Novel Local "Off-the-Shelf" Immunotherapy for the Treatment of Myeloma Bone Disease
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36766789
PubMed Central
PMC9914109
DOI
10.3390/cells12030448
PII: cells12030448
Knihovny.cz E-zdroje
- Klíčová slova
- cancer, fibrin, immunotherapy, local treatment, myeloma bone disease, natural killers,
- MeSH
- bortezomib terapeutické užití MeSH
- imunoterapie MeSH
- mnohočetný myelom * farmakoterapie MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nemoci kostí * terapie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bortezomib MeSH
Myeloma bone disease (MBD) is one of the major complications in multiple myeloma (MM)-the second most frequent hematologic malignancy. It is characterized by the formation of bone lesions due to the local action of proliferating MM cells, and to date, no effective therapy has been developed. In this study, we propose a novel approach for the local treatment of MBD with a combination of natural killer cells (NKs) and mesenchymal stem cells (MSCs) within a fibrin scaffold, altogether known as FINM. The unique biological properties of the NKs and MSCs, joined to the injectable biocompatible fibrin, permitted to obtain an efficient "off-the-shelf" ready-to-use composite for the local treatment of MBD. Our in vitro analyses demonstrate that NKs within FINM exert a robust anti-tumor activity against MM cell lines and primary cells, with the capacity to suppress osteoclast activity (~60%) within in vitro 3D model of MBD. Furthermore, NKs' post-thawing cytotoxic activity is significantly enhanced (~75%) in the presence of MSCs, which circumvents the decrease of NKs cytotoxicity after thawing, a well-known issue in the cryopreservation of NKs. To reduce the tumor escape, we combined FINM with other therapeutic agents (bortezomib (BZ), and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)), observing a clear therapeutic synergistic effect in vitro. Finally, the therapeutic efficacy of FINM in combination with BZ and TRAIL was assessed in a mouse model of MM, achieving 16-fold smaller tumors compared to the control group without treatment. These results suggest the potential of FINM to serve as an allogeneic "off-the-shelf" approach to improve the outcomes of patients suffering from MBD.
Department of Haematooncology Faculty of Medicine University of Ostrava 70300 Ostrava Czech Republic
Department of Haematooncology University Hospital Ostrava 70800 Ostrava Czech Republic
Faculty of Science University of Ostrava 70100 Ostrava Czech Republic
Zobrazit více v PubMed
Siegel R.L., Miller K.D., Jemal A. Cancer statistics. CA Cancer J Clin. 2016;66:7–30. doi: 10.3322/caac.21332. PubMed DOI
Kumar S.K., Dispenzieri A., Lacy M.Q., Gertz M.A., Buadi F.K., Pandey S.C., Kapoor P., Dingli D., Hayman S.R., Leung N., et al. Continued improvement in survival in multiple myeloma: Changes in early mortality and outcomes in older patients. Leukemia. 2014;28:1122–1128. doi: 10.1038/leu.2013.313. PubMed DOI PMC
Drake M.T. Bone disease in multiple myeloma. Oncology. 2009;23((Suppl. 5)):28–32. PubMed
Terpos E., Ntanasis-Stathopoulos I., Gavriatopoulou M., Dimopoulos M.A. Pathogenesis of bone disease in multiple myeloma: From bench to bedside. Blood Cancer J. 2018;8:7. doi: 10.1038/s41408-017-0037-4. PubMed DOI PMC
Hameed A., Brady J.J., Dowling P., Clynes M., O’Gorman P. Bone disease in multiple myeloma: Pathophysiology and management. Cancer Growth Metastasis. 2014;7:33–42. doi: 10.4137/CGM.S16817. PubMed DOI PMC
Consensus on Surgical Management of Myeloma Bone Disease. Orthop. Surg. 2016;8:263–269. doi: 10.1111/os.12267. PubMed DOI PMC
Srivastava S., Riddell S.R. Chimeric Antigen Receptor T Cell Therapy: Challenges to Bench-to-Bedside Efficacy. J. Immunol. 2018;200:459–468. doi: 10.4049/jimmunol.1701155. PubMed DOI PMC
Yang Y., Jacoby E., Fry T.J. Challenges and opportunities of allogeneic donor-derived CAR T cells. Curr. Opin. Hematol. 2015;22:509–515. doi: 10.1097/MOH.0000000000000181. PubMed DOI PMC
Bonifant C.L., Jackson H.J., Brentjens R.J., Curran K.J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolytics. 2016;3:16011. doi: 10.1038/mto.2016.11. PubMed DOI PMC
Li Y., Hermanson D.L., Moriarity B.S., Kaufman D.S. Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell Stem Cell. 2018;23:181–192.e5. doi: 10.1016/j.stem.2018.06.002. PubMed DOI PMC
Veluchamy J.P., Kok N., van der Vliet H.J., Verheul H.M.W., de Gruijl T.D., Spanholtz J. The Rise of Allogeneic Natural Killer Cells As a Platform for Cancer Immunotherapy: Recent Innovations and Future Developments. Front. Immunol. 2017;8:631. doi: 10.3389/fimmu.2017.00631. PubMed DOI PMC
Motais B., Charvátová S., Walek Z., Hrdinka M., Smolarczyk R., Cichoń T., Czapla J., Giebel S., Šimíček M., Jelínek T., et al. Selection, Expansion, and Unique Pretreatment of Allogeneic Human Natural Killer Cells with Anti-CD38 Monoclonal Antibody for Efficient Multiple Myeloma Treatment. Cells. 2021;10:967. doi: 10.3390/cells10050967. PubMed DOI PMC
Leivas A., Valeri A., Córdoba L., García-Ortiz A., Ortiz A., Sánchez-Vega L., Graña-Castro O., Fernández L., Carreño-Tarragona G., Pérez M., et al. NKG2D-CAR-transduced natural killer cells efficiently target multiple myeloma. Blood Cancer J. 2021;11:146. doi: 10.1038/s41408-021-00537-w. PubMed DOI PMC
Khan A.M., Devarakonda S., Bumma N., Chaudhry M., Benson D.M. Potential of NK cells in multiple Myeloma therapy. Expert. Rev. Hematol. 2019;12:425–435. doi: 10.1080/17474086.2019.1617128. PubMed DOI
Mark C., Czerwinski T., Roessner S., Mainka A., Hörsch F., Heublein L., Winterl A., Sanokowski S., Richter S., Bauer N., et al. Cryopreservation impairs 3-D migration and cytotoxicity of natural killer cells. Nat. Commun. 2020;11:5224. doi: 10.1038/s41467-020-19094-0. PubMed DOI PMC
Annamalai R.T., Hong X., Schott N.G., Tiruchinapally G., Levi B., Stegemann J.P. Injectable osteogenic microtissues containing mesenchymal stromal cells conformally fill and repair critical-size defects. Biomaterials. 2019;208:32–44. doi: 10.1016/j.biomaterials.2019.04.001. PubMed DOI PMC
Tanrıverdi A.K., Polat O., Elçin A.E., Ahlat O., Gürman G., Günalp M., Oğuz A.B., Genç S., Elçin Y.M. Mesenchymal stem cell transplantation in polytrauma: Evaluation of bone and liver healing response in an experimental rat model. Eur. J. Trauma Emerg. Surg. 2020;46:53–64. doi: 10.1007/s00068-019-01101-9. PubMed DOI
Thomas H., Jäger M., Mauel K., Brandau S., Lask S., Flohé S.B. Interaction with mesenchymal stem cells provokes natural killer cells for enhanced IL-12/IL-18-induced interferon-gamma secretion. Mediat. Inflamm. 2014;2014:143463. doi: 10.1155/2014/143463. PubMed DOI PMC
Deuse T., Stubbendorff M., Tang-Quan K., Phillips N., Kay M.A., Eiermann T., Phan T.T., Volk H.-D., Reichenspurner H., Robbins R.C., et al. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant. 2011;20:655–667. doi: 10.3727/096368910X536473. PubMed DOI
Sterner R.C., Sterner R.M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021;11:69. doi: 10.1038/s41408-021-00459-7. PubMed DOI PMC
Rafiq S., Hackett C.S., Brentjens R.J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 2020;17:147–167. doi: 10.1038/s41571-019-0297-y. PubMed DOI PMC
Bagó J.R., Pegna G.J., Okolie O., Mohiti-Asli M., Loboa E.G., Hingtgen S.D. Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy of surgically resected glioblastoma. Biomaterials. 2016;90:116–125. doi: 10.1016/j.biomaterials.2016.03.008. PubMed DOI PMC
Pomini K.T., Buchaim D.V., Andreo J.C., de Rosso M.P.O., Della Coletta B.B., German Í.J.S., Biguetti A.C.C., Shinohara A.L., Rosa Júnior G.M., Shindo J.V.T.C., et al. Fibrin Sealant Derived from Human Plasma as a Scaffold for Bone Grafts Associated with Photobiomodulation Therapy. Int. J. Mol. Sci. 2019;20:1761. doi: 10.3390/ijms20071761. PubMed DOI PMC
Bagó J.R., Pegna G.J., Okolie O., Hingtgen S.D. Fibrin matrices enhance the transplant and efficacy of cytotoxic stem cell therapy for post-surgical cancer. Biomaterials. 2016;84:42–53. doi: 10.1016/j.biomaterials.2016.01.007. PubMed DOI PMC
Ahmed T.A.E., Dare E.v., Hincke M. Fibrin: A versatile scaffold for tissue engineering applications. Tissue Eng. Part B Rev. 2008;14:199–215. doi: 10.1089/ten.teb.2007.0435. PubMed DOI
Currie L.J., Sharpe J.R., Martin R. The use of fibrin glue in skin grafts and tissue-engineered skin replacements: A review. Plast Reconstr. Surg. 2001;108:1713–1726. doi: 10.1097/00006534-200111000-00045. PubMed DOI
Groeneveld D., Pereyra D., Veldhuis Z., Adelmeijer J., Ottens P., Kopec A.K., Starlinger P., Lisman T., Luyendyk J.P. Intrahepatic fibrin(ogen) deposition drives liver regeneration after partial hepatectomy in mice and humans. Blood. 2019;133:1245–1256. doi: 10.1182/blood-2018-08-869057. PubMed DOI PMC
Noori A., Ashrafi S.J., Vaez-Ghaemi R., Hatamian-Zaremi A., Webster T.J. A review of fibrin and fibrin composites for bone tissue engineering. Int. J. Nanomed. 2017;12:4937–4961. doi: 10.2147/IJN.S124671. PubMed DOI PMC
Veluchamy J.P., Delso-Vallejo M., Kok N., Bohme F., Seggewiss-Bernhardt R., van der Vliet H.J., de Gruijl T.D., Huppert V., Spanholtz J. Standardized and flexible eight colour flow cytometry panels harmonized between different laboratories to study human NK cell phenotype and function. Sci. Rep. 2017;7:43873. doi: 10.1038/srep43873. PubMed DOI PMC
Shah K., Tung C.H., Yang K., Weissleder R., Breakefield X.O. Inducible release of TRAIL fusion proteins from a proapoptotic form for tumor therapy. Cancer Res. 2004;64:3236–3242. doi: 10.1158/0008-5472.CAN-03-3516. PubMed DOI
Salam N., Toumpaniari S., Gentile P., Marina Ferreira A., Dalgarno K., Partridge S. Assessment of Migration of Human MSCs through Fibrin Hydrogels as a Tool for Formulation Optimisation. Materials. 2018;11:1781. doi: 10.3390/ma11091781. PubMed DOI PMC
Tan S., Li D., Zhu X. Cancer immunotherapy: Pros, cons and beyond. Biomed. Pharmacother. 2020;124:109821. doi: 10.1016/j.biopha.2020.109821. PubMed DOI
Bonaventura P., Shekarian T., Alcazer V., Valladeau-Guilemond J., Valsesia-Wittmann S., Amigorena S., Caux C., Depil S. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front. Immunol. 2019;10:168. doi: 10.3389/fimmu.2019.00168. PubMed DOI PMC
Sun S., Hao H., Yang G., Zhang Y., Fu Y. Immunotherapy with CAR-Modified T Cells: Toxicities and Overcoming Strategies. J. Immunol. Res. 2018;2018:2386187. doi: 10.1155/2018/2386187. PubMed DOI PMC
Grosskopf A.K., Labanieh L., Klysz D.D., Roth G.A., Xu P., Adebowale O., Gale E.C., Jons C.K., Klich J.H., Yan J., et al. Delivery of CAR-T cells in a transient injectable stimulatory hydrogel niche improves treatment of solid tumors. Sci. Adv. 2022;8:eabn8264. doi: 10.1126/sciadv.abn8264. PubMed DOI PMC
Mehta R.S., Shpall E.J., Rezvani K. Cord Blood as a Source of Natural Killer Cells. Front. Med. 2016;2:93. doi: 10.3389/fmed.2015.00093. PubMed DOI PMC
Yoon S.R., Chung J.W., Choi I. Development of natural killer cells from hematopoietic stem cells. Mol. Cells. 2007;24:1–8. PubMed
Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024. PubMed DOI
Karagiannis P., Kim S.I. iPSC-Derived Natural Killer Cells for Cancer Immunotherapy. Mol. Cells. 2021;44:541–548. doi: 10.14348/molcells.2021.0078. PubMed DOI PMC
Ayala-Cuellar A.P., Kang J.H., Jeung E.B., Choi K.C. Roles of Mesenchymal Stem Cells in Tissue Regeneration and Immunomodulation. Biomol. Ther. 2019;27:25–33. doi: 10.4062/biomolther.2017.260. PubMed DOI PMC
Aravindhan S., Ejam S.S., Lafta M.H., Markov A., Yumashev A.V., Ahmadi M. Mesenchymal stem cells and cancer therapy: Insights into targeting the tumour vasculature. Cancer Cell. Int. 2021;21:158. doi: 10.1186/s12935-021-01836-9. PubMed DOI PMC
Kalaszczynska I., Ferdyn K. Wharton’s jelly derived mesenchymal stem cells: Future of regenerative medicine? Recent findings and clinical significance. BioMed Res. Int. 2015;2015:430847. doi: 10.1155/2015/430847. PubMed DOI PMC
Weisel J.W., Litvinov R.I. Keeping it clean: Clot biofilm to wall out bacterial invasion. J. Thromb. Haemost. 2018;16:2359–2361. doi: 10.1111/jth.14309. PubMed DOI
Spotnitz W.D. Fibrin sealant: Past, present, and future: A brief review. World J. Surg. 2010;34:632–634. doi: 10.1007/s00268-009-0252-7. PubMed DOI
Fang H., Peng S., Chen A., Li F., Ren K., Hu N. Biocompatibility studies on fibrin glue cultured with bone marrow mesenchymal stem cells in vitro. J. Huazhong Univ. Sci. Technol. Med. Sci. 2004;24:272–274. doi: 10.1007/BF02832010. PubMed DOI
De Miguel M.P., Fuentes-Julian S., Blazquez-Martinez A., Pascual C.Y., Aller M.A., Arias J., Arnalich-Montiel F. Immunosuppressive properties of mesenchymal stem cells: Advances and applications. Curr. Mol. Med. 2012;12:574–591. doi: 10.2174/156652412800619950. PubMed DOI
Chatterjee D., Marquardt N., Tufa D.M., Hatlapatka T., Hass R., Kasper C., Von Kaisenberg C., Schmidt R.E., Jacobs R. Human Umbilical Cord-Derived Mesenchymal Stem Cells Utilize Activin-A to Suppress Interferon-γ Production by Natural Killer Cells. Front. Immunol. 2014;5:662. doi: 10.3389/fimmu.2014.00662. PubMed DOI PMC
Cui R., Rekasi H., Hepner-Schefczyk M., Fessmann K., Petri R.M., Bruderek K., Brandau S., Jäger M., Flohé S.B. Human mesenchymal stromal/stem cells acquire immunostimulatory capacity upon cross-talk with natural killer cells and might improve the NK cell function of immunocompromised patients. Stem Cell Res. Ther. 2016;7:88. doi: 10.1186/s13287-016-0353-9. PubMed DOI PMC
Kouroukis T.C., Baldassarre F.G., Haynes A.E., Imrie K., Reece D.E., Cheung M.C. Bortezomib in multiple myeloma: Systematic review and clinical considerations. Curr. Oncol. 2014;21:e573–e603. doi: 10.3747/co.21.1798. PubMed DOI PMC
Li J., Zhang X., Shen J., Guo J., Wang X., Liu J. Bortezomib promotes apoptosis of multiple myeloma cells by regulating HSP27. Mol. Med. Rep. 2019;20:2410–2418. doi: 10.3892/mmr.2019.10467. PubMed DOI
Carlsten M., Namazi A., Reger R., Levy E., Berg M., Hilaire C.S., Childs R.W. Bortezomib sensitizes multiple myeloma to NK cells via ER-stress-induced suppression of HLA-E and upregulation of DR5. Oncoimmunology. 2019;8:e1534664. doi: 10.1080/2162402X.2018.1534664. PubMed DOI PMC
Twomey J.D., Kim S.R., Zhao L., Bozza W.P., Zhang B. Spatial dynamics of TRAIL death receptors in cancer cells. Drug Resist. Update. 2015;19:13–21. doi: 10.1016/j.drup.2015.02.001. PubMed DOI
Mitsiades C.S., Treon S.P., Mitsiades N., Shima Y., Richardson P., Schlossman R., Hideshima T., Anderson K.C. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: Therapeutic applications. Blood. 2001;98:795–804. doi: 10.1182/blood.V98.3.795. PubMed DOI
Mosallaei M., Simonian M., Ehtesham N., Karimzadeh M.R., Vatandoost N., Negahdari B., Salehi R. Genetically engineered mesenchymal stem cells: Targeted delivery of immunomodulatory agents for tumor eradication. Cancer Gene Ther. 2020;27:854–868. doi: 10.1038/s41417-020-0179-6. PubMed DOI
Kaufmann S.H., Steensma D.P. On the TRAIL of a new therapy for leukemia. Leukemia. 2005;19:2195–2202. doi: 10.1038/sj.leu.2403946. PubMed DOI