/j.1365-2567.2007.02573.x. PubMed DOI PMC
Lam N., Trinklein N.D., Buelow B., Patterson G.H., Ojha N., Kochenderfer J.N. Author Correction: Anti-BCMA chimeric antigen receptors with fully human heavy-chain-only antigen recognition domains. Nat. Commun. 2020;11:1319. doi: 10.1038/s41467-020-15145-8. PubMed DOI PMC
Carlsten M., Namazi A., Reger R., Levy E., Berg M., Hilaire C.S., Childs R.W. Bortezomib sensitizes multiple myeloma to NK cells via ER-stress-induced suppression of HLA-E and upregulation of DR5. OncoImmunology. 2018;8:e1534664. doi: 10.1080/2162402X.2018.1534664. PubMed DOI PMC
Chinnasamy D., Milsom M.D., Shaffer J., Neuenfeldt J., Shaaban A.F., Margison G.P., Fairbairn L.J., Chinnasamy N. Multicistronic lentiviral vectors containing the FMDV 2A cleavage factor demonstrate robust expression of encoded genes at limiting MOI. Virol. J. 2006;3:14. doi: 10.1186/1743-422X-3-14. PubMed DOI PMC
Lomakina G.Y., Modestova Y.A., Ugarova N.N. Bioluminescence assay for cell viability. Biochemistry. 2015;80:701–713. doi: 10.1134/S0006297915060061. PubMed DOI
Veluchamy J.P., Delso-Vallejo M., Kok N., Bohme F., Seggewiss-Bernhardt R., van der Vliet H.J., de Gruijl T.D., Huppert V., Spanholtz J. Standardized and flexible eight colour flow cytometry panels harmonized between different laboratories to study human NK cell phenotype and function. Sci. Rep. 2017;7:43873. doi: 10.1038/srep43873. PubMed DOI PMC
Richardson P.G., Barlogie B., Berenson J., Singhal S., Jagannath S., Irwin D., Rajkumar S.V., Srkalovic G., Alsina M., Alexanian R., et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med. 2003;348:2609–2617. doi: 10.1056/NEJMoa030288. PubMed DOI
Manasanch E.E., Orlowski R.Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 2017;14:417–433. doi: 10.1038/nrclinonc.2016.206. PubMed DOI PMC
Shah K., Tung C.H., Yang K., Weissleder R., Breakefield X.O. Inducible release of TRAIL fusion proteins from a proapoptotic form for tumor therapy. Cancer Res. 2004;64:3236–3242. doi: 10.1158/0008-5472.CAN-03-3516. PubMed DOI
Hu D., Chen L., Yan D., Dong W., Chen M., Niu S., Wang S., Zhang J., Nie X., Fang Y. Effectiveness and safety of anti-BCMA chimeric antigen receptor T-cell treatment in relapsed/refractory multiple myeloma: A comprehensive review and meta-analysis of prospective clinical trials. Front. Pharmacol. 2023;14:1149138. doi: 10.3389/fphar.2023.1149138. PubMed DOI PMC
Laurent S.A., Hoffmann F.S., Kuhn P.H., Cheng Q., Chu Y., Schmidt-Supprian M., Hauck S.M., Schuh E., Krumbholz M., Rübsamen H., et al. γ-Secretase directly sheds the survival receptor BCMA from plasma cells. Nat. Commun. 2015;6:7333. doi: 10.1038/ncomms8333. PubMed DOI PMC
Pont M.J., Hill T., Cole G.O., Abbott J.J., Kelliher J., Salter A.I., Hudecek M., Comstock M.L., Rajan A., Patel B.K.R., et al. γ-Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood. 2019;134:1585–1597. doi: 10.1182/blood.2019000050. PubMed DOI PMC
Neri S., Mariani E., Meneghetti A., Cattini L., Facchini A. Calcein-acetyoxymethyl cytotoxicity assay: Standardization of a method allowing additional analyses on recovered effector cells and supernatants. Clin. Diagn. Lab. Immunol. 2001;8:1131–1135. doi: 10.1128/CDLI.8.6.1131-1135.2001. PubMed DOI PMC
Zhang Y., Zhang Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020;17:807–821. doi: 10.1038/s41423-020-0488-6. PubMed DOI PMC
Fragkiadakis G.F., Spiliotopoulou M. Investigating the Quality of Life for Cancer Patients and Estimating the Cost of Immunotherapy in Selected Cases. Cureus. 2022;14:e32390. doi: 10.7759/cureus.32390. PubMed DOI PMC
Zahavi D., Weiner L. Monoclonal Antibodies in Cancer Therapy. Antibodies. 2020;9:34. doi: 10.3390/antib9030034. PubMed DOI PMC
Subklewe M., von Bergwelt-Baildon M., Humpe A. Chimeric Antigen Receptor T Cells: A Race to Revolutionize Cancer Therapy. Transfus. Med. Hemotherapy. 2019;46:15–24. doi: 10.1159/000496870. PubMed DOI PMC
Poirot L., Philip B., Schiffer-Mannioui C., Le Clerre D., Chion-Sotinel I., Derniame S., Potrel P., Bas C., Lemaire L., Galetto R., et al. Multiplex Genome-Edited T-cell Manufacturing Platform for "Off-the-Shelf" Adoptive T-cell Immunotherapies. Cancer Res. 2015;75:3853–3864. doi: 10.1158/0008-5472.CAN-14-3321. PubMed DOI
Ren J., Liu X., Fang C., Jiang S., June C.H., Zhao Y. Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition. Clin. Cancer Res. 2017;23:2255–2266. doi: 10.1158/1078-0432.CCR-16-1300. PubMed DOI PMC
Fabian K.P., Hodge J.W. The emerging role of off-the-shelf engineered natural killer cells in targeted cancer immunotherapy. Mol. Ther. Oncolytics. 2021;23:266–276. doi: 10.1016/j.omto.2021.10.001. PubMed DOI PMC
Klingemann H., Boissel L., Toneguzzo F. Natural Killer Cells for Immunotherapy-Advantages of the NK-92 Cell Line over Blood NK Cells. Front. Immunol. 2016;7:91. doi: 10.3389/fimmu.2016.00091. PubMed DOI PMC
Zhang J., Zheng H., Diao Y. Natural Killer Cells and Current Applications of Chimeric Antigen Receptor-Modified NK-92 Cells in Tumor Immunotherapy. Int. J. Mol. Sci. 2019;20:317. doi: 10.3390/ijms20020317. PubMed DOI PMC
Müller S., Bexte T., Gebel V., Kalensee F., Stolzenberg E., Hartmann J., Koehl U., Schambach A., Wels W.S., Modlich U., et al. High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia. Front. Immunol. 2020;10:3123. doi: 10.3389/fimmu.2019.03123. PubMed DOI PMC
Colamartino A.B.L., Lemieux W., Bifsha P., Nicoletti S., Chakravarti N., Sanz J., Roméro H., Selleri S., Béland K., Guiot M., et al. Efficient and Robust NK-Cell Transduction With Baboon Envelope Pseudotyped Lentivector. Front. Immunol. 2019;10:2873. doi: 10.3389/fimmu.2019.02873. PubMed DOI PMC
Singh H., Huls H., Kebriaei P., Cooper L.J. A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19. Immunol. Rev. 2013;257:181–190. doi: 10.1111/imr.12137. PubMed DOI PMC
Baek H.J., Kim J.S., Yoon M., Lee J.-J., Shin M.-G., Ryang D.-W., Kook H., Kim S.-K., Cho D. Ex vivo expansion of natural killer cells using cryopreserved irradiated feeder cells. Anticancer Res. 2013;33:2011–2019. PubMed
Motais B., Charvátová S., Walek Z., Hrdinka M., Smolarczyk R., Cichoń T., Czapla J., Giebel S., Šimíček M., Jelínek T., et al. Selection, Expansion, and Unique Pretreatment of Allogeneic Human Natural Killer Cells with Anti-CD38 Monoclonal Antibody for Efficient Multiple Myeloma Treatment. Cells. 2021;10:967. doi: 10.3390/cells10050967. PubMed DOI PMC
van der Loo J.C., Wright J.F. Progress and challenges in viral vector manufacturing. Hum. Mol. Genet. 2016;25:R42–R52. doi: 10.1093/hmg/ddv451. PubMed DOI PMC
Morellet N., Li X., A Wieninger S., Taylor J.L., Bischerour J., Moriau S., Lescop E., Bardiaux B., Mathy N., Assrir N., et al. Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase. Nucleic Acids Res. 2018;46:2660–2677. doi: 10.1093/nar/gky044. PubMed DOI PMC
Tai Y.-T., Anderson K.C., Liu J., Zhang X., Zhong J.F., Zhang C., Sanfilippo K.M., Vij R., Tricot S., Berthon C., et al. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy. 2015;7:1187–1199. doi: 10.2217/imt.15.77. PubMed DOI PMC
Bu D.X., Singh R., Choi E.E., Ruella M., Nunez-Cruz S., Mansfield K.G., Bennett P., Barton N., Wu Q., Zhang J., et al. Pre-clinical validation of B cell maturation antigen (BCMA) as a target for T cell immunotherapy of multiple myeloma. Oncotarget. 2018;9:25764–25780. doi: 10.18632/oncotarget.25359. PubMed DOI PMC
Curio S., Jonsson G., Marinović S. A summary of current NKG2D-based CAR clinical trials. Immunother. Adv. 2021;1:ltab018. doi: 10.1093/immadv/ltab018. PubMed DOI PMC
Gong Y., Wolterink R.G.J., Wang J., Bos G.M.J., Germeraad W.T.V. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J. Hematol. Oncol. 2021;14:73. doi: 10.1186/s13045-021-01083-5. PubMed DOI PMC
Samur M.K., Fulciniti M., Aktas Samur A., Bazarbachi A.H., Tai Y.-T., Prabhala R., Alonso A., Sperling A.S., Campbell T., Petrocca F., et al. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat. Commun. 2021;12:868. doi: 10.1038/s41467-021-21177-5. PubMed DOI PMC
Kimman T., Slomp A., Martens A., Grabherr S., Li S., van Diest E., Meeldijk J., Kuball J., Minnema M.C., Eldering E., et al. Serpin B9 controls tumor cell killing by CAR T cells. J. Immunother. Cancer. 2023;11:e006364. doi: 10.1136/jitc-2022-006364. PubMed DOI PMC
Walczak H., Miller R.E., Ariail K., Gliniak B., Griffith T.S., Kubin M., Chin W., Jones J., Woodward A., Le T., et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat. Med. 1999;5:157–163. doi: 10.1038/5517. PubMed DOI
de Mel S., Lim S.H., Tung M.L., Chng W.J. Implications of heterogeneity in multiple myeloma. BioMed Res. Int. 2014;2014:232546. doi: 10.1155/2014/232546. PubMed DOI PMC
Grosicki S., Simonova M., Spicka I., Pour L., Kriachok I., Gavriatopoulou M., Pylypenko H., Auner H.W., Leleu X., Doronin V., et al. Once-per-week selinexor, bortezomib, and dexamethasone versus twice-per-week bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): A randomised, open-label, phase 3 trial. Lancet. 2020;396:1563–1573. doi: 10.1016/S0140-6736(20)32292-3. PubMed DOI
Yimer H., Melear J., Faber E., Bensinger W.I., Burke J.M., Narang M., Stevens D., Gunawardena S., Lutska Y., Qi K., et al. Daratumumab, bortezomib, cyclophosphamide and dexamethasone in newly diagnosed and relapsed multiple myeloma: LYRA study. Br. J. Haematol. 2019;185:492–502. doi: 10.1111/bjh.15806. PubMed DOI PMC
Li H., Song W., Li Z., Zhang M. Preclinical and clinical studies of CAR-NK-cell therapies for malignancies. Front. Immunol. 2022;13:992232. doi: 10.3389/fimmu.2022.992232. PubMed DOI PMC
Yusa K., Zhou L., Li M.A., Bradley A., Craig N.L. A hyperactive piggyBac transposase for mammalian applications. Proc. Natl. Acad. Sci. USA. 2011;108:1531–1536. doi: 10.1073/pnas.1008322108. PubMed DOI PMC
Ingegnere T., Mariotti F.R., Pelosi A., Quintarelli C., De Angelis B., Tumino N., Besi F., Cantoni C., Locatelli F., Vacca P., et al. Human CAR NK Cells: A New Non-viral Method Allowing High Efficient Transfection and Strong Tumor Cell Killing. Front. Immunol. 2019;10:957. doi: 10.3389/fimmu.2019.00957. PubMed DOI PMC