NK92 Expressing Anti-BCMA CAR and Secreted TRAIL for the Treatment of Multiple Myeloma: Preliminary In Vitro Assessment

. 2023 Nov 30 ; 12 (23) : . [epub] 20231130

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38067177

Grantová podpora
SGS04/PrF/2023, SGS22/LF/2023 Student's grant system of the University of Ostrava
NU21-03-00032 Ministry of Health of the Czech Republic
FNOs/2022 MH CZ -DRO -FNOs/2022
FNOs/2023 MH CZ -DRO -FNOs/2023
NU23-03-00374 Czech Health Research Council
CZ.02.1.01/0.0/0.0/17_049/0008440 Cell Coolab Ostrava-Research and Development Center for Cell Therapy in Hematology and Oncology
TN02000132 Národní centrum pro nové metody diagnostiky, sledování, léčby a prevence geneticky podmíněných nemocí

Multiple myeloma (MM) has witnessed improved patient outcomes through advancements in therapeutic approaches. Notably, allogeneic stem cell transplantation, proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies have contributed to enhanced quality of life. Recently, a promising avenue has emerged with chimeric antigen receptor (CAR) T cells targeting B-cell maturation antigen (BCMA), expressed widely on MM cells. To mitigate risks associated with allogenic T cells, we investigated the potential of BCMA CAR expression in natural killer cells (NKs), known for potent cytotoxicity and minimal side effects. Using the NK-92 cell line, we co-expressed BCMA CAR and soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) employing the piggyBac transposon system. Engineered NK cells (CAR-NK-92-TRAIL) demonstrated robust cytotoxicity against a panel of MM cell lines and primary patient samples, outperforming unmodified NK-92 cells with a mean difference in viability of 45.1% (±26.1%, depending on the target cell line). Combination therapy was explored with the proteasome inhibitor bortezomib (BZ) and γ-secretase inhibitors (GSIs), leading to a significant synergistic effect in combination with CAR-NK-92-TRAIL cells. This synergy was evident in cytotoxicity assays where a notable decrease in MM cell viability was observed in combinatorial therapy compared to single treatment. In summary, our study demonstrates the therapeutic potential of the CAR-NK-92-TRAIL cells for the treatment of MM. The synergistic impact of combining these engineered NK cells with BZ and GSI supports further development of allogeneic CAR-based products for effective MM therapy.

Zobrazit více v PubMed

Nakaya A., Fujita S., Satake A., Nakanishi T., Azuma Y., Tsubokura Y., Hotta M., Yoshimura H., Ishii K., Ito T., et al. Impact of CRAB Symptoms in Survival of Patients with Symptomatic Myeloma in Novel Agent Era. Hematol. Rep. 2017;9:6887. doi: 10.4081/hr.2017.6887. PubMed DOI PMC

Bansal R., Rakshit S., Kumar S. Extramedullary disease in multiple myeloma. Blood Cancer J. 2021;11:161. doi: 10.1038/s41408-021-00527-y. PubMed DOI PMC

Zhang S., Kulkarni A.A., Xu B., Chu H., Kourelis T., Go R.S., Wang M.L., Bachanova V., Wang Y. Bortezomib-based consolidation or maintenance therapy for multiple myeloma: A meta-analysis. Blood Cancer J. 2020;10:33. doi: 10.1038/s41408-020-0298-1. PubMed DOI PMC

Punke A.P., Waddell J.A., Solimando D.A., Jr. Lenalidomide, Bortezomib, and Dexamethasone (RVD) Regimen for Multiple Myeloma. Hosp. Pharm. 2017;52:27–32. doi: 10.1310/hpj5201-27. PubMed DOI PMC

Quach H., Ritchie D., Stewart A.K., Neeson P., Harrison S., Smyth M.J., Prince H.M. Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia. 2010;24:22–32. doi: 10.1038/leu.2009.236. PubMed DOI PMC

Kervoëlen C., Ménoret E., Gomez-Bougie P., Bataille R., Godon C., Marionneau-Lambot S., Moreau P., Pellat-Deceunynck C., Amiot M. Dexamethasone-induced cell death is restricted to specific molecular subgroups of multiple myeloma. Oncotarget. 2015;6:26922–26934. doi: 10.18632/oncotarget.4616. PubMed DOI PMC

Singh S., Kumar N.K., Dwiwedi P., Charan J., Kaur R., Sidhu P., Chugh V.K. Monoclonal Antibodies: A Review. Curr. Clin. Pharmacol. 2018;13:85–99. doi: 10.2174/1574884712666170809124728. PubMed DOI

Gauthier M., Laroye C., Bensoussan D., Boura C., Decot V. Natural Killer cells and monoclonal antibodies: Two partners for successful antibody dependent cytotoxicity against tumor cells. Crit. Rev. Oncol. 2021;160:103261. doi: 10.1016/j.critrevonc.2021.103261. PubMed DOI

Wudhikarn K., Wills B., Lesokhin A.M. Monoclonal antibodies in multiple myeloma: Current and emerging targets and mechanisms of action. Best Pract. Res. Clin. Haematol. 2020;33:101143. doi: 10.1016/j.beha.2020.101143. PubMed DOI PMC

Alexander M., Culos K., Roddy J., Shaw J.R., Bachmeier C., Shigle T.L., Mahmoudjafari Z. Chimeric Antigen Receptor T Cell Therapy: A Comprehensive Review of Clinical Efficacy, Toxicity, and Best Practices for Outpatient Administration. Transplant. Cell. Ther. 2021;27:558–570. doi: 10.1016/j.jtct.2021.01.014. PubMed DOI

Sengsayadeth S., Savani B.N., Oluwole O., Dholaria B. Overview of approved CAR-T therapies, ongoing clinical trials, and its impact on clinical practice. EJHaem. 2021;3((Suppl. S1)):6–10. doi: 10.1002/jha2.338. PubMed DOI PMC

Kim D.W., Cho J.Y. Recent Advances in Allogeneic CAR-T Cells. Biomolecules. 2020;10:263. doi: 10.3390/biom10020263. PubMed DOI PMC

Teoh P.J., Chng W.J. CAR T-cell therapy in multiple myeloma: More room for improvement. Blood Cancer J. 2021;11:84. doi: 10.1038/s41408-021-00469-5. PubMed DOI PMC

Munshi N.C., Anderson L.D., Jr., Shah N., Madduri D., Berdeja J., Lonial S., Raje N., Lin Y., Siegel D., Oriol A., et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021;384:705–716. doi: 10.1056/NEJMoa2024850. PubMed DOI

Sanber K., Savani B., Jain T. Graft-versus-host disease risk after chimeric antigen receptor T-cell therapy: The diametric opposition of T cells. Br. J. Haematol. 2021;195:660–668. doi: 10.1111/bjh.17544. PubMed DOI

Yan Z., Zhang H., Cao J., Zhang C., Liu H., Huang H., Cheng H., Qiao J., Wang Y., Wang Y., et al. Characteristics and Risk Factors of Cytokine Release Syndrome in Chimeric Antigen Receptor T Cell Treatment. Front. Immunol. 2021;12:611366. doi: 10.3389/fimmu.2021.611366. PubMed DOI PMC

Allen E.S., Stroncek D.F., Ren J., Eder A.F., West K.A., Fry T.J., Lee D.W., Mackall C.L., Conry-Cantilena C. Autologous lymphapheresis for the production of chimeric antigen receptor T cells. Transfusion. 2017;57:1133–1141. doi: 10.1111/trf.14003. PubMed DOI PMC

Brudno J.N., Kochenderfer J.N. Toxicities of chimeric antigen receptor T cells: Recognition and management. Blood. 2016;127:3321–3330. doi: 10.1182/blood-2016-04-703751. PubMed DOI PMC

Vadakekolathu J., Rutella S. T-Cell Manipulation Strategies to Prevent Graft-Versus-Host Disease in Haploidentical Stem Cell Transplantation. Biomedicines. 2017;5:33. doi: 10.3390/biomedicines5020033. PubMed DOI PMC

Gargett T., Brown M.P. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front. Pharmacol. 2014;5:235. doi: 10.3389/fphar.2014.00235. PubMed DOI PMC

Pascal V., Schleinitz N., Brunet C., Ravet S., Bonnet E., Lafarge X., Touinssi M., Reviron D., Viallard J.F., Moreau J.F., et al. Comparative analysis of NK cell subset distribution in normal and lymphoproliferative disease of granular lymphocyte conditions. Eur. J. Immunol. 2004;34:2930–2940. doi: 10.1002/eji.200425146. PubMed DOI

Paul S., Lal G. The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy. Front. Immunol. 2017;8:1124. doi: 10.3389/fimmu.2017.01124. PubMed DOI PMC

Voskoboinik I., Whisstock J.C., Trapani J.A. Perforin and granzymes: Function, dysfunction and human pathology. Nat. Rev. Immunol. 2015;15:388–400. doi: 10.1038/nri3839. PubMed DOI

Xie G., Dong H., Liang Y., Ham J.D., Rizwan R., Chen J. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine. 2020;59:102975. doi: 10.1016/j.ebiom.2020.102975. PubMed DOI PMC

Zhang Y., Wallace D.L., De Lara C.M., Ghattas H., Asquith B., Worth A., Griffin G.E., Taylor G.P., Tough D.F., Beverley P.C., et al. In vivo kinetics of human natural killer cells: The effects of ageing and acute and chronic viral infection. Immunology. 2007;121:258–265. doi: 10.1111/j.1365-2567.2007.02573.x. PubMed DOI PMC

Lam N., Trinklein N.D., Buelow B., Patterson G.H., Ojha N., Kochenderfer J.N. Author Correction: Anti-BCMA chimeric antigen receptors with fully human heavy-chain-only antigen recognition domains. Nat. Commun. 2020;11:1319. doi: 10.1038/s41467-020-15145-8. PubMed DOI PMC

Carlsten M., Namazi A., Reger R., Levy E., Berg M., Hilaire C.S., Childs R.W. Bortezomib sensitizes multiple myeloma to NK cells via ER-stress-induced suppression of HLA-E and upregulation of DR5. OncoImmunology. 2018;8:e1534664. doi: 10.1080/2162402X.2018.1534664. PubMed DOI PMC

Chinnasamy D., Milsom M.D., Shaffer J., Neuenfeldt J., Shaaban A.F., Margison G.P., Fairbairn L.J., Chinnasamy N. Multicistronic lentiviral vectors containing the FMDV 2A cleavage factor demonstrate robust expression of encoded genes at limiting MOI. Virol. J. 2006;3:14. doi: 10.1186/1743-422X-3-14. PubMed DOI PMC

Lomakina G.Y., Modestova Y.A., Ugarova N.N. Bioluminescence assay for cell viability. Biochemistry. 2015;80:701–713. doi: 10.1134/S0006297915060061. PubMed DOI

Veluchamy J.P., Delso-Vallejo M., Kok N., Bohme F., Seggewiss-Bernhardt R., van der Vliet H.J., de Gruijl T.D., Huppert V., Spanholtz J. Standardized and flexible eight colour flow cytometry panels harmonized between different laboratories to study human NK cell phenotype and function. Sci. Rep. 2017;7:43873. doi: 10.1038/srep43873. PubMed DOI PMC

Richardson P.G., Barlogie B., Berenson J., Singhal S., Jagannath S., Irwin D., Rajkumar S.V., Srkalovic G., Alsina M., Alexanian R., et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med. 2003;348:2609–2617. doi: 10.1056/NEJMoa030288. PubMed DOI

Manasanch E.E., Orlowski R.Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 2017;14:417–433. doi: 10.1038/nrclinonc.2016.206. PubMed DOI PMC

Shah K., Tung C.H., Yang K., Weissleder R., Breakefield X.O. Inducible release of TRAIL fusion proteins from a proapoptotic form for tumor therapy. Cancer Res. 2004;64:3236–3242. doi: 10.1158/0008-5472.CAN-03-3516. PubMed DOI

Hu D., Chen L., Yan D., Dong W., Chen M., Niu S., Wang S., Zhang J., Nie X., Fang Y. Effectiveness and safety of anti-BCMA chimeric antigen receptor T-cell treatment in relapsed/refractory multiple myeloma: A comprehensive review and meta-analysis of prospective clinical trials. Front. Pharmacol. 2023;14:1149138. doi: 10.3389/fphar.2023.1149138. PubMed DOI PMC

Laurent S.A., Hoffmann F.S., Kuhn P.H., Cheng Q., Chu Y., Schmidt-Supprian M., Hauck S.M., Schuh E., Krumbholz M., Rübsamen H., et al. γ-Secretase directly sheds the survival receptor BCMA from plasma cells. Nat. Commun. 2015;6:7333. doi: 10.1038/ncomms8333. PubMed DOI PMC

Pont M.J., Hill T., Cole G.O., Abbott J.J., Kelliher J., Salter A.I., Hudecek M., Comstock M.L., Rajan A., Patel B.K.R., et al. γ-Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood. 2019;134:1585–1597. doi: 10.1182/blood.2019000050. PubMed DOI PMC

Neri S., Mariani E., Meneghetti A., Cattini L., Facchini A. Calcein-acetyoxymethyl cytotoxicity assay: Standardization of a method allowing additional analyses on recovered effector cells and supernatants. Clin. Diagn. Lab. Immunol. 2001;8:1131–1135. doi: 10.1128/CDLI.8.6.1131-1135.2001. PubMed DOI PMC

Zhang Y., Zhang Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020;17:807–821. doi: 10.1038/s41423-020-0488-6. PubMed DOI PMC

Fragkiadakis G.F., Spiliotopoulou M. Investigating the Quality of Life for Cancer Patients and Estimating the Cost of Immunotherapy in Selected Cases. Cureus. 2022;14:e32390. doi: 10.7759/cureus.32390. PubMed DOI PMC

Zahavi D., Weiner L. Monoclonal Antibodies in Cancer Therapy. Antibodies. 2020;9:34. doi: 10.3390/antib9030034. PubMed DOI PMC

Subklewe M., von Bergwelt-Baildon M., Humpe A. Chimeric Antigen Receptor T Cells: A Race to Revolutionize Cancer Therapy. Transfus. Med. Hemotherapy. 2019;46:15–24. doi: 10.1159/000496870. PubMed DOI PMC

Poirot L., Philip B., Schiffer-Mannioui C., Le Clerre D., Chion-Sotinel I., Derniame S., Potrel P., Bas C., Lemaire L., Galetto R., et al. Multiplex Genome-Edited T-cell Manufacturing Platform for "Off-the-Shelf" Adoptive T-cell Immunotherapies. Cancer Res. 2015;75:3853–3864. doi: 10.1158/0008-5472.CAN-14-3321. PubMed DOI

Ren J., Liu X., Fang C., Jiang S., June C.H., Zhao Y. Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition. Clin. Cancer Res. 2017;23:2255–2266. doi: 10.1158/1078-0432.CCR-16-1300. PubMed DOI PMC

Fabian K.P., Hodge J.W. The emerging role of off-the-shelf engineered natural killer cells in targeted cancer immunotherapy. Mol. Ther. Oncolytics. 2021;23:266–276. doi: 10.1016/j.omto.2021.10.001. PubMed DOI PMC

Klingemann H., Boissel L., Toneguzzo F. Natural Killer Cells for Immunotherapy-Advantages of the NK-92 Cell Line over Blood NK Cells. Front. Immunol. 2016;7:91. doi: 10.3389/fimmu.2016.00091. PubMed DOI PMC

Zhang J., Zheng H., Diao Y. Natural Killer Cells and Current Applications of Chimeric Antigen Receptor-Modified NK-92 Cells in Tumor Immunotherapy. Int. J. Mol. Sci. 2019;20:317. doi: 10.3390/ijms20020317. PubMed DOI PMC

Müller S., Bexte T., Gebel V., Kalensee F., Stolzenberg E., Hartmann J., Koehl U., Schambach A., Wels W.S., Modlich U., et al. High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia. Front. Immunol. 2020;10:3123. doi: 10.3389/fimmu.2019.03123. PubMed DOI PMC

Colamartino A.B.L., Lemieux W., Bifsha P., Nicoletti S., Chakravarti N., Sanz J., Roméro H., Selleri S., Béland K., Guiot M., et al. Efficient and Robust NK-Cell Transduction With Baboon Envelope Pseudotyped Lentivector. Front. Immunol. 2019;10:2873. doi: 10.3389/fimmu.2019.02873. PubMed DOI PMC

Singh H., Huls H., Kebriaei P., Cooper L.J. A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19. Immunol. Rev. 2013;257:181–190. doi: 10.1111/imr.12137. PubMed DOI PMC

Baek H.J., Kim J.S., Yoon M., Lee J.-J., Shin M.-G., Ryang D.-W., Kook H., Kim S.-K., Cho D. Ex vivo expansion of natural killer cells using cryopreserved irradiated feeder cells. Anticancer Res. 2013;33:2011–2019. PubMed

Motais B., Charvátová S., Walek Z., Hrdinka M., Smolarczyk R., Cichoń T., Czapla J., Giebel S., Šimíček M., Jelínek T., et al. Selection, Expansion, and Unique Pretreatment of Allogeneic Human Natural Killer Cells with Anti-CD38 Monoclonal Antibody for Efficient Multiple Myeloma Treatment. Cells. 2021;10:967. doi: 10.3390/cells10050967. PubMed DOI PMC

van der Loo J.C., Wright J.F. Progress and challenges in viral vector manufacturing. Hum. Mol. Genet. 2016;25:R42–R52. doi: 10.1093/hmg/ddv451. PubMed DOI PMC

Morellet N., Li X., A Wieninger S., Taylor J.L., Bischerour J., Moriau S., Lescop E., Bardiaux B., Mathy N., Assrir N., et al. Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase. Nucleic Acids Res. 2018;46:2660–2677. doi: 10.1093/nar/gky044. PubMed DOI PMC

Tai Y.-T., Anderson K.C., Liu J., Zhang X., Zhong J.F., Zhang C., Sanfilippo K.M., Vij R., Tricot S., Berthon C., et al. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy. 2015;7:1187–1199. doi: 10.2217/imt.15.77. PubMed DOI PMC

Bu D.X., Singh R., Choi E.E., Ruella M., Nunez-Cruz S., Mansfield K.G., Bennett P., Barton N., Wu Q., Zhang J., et al. Pre-clinical validation of B cell maturation antigen (BCMA) as a target for T cell immunotherapy of multiple myeloma. Oncotarget. 2018;9:25764–25780. doi: 10.18632/oncotarget.25359. PubMed DOI PMC

Curio S., Jonsson G., Marinović S. A summary of current NKG2D-based CAR clinical trials. Immunother. Adv. 2021;1:ltab018. doi: 10.1093/immadv/ltab018. PubMed DOI PMC

Gong Y., Wolterink R.G.J., Wang J., Bos G.M.J., Germeraad W.T.V. Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J. Hematol. Oncol. 2021;14:73. doi: 10.1186/s13045-021-01083-5. PubMed DOI PMC

Samur M.K., Fulciniti M., Aktas Samur A., Bazarbachi A.H., Tai Y.-T., Prabhala R., Alonso A., Sperling A.S., Campbell T., Petrocca F., et al. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat. Commun. 2021;12:868. doi: 10.1038/s41467-021-21177-5. PubMed DOI PMC

Kimman T., Slomp A., Martens A., Grabherr S., Li S., van Diest E., Meeldijk J., Kuball J., Minnema M.C., Eldering E., et al. Serpin B9 controls tumor cell killing by CAR T cells. J. Immunother. Cancer. 2023;11:e006364. doi: 10.1136/jitc-2022-006364. PubMed DOI PMC

Walczak H., Miller R.E., Ariail K., Gliniak B., Griffith T.S., Kubin M., Chin W., Jones J., Woodward A., Le T., et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat. Med. 1999;5:157–163. doi: 10.1038/5517. PubMed DOI

de Mel S., Lim S.H., Tung M.L., Chng W.J. Implications of heterogeneity in multiple myeloma. BioMed Res. Int. 2014;2014:232546. doi: 10.1155/2014/232546. PubMed DOI PMC

Grosicki S., Simonova M., Spicka I., Pour L., Kriachok I., Gavriatopoulou M., Pylypenko H., Auner H.W., Leleu X., Doronin V., et al. Once-per-week selinexor, bortezomib, and dexamethasone versus twice-per-week bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): A randomised, open-label, phase 3 trial. Lancet. 2020;396:1563–1573. doi: 10.1016/S0140-6736(20)32292-3. PubMed DOI

Yimer H., Melear J., Faber E., Bensinger W.I., Burke J.M., Narang M., Stevens D., Gunawardena S., Lutska Y., Qi K., et al. Daratumumab, bortezomib, cyclophosphamide and dexamethasone in newly diagnosed and relapsed multiple myeloma: LYRA study. Br. J. Haematol. 2019;185:492–502. doi: 10.1111/bjh.15806. PubMed DOI PMC

Li H., Song W., Li Z., Zhang M. Preclinical and clinical studies of CAR-NK-cell therapies for malignancies. Front. Immunol. 2022;13:992232. doi: 10.3389/fimmu.2022.992232. PubMed DOI PMC

Yusa K., Zhou L., Li M.A., Bradley A., Craig N.L. A hyperactive piggyBac transposase for mammalian applications. Proc. Natl. Acad. Sci. USA. 2011;108:1531–1536. doi: 10.1073/pnas.1008322108. PubMed DOI PMC

Ingegnere T., Mariotti F.R., Pelosi A., Quintarelli C., De Angelis B., Tumino N., Besi F., Cantoni C., Locatelli F., Vacca P., et al. Human CAR NK Cells: A New Non-viral Method Allowing High Efficient Transfection and Strong Tumor Cell Killing. Front. Immunol. 2019;10:957. doi: 10.3389/fimmu.2019.00957. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...