Selection, Expansion, and Unique Pretreatment of Allogeneic Human Natural Killer Cells with Anti-CD38 Monoclonal Antibody for Efficient Multiple Myeloma Treatment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
CZ.02.1.01/0.0/0.0/17_049/0008440
Cell Coolab Ostrava-Research and Development Center for Cell Therapy in Hematology and Oncology
CZ.02.1.01/0.0/0.0/18_069/0010060
New Directions of Biomedical Research in the Ostrava Region
IRP03_2018-2020
Institutional Development Plan of University of Ostrava, allocated by The Ministry of Education, Youth and Sports
PubMed
33919155
PubMed Central
PMC8143171
DOI
10.3390/cells10050967
PII: cells10050967
Knihovny.cz E-zdroje
- Klíčová slova
- cancer, cellular therapy, combination therapy, monoclonal antibodies, multiple myeloma, natural killers,
- MeSH
- buněčná a tkáňová terapie metody MeSH
- buňky NK imunologie MeSH
- imunoterapie metody MeSH
- lidé MeSH
- mnohočetný myelom farmakoterapie MeSH
- monoklonální protilátky farmakologie MeSH
- myši SCID MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- protinádorové látky imunologicky aktivní farmakologie MeSH
- studie případů a kontrol MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- daratumumab MeSH Prohlížeč
- monoklonální protilátky MeSH
- protinádorové látky imunologicky aktivní MeSH
Cellular immunotherapy is becoming a new pillar in cancer treatment after recent striking results in different clinical trials with chimeric antigen receptor T cells. However, this innovative therapy is not exempt from challenges such as off-tumor toxicity, tumor recurrence in heterogeneous tumors, and affordability. To surpass these limitations, we exploit the unique anti-tumor characteristics of natural killer (NK) cells. In this study, we aimed to obtain a clinically relevant number of allogeneic NK cells derived from peripheral blood (median of 14,050 million cells from a single donor) to target a broad spectrum of solid and liquid tumor types. To boost their anti-tumor activity, we combined allogeneic NK cells with the approved anti-cluster of differentiation 38 (CD-38) monoclonal antibody Daratumumab to obtain a synergistic therapeutic effect against incurable multiple myeloma. The combination therapy was refined with CD16 polymorphism donor selection and uncomplicated novel in vitro pretreatment to avoid undesired fratricide, increasing the in vitro therapeutic effect against the CD-38 positive multiple myeloma cell line by more than 20%. Time-lapse imaging of mice with established human multiple myeloma xenografts revealed that combination therapy of selected and pretreated NK cells with Daratumumab presented tumor volumes 43-fold smaller than control ones. Combination therapy with an allogeneic source of fully functional NK cells could be beneficial in future clinical settings to circumvent monoclonal antibodies' low therapeutic efficiency due to NK cell dysfunctionality in MM patients.
Department of Haematooncology University Hospital Ostrava 708 00 Ostrava Czech Republic
Faculty of Medicine University of Ostrava 703 00 Ostrava Czech Republic
Faculty of Science University of Ostrava 701 00 Ostrava Czech Republic
PrimeCell Advanced Therapy Inc 708 52 Ostrava Czech Republic
Spadia LAB a s Frenštát pod Radhoštěm 700 30 Ostrava Czech Republic
Zobrazit více v PubMed
Porter D.L., Levine B.L., Kalos M., Bagg A., June C.H. Chimeric Antigen Receptor-Modified T Cells in Chronic Lymphoid Leukemia. N. Engl. J. Med. 2016;374:725–733. doi: 10.1056/NEJMoa1103849. PubMed DOI PMC
Porter D.L., Hwang W.-T., Frey N.V., Lacey S.F., Shaw P.A., Loren A.W., Bagg A., Marcucci K.T., Shen A., Gonzalez V., et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med. 2015;7:303ra139. doi: 10.1126/scitranslmed.aac5415. PubMed DOI PMC
Davila M.L., Riviere I., Wang X., Bartido S., Park J., Curran K., Chung S.S., Stefanski J., Borquez-Ojeda O., Olszewska M., et al. Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Sci. Transl. Med. 2014;6:224ra25. doi: 10.1126/scitranslmed.3008226. PubMed DOI PMC
Richman S.A., Nunez-Cruz S., Moghimi B., Li L.Z., Gershenson Z.T., Mourelatos Z., Barrett D.M., Grupp S.A., Milone M.C. High-Affinity GD2-Specific CAR T Cells Induce Fatal Encephalitis in a Preclinical Neuroblastoma Model. Cancer Immunol. Res. 2018;6:36–46. doi: 10.1158/2326-6066.CIR-17-0211. PubMed DOI PMC
Sotillo E., Barrett D.M., Black K.L., Bagashev A.A., Oldridge D., Wu G., Sussman R.T., LaNauze C., Ruella M., Gazzara M.R., et al. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discov. 2015;5:1282–1295. doi: 10.1158/2159-8290.CD-15-1020. PubMed DOI PMC
Ichiki Y., Bowlus C.L., Shimoda S., Ishibashi H., Vierling J.M., Gershwin M.E. T cell immunity and graft-versus-host disease (GVHD) Autoimmun. Rev. 2006;5:1–9. doi: 10.1016/j.autrev.2005.02.006. PubMed DOI
Liu E., Marin D., Banerjee P., Macapinlac H.A., Thompson P., Basar R., Kerbauy L.N., Overman B., Thall P., Kaplan M., et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N. Engl. J. Med. 2020;382:545–553. doi: 10.1056/NEJMoa1910607. PubMed DOI PMC
Morrissey M.A., Williamson A.P., Steinbach A.M., Roberts E.W., Kern N., Headley M.B., Vale R.D. Chimeric antigen receptors that trigger phagocytosis. eLife. 2018;7:e36688. doi: 10.7554/eLife.36688. PubMed DOI PMC
Tel J., Anguille S., Waterborg C.E., Smits E.L., Figdor C.G., De Vries I.J.M. Tumoricidal activity of human dendritic cells. Trends Immunol. 2014;35:38–46. doi: 10.1016/j.it.2013.10.007. PubMed DOI PMC
Vivier E., Tomasello E., Baratin M., Walzer T., Ugolini S. Functions of natural killer cells. Nat. Immunol. 2008;9:503–510. doi: 10.1038/ni1582. PubMed DOI
Pegram H.J., Andrews D.M., Smyth M.J., Darcy P.K., Kershaw M.H. Activating and inhibitory receptors of natural killer cells. Immunol. Cell Biol. 2010;89:216–224. doi: 10.1038/icb.2010.78. PubMed DOI
Motais B., Charvátová S., Hrdinka M., Šimíček M., Jelínek T., Ševčíková T., Kořístek Z., Hájek R., Bagó J.R. A Bird’s-Eye View of Cell Sources for Cell-Based Therapies in Blood Cancers. Cancers. 2020;12:1333. doi: 10.3390/cancers12051333. PubMed DOI PMC
Barrow A.D., Edeling M.A., Trifonov V., Luo J., Goyal P., Bohl B., Bando J.K., Kim A.H., Walker J., Andahazy M., et al. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor. Cell. 2018;172:534–548.e19. doi: 10.1016/j.cell.2017.11.037. PubMed DOI PMC
Rubnitz J.E., Inaba H., Ribeiro R.C., Pounds S., Rooney B., Bell T., Pui C.-H., Leung W. NKAML: A Pilot Study to Determine the Safety and Feasibility of Haploidentical Natural Killer Cell Transplantation in Childhood Acute Myeloid Leukemia. J. Clin. Oncol. 2010;28:955–959. doi: 10.1200/JCO.2009.24.4590. PubMed DOI PMC
Williams B.A., Law A.D., Routy B., Denhollander N., Gupta V., Wang X.-H., Chaboureau A., Viswanathan S., Keating A. A phase I trial of NK-92 cells for refractory hematological malignancies relapsing after autologous hematopoietic cell transplantation shows safety and evidence of efficacy. Oncotarget. 2017;8:89256–89268. doi: 10.18632/oncotarget.19204. PubMed DOI PMC
Shah N., Li L., Mccarty J., Kaur I., Yvon E., Shaim H., Muftuoglu M., Liu E., Orlowski R.Z., Cooper L., et al. Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. Br. J. Haematol. 2017;177:457–466. doi: 10.1111/bjh.14570. PubMed DOI PMC
Bachanova V., McKenna D.H., Luo X., Defor T.E., Cooley S., Warlick E., Weisdorf D.J., Brachya G., Peled T., Miller J.S., et al. First-in-Human Phase I Study of Nicotinamide-Expanded Related Donor Natural Killer Cells for the Treatment of Relapsed/Refractory Non-Hodgkin Lymphoma and Multiple Myeloma. Biol. Blood Marrow Transplant. 2019;25:S175–S176. doi: 10.1016/j.bbmt.2018.12.317. DOI
Shah N., Mehta R., Li L., Mccarty J., Kaur I., Orlowski R.Z., Cooper L., Lee D.A., Cao K., Parmar S., et al. Phase II study of ex vivo expanded cord blood natural killer cells for multiple myeloma. J. Clin. Oncol. 2018;36:8006. doi: 10.1200/JCO.2018.36.15_suppl.8006. DOI
Minarik J., Pour L., Maisnar V., Spicka I., Jungova A., Jelinek T., Brozova L., Krhovska P., Scudla V., Hajek R. Single agent daratumumab in advanced multiple myeloma possesses significant efficacy even in an unselected “real-world” population. Biomed. Pap. 2019;163:279–283. doi: 10.5507/bp.2018.064. PubMed DOI
Alderson K.L., Sondel P.M. Clinical Cancer Therapy by NK Cells via Antibody-Dependent Cell-Mediated Cytotoxicity. J. Biomed. Biotechnol. 2011;2011:379123. doi: 10.1155/2011/379123. PubMed DOI PMC
Hatjiharissi E., Xu L., Santos D.D., Hunter Z.R., Ciccarelli B.T., Verselis S., Modica M., Cao Y., Manning R.J., Leleu X., et al. Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the Fc{gamma}RIIIa-158 V/V and V/F polymorphism. Blood. 2007;110:2561–2564. doi: 10.1182/blood-2007-01-070656. PubMed DOI PMC
Jenkins M., Canfield R., Robbins M., Ritchie D.S., Trapani J., Neeson P. Targeting Mechanisms for Natural Killer Cell Dysfunction in Patients with Multiple Myeloma. Blood. 2015;126:4237. doi: 10.1182/blood.V126.23.4237.4237. DOI
Veluchamy J.P., Delso-Vallejo M., Kok N., Bohme F., Seggewiss-Bernhardt R., Van Der Vliet H.J., De Gruijl T.D., Huppert V., Spanholtz J. Standardized and flexible eight colour flow cytometry panels harmonized between different laboratories to study human NK cell phenotype and function. Sci. Rep. 2017;7:srep43873. doi: 10.1038/srep43873. PubMed DOI PMC
Bottcher S., Ritgen M., Bruggemann M., Raff T., Luschen S., Humpe A., Kneba M., Pott C. Flow cytometric assay for determination of FcgammaRIIIA-158 V/F polymorphism. J. Immunol. Methods. 2005;306:128–136. doi: 10.1016/j.jim.2005.08.004. PubMed DOI
Karimi M.A., Lee E., Bachmann M.H., Salicioni A.M., Behrens E.M., Kambayashi T., Baldwin C.L. Measuring Cytotoxicity by Bioluminescence Imaging Outperforms the Standard Chromium-51 Release Assay. PLoS ONE. 2014;9:e89357. doi: 10.1371/journal.pone.0089357. PubMed DOI PMC
Paul S., Lal G. The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy. Front. Immunol. 2017;8:1124. doi: 10.3389/fimmu.2017.01124. PubMed DOI PMC
Benevolo M., Mottolese M., Tremante E., Rollo F., Diodoro M.G., Ercolani C., Sperduti I., Monaco E.L., Cosimelli M., Giacomini P. High expression of HLA-E in colorectal carcinoma is associated with a favorable prognosis. J. Transl. Med. 2011;9:184. doi: 10.1186/1479-5876-9-184. PubMed DOI PMC
Marín R., Ruiz-Cabello F., Pedrinaci S., Méndez R., Jiménez P., Geraghty D.E., Garrido F. Analysis of HLA-E expression in human tumors. Immunogenetics. 2003;54:767–775. doi: 10.1007/s00251-002-0526-9. PubMed DOI
Felices M., Lenvik A.J., McElmurry R., Chu S., Hinderlie P., Bendzick L., Geller M.A., Tolar J., Blazar B.R., Miller J.S. Continuous treatment with IL-15 exhausts human NK cells via a metabolic defect. JCI Insight. 2018;3 doi: 10.1172/jci.insight.96219. PubMed DOI PMC
Brandt C.S., Baratin M., Yi E.C., Kennedy J., Gao Z., Fox B., Haldeman B., Ostrander C.D., Kaifu T., Chabannon C., et al. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med. 2009;206:1495–1503. doi: 10.1084/jem.20090681. PubMed DOI PMC
Ishigami S., Natsugoe S., Tokuda K., Nakajo A., Che X., Iwashige H., Aridome K., Hokita S., Aikou T. Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer. 2000;88:577–583. doi: 10.1002/(SICI)1097-0142(20000201)88:3<577::AID-CNCR13>3.0.CO;2-V. PubMed DOI
Coca S., Perez-Piqueras J., Martinez D., Colmenarejo A., Saez M.A., Vallejo C., Martos J.A., Moreno M. The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer. 1997;79:2320–2328. doi: 10.1002/(SICI)1097-0142(19970615)79:12<2320::AID-CNCR5>3.0.CO;2-P. PubMed DOI
Villegas F.R., Coca S., Villarrubia V.G., Jiménez R., Chillón M.J., Jareño J., Zuil M., Callol L. Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer. 2002;35:23–28. doi: 10.1016/S0169-5002(01)00292-6. PubMed DOI
Wendel M., Galani I.E., Suri-Payer E., Cerwenka A. Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res. 2008;68:8437–8445. doi: 10.1158/0008-5472.CAN-08-1440. PubMed DOI
Lima M., Leander M., Santos M., Santos A.H., Lau C., Queirós M.L., Gonçalves M., Fonseca S., Moura J., Teixeira M.D.A., et al. Chemokine Receptor Expression on Normal Blood CD56+NK-Cells Elucidates Cell Partners That Comigrate during the Innate and Adaptive Immune Responses and Identifies a Transitional NK-Cell Population. J. Immunol. Res. 2015;2015:839684. doi: 10.1155/2015/839684. PubMed DOI PMC
Freire-De-Lima L., Nardy A.F.F.R., Ramos-Junior E.S., Conde L., Lemos J.S., Da Fonseca L.M., Lima J.E., Maiolino A., Morrot A. Multiple Myeloma Cells Express Key Immunoregulatory Cytokines and Modulate the Monocyte Migratory Response. Front. Med. 2017;4:92. doi: 10.3389/fmed.2017.00092. PubMed DOI PMC
Zahavi D., Weiner L. Monoclonal Antibodies in Cancer Therapy. Antibodies. 2020;9:34. doi: 10.3390/antib9030034. PubMed DOI PMC
Hubert P., Amigorena S. Antibody-dependent cell cytotoxicity in monoclonal antibody-mediated tumor immunotherapy. OncoImmunology. 2012;1:103–105. doi: 10.4161/onci.1.1.17963. PubMed DOI PMC
Koene H.R., Kleijer M., Algra J., Roos D., Borne A.E.V.D., De Haas M. Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood. 1997;90:1109–1114. doi: 10.1182/blood.V90.3.1109. PubMed DOI
Niwa R., Hatanaka S., Shoji-Hosaka E., Sakurada M., Kobayashi Y., Uehara A., Yokoi H., Nakamura K., Shitara K. Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 Is independent of FcgammaRIIIa functional polymorphism. Clin. Cancer Res. 2004;10:6248–6255. doi: 10.1158/1078-0432.CCR-04-0850. PubMed DOI
De Weers M., Tai Y.-T., Van Der Veer M.S., Bakker J.M., Vink T., Jacobs D.C.H., Oomen L.A., Peipp M., Valerius T., Slootstra J.W., et al. Daratumumab, a Novel Therapeutic Human CD38 Monoclonal Antibody, Induces Killing of Multiple Myeloma and Other Hematological Tumors. J. Immunol. 2010;186:1840–1848. doi: 10.4049/jimmunol.1003032. PubMed DOI
Van Der Veer M.S., De Weers M., Van Kessel B., Bakker J.M., Wittebol S.I., Parren P.W.H., Lokhorst H.M., Mutis T. The therapeutic human CD38 antibody daratumumab improves the anti-myeloma effect of newly emerging multi-drug therapies. Blood Cancer J. 2011;1:e41. doi: 10.1038/bcj.2011.42. PubMed DOI PMC
Overdijk M.B., Verploegen S., Bögels M., Van Egmond M., Van Bueren J.J.L., Mutis T., Groen R.W.J., Breij E., Martens A.C.M., Bleeker W.K., et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. mAbs. 2015;7:311–320. doi: 10.1080/19420862.2015.1007813. PubMed DOI PMC
Overdijk M.B., Jansen J.H., Nederend M., Lammerts van Bueren J.J., Groen R.W., Parren P.W., Leusen J.H., Boross P. The therapeutic CD38 monoclonal antibody daratumumab induces programmed cell death via fcgamma receptor-mediated cross-linking. J. Immunol. 2016;197:807–813. doi: 10.4049/jimmunol.1501351. PubMed DOI
Casneuf T., Xu X.S., Adams H.C., Axel A.E., Chiu C., Khan I., Ahmadi T., Yan X., Lonial S., Plesner T., et al. Effects of daratumumab on natural killer cells and impact on clinical outcomes in relapsed or refractory multiple myeloma. Blood Adv. 2017;1:2105–2114. doi: 10.1182/bloodadvances.2017006866. PubMed DOI PMC
Southam C.M., Brunschwig A., Levin A.G., Dizon Q.S. Effect of leukocytes on transplantability of human cancer. Cancer. 1966;19:1743–1753. doi: 10.1002/1097-0142(196611)19:11<1743::AID-CNCR2820191143>3.0.CO;2-U. PubMed DOI
Weiden P.L., Flournoy N., Thomas E.D., Prentice R., Fefer A., Buckner C.D., Storb R. Antileukemic Effect of Graft-versus-Host Disease in Human Recipients of Allogeneic-Marrow Grafts. N. Engl. J. Med. 1979;300:1068–1073. doi: 10.1056/NEJM197905103001902. PubMed DOI
Rosenberg S.A., Packard B.S., Aebersold P.M., Solomon D., Topalian S.L., Toy S.T., Simon P., Lotze M.T., Yang J.C.-H., Seipp C.A., et al. Use of Tumor-Infiltrating Lymphocytes and Interleukin-2 in the Immunotherapy of Patients with Metastatic Melanoma. N. Engl. J. Med. 1988;319:1676–1680. doi: 10.1056/NEJM198812223192527. PubMed DOI
Mikucki M.E., Fisher D.T., Matsuzaki J., Skitzki J.J., Gaulin N.B., Muhitch J.B., Ku A.W., Frelinger J.G., Odunsi K., Gajewski T.F., et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat. Commun. 2015;6:7458. doi: 10.1038/ncomms8458. PubMed DOI PMC
Garrido F., Aptsiauri N., Doorduijn E.M., Lora A.M.G., Van Hall T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin. Immunol. 2016;39:44–51. doi: 10.1016/j.coi.2015.12.007. PubMed DOI PMC
Jena B., Dotti G., Cooper L.J.N. Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood. 2010;116:1035–1044. doi: 10.1182/blood-2010-01-043737. PubMed DOI PMC
Herrera L., Santos S., Vesga M.A., Anguita J., Martin-Ruiz I., Carrascosa T., Juan M., Eguizabal C. Adult peripheral blood and umbilical cord blood NK cells are good sources for effective CAR therapy against CD19 positive leukemic cells. Sci. Rep. 2019;9:18729. doi: 10.1038/s41598-019-55239-y. PubMed DOI PMC
Masuyama J.-I., Murakami T., Iwamoto S., Fujita S. Ex vivo expansion of natural killer cells from human peripheral blood mononuclear cells co-stimulated with anti-CD3 and anti-CD52 monoclonal antibodies. Cytotherapy. 2016;18:80–90. doi: 10.1016/j.jcyt.2015.09.011. PubMed DOI
Nianias A., Themeli M. Induced pluripotent stem cell (iPSC)-derived lymphocytes for adoptive cell immunotherapy: Recent advances and challenges. Curr. Hematol. Malig. Rep. 2019;14:261–268. doi: 10.1007/s11899-019-00528-6. PubMed DOI PMC
Herrera L., Salcedo J.M., Santos S., Vesga M. Ángel; Borrego, F.; Eguizabal, C. OP9 Feeder Cells Are Superior to M2-10B4 Cells for the Generation of Mature and Functional Natural Killer Cells from Umbilical Cord Hematopoietic Progenitors. Front. Immunol. 2017;8:755. doi: 10.3389/fimmu.2017.00755. PubMed DOI PMC
Yasuda S., Kusakawa S., Kuroda T., Miura T., Tano K., Takada N., Matsuyama S., Matsuyama A., Nasu M., Umezawa A., et al. Tumorigenicity-associated characteristics of human iPS cell lines. PLoS ONE. 2018;13:e0205022. doi: 10.1371/journal.pone.0205022. PubMed DOI PMC
Koehl U., Esser R., Zimmermann S., Tonn T., Kotchetkov R., Bartling T., Sörensen J., Grüttner H.-P., Bader P., Seifried E., et al. Ex vivo Expansion of Highly Purified NK Cells for Immunotherapy after Haploidentical Stem Cell Transplantation in Children. Klinische Pädiatrie. 2005;217:345–350. doi: 10.1055/s-2005-872520. PubMed DOI
Shi J., Tricot G., Szmania S., Rosen N., Garg T.K., Malaviarachchi P.A., Moreno A., Dupont B., Hsu K.C., Baxter-Lowe L.A., et al. Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br. J. Haematol. 2008;143:641–653. doi: 10.1111/j.1365-2141.2008.07340.x. PubMed DOI PMC
Kweon S., Phan M.-T.T., Chun S., Yu H., Kim J., Kim S., Lee J., Ali A.K., Lee S.-H., Kim S.-K., et al. Expansion of Human NK Cells Using K562 Cells Expressing OX40 Ligand and Short Exposure to IL-21. Front. Immunol. 2019;10:879. doi: 10.3389/fimmu.2019.00879. PubMed DOI PMC
Koehl U., Brehm C., Huenecke S., Zimmermann S.-Y., Kloess S., Bremm M., Ullrich E., Soerensen J., Quaiser A., Erben S., et al. Clinical Grade Purification and Expansion of NK Cell Products for an Optimized Manufacturing Protocol. Front. Oncol. 2013;3:118. doi: 10.3389/fonc.2013.00118. PubMed DOI PMC
Iliopoulou E.G., Kountourakis P., Karamouzis M.V., Doufexis D., Ardavanis A., Baxevanis C.N., Rigatos G., Papamichail M., Perez S.A. A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol. Immunother. 2010;59:1781–1789. doi: 10.1007/s00262-010-0904-3. PubMed DOI PMC
Carlsten M., Childs R.W. Genetic Manipulation of NK Cells for Cancer Immunotherapy: Techniques and Clinical Implications. Front. Immunol. 2015;6:266. doi: 10.3389/fimmu.2015.00266. PubMed DOI PMC
Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2016. CA Cancer J. Clin. 2016;66:7–30. doi: 10.3322/caac.21332. PubMed DOI
Kyle R.A., Rajkumar S.V. Multiple myeloma. Blood. 2008;111:2962–2972. doi: 10.1182/blood-2007-10-078022. PubMed DOI PMC
Rajkumar S.V. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am. J. Hematol. 2020;95:548–567. doi: 10.1002/ajh.25791. PubMed DOI
Li S., Gong T., Kou C., Fu A., Bolanos R., Liu J. Clinical Outcomes Associated With Chronic Kidney Disease in Elderly Medicare Patients with Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2021 doi: 10.1016/j.clml.2021.01.015. PubMed DOI
Shragai T., Gatt M.E., Shaulov A., Katodritou E., Triantafyllou T., Lavi N., Pouli A., Sioni A., Vaxman I., Zektser M., et al. Characteristics and outcome of multiple myeloma patients presenting with anaemia only: A retrospective multi-centre study. Leuk. Res. 2021;101:106498. doi: 10.1016/j.leukres.2020.106498. PubMed DOI
Rajkumar S.V., Kumar S. Multiple Myeloma: Diagnosis and Treatment. Mayo Clin. Proc. 2016;91:101–119. doi: 10.1016/j.mayocp.2015.11.007. PubMed DOI PMC
Bataille R., Manolagas S.C., Berenson J.R. Pathogenesis and management of bone lesions in multiple myeloma. Hematol. Clin. N. Am. 1997;11:349–361. doi: 10.1016/S0889-8588(05)70435-4. PubMed DOI
Kumar S.K., Dispenzieri A., Lacy M.Q., Gertz M.A., Buadi F.K., Pandey S.C., Kapoor P., Dingli D., Hayman S.R., Leung N., et al. Continued improvement in survival in multiple myeloma: Changes in early mortality and outcomes in older patients. Leuk. 2014;28:1122–1128. doi: 10.1038/leu.2013.313. PubMed DOI PMC
Weisel K., Majer I., DeCosta L., Oriol A., Goldschmidt H., Ludwig H., Campioni M., Szabo Z., Dimopoulos M. Carfilzomib and dexamethasone versus eight cycles of bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma: An indirect comparison using data from the phase 3 ENDEAVOR and CASTOR trials. Leuk. Lymphoma. 2019;61:37–46. doi: 10.1080/10428194.2019.1648806. PubMed DOI
Palumbo A., Chanan-Khan A., Weisel K., Nooka A.K., Masszi T., Beksac M., Spicka I., Hungria V., Munder M., Mateos M.V., et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N. Engl. J. Med. 2016;375:754–766. doi: 10.1056/NEJMoa1606038. PubMed DOI
Dimopoulos M.A., Oriol A., Nahi H., San-Miguel J., Bahlis N.J., Usmani S.Z., Rabin N., Orlowski R.Z., Komarnicki M., Suzuki K., et al. Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016;375:1319–1331. doi: 10.1056/NEJMoa1607751. PubMed DOI
Kararoudi M.N., Nagai Y., Elmas E., Pereira M.D.S.F., Ali S.A., Imus P.H., Wethington D., Borrello I.M., Lee D.A., Ghiaur G. CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity. Blood. 2020;136:2416–2427. doi: 10.1182/blood.2020006200. PubMed DOI PMC