A new wild emmer wheat panel allows to map new loci associated with resistance to stem rust at seedling stage

. 2025 Mar ; 18 (1) : e20413. [epub] 20231212

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38087443

Grantová podpora
HORIZON-INFRA-2022-DEV-01, project "Promoting a Plant Genetic Resource Community for Europe (PRO-GRACE)"
22-00204S Grantová Agentura České Republiky
Agritech National Research Center funded by the European Union Next-Generation-EU
PRIMA2019-Cerealmed "Enhancing diversity in Mediterranean cereal farming systems"

Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a major wheat disease worldwide. A collection of 283 wild emmer wheat [Triticum turgidum L. subsp. dicoccoides (Körn. ex Asch. & Graebn.) Thell] accessions, representative of the entire Fertile Crescent region where wild emmer naturally occurs, was assembled, genotyped, and characterized for population structure, genetic diversity, and rate of linkage disequilibrium (LD) decay. Then, the collection was employed for mapping Pgt resistance genes, as a proof of concept of the effectiveness of genome-wide association studies in wild emmer. The collection was evaluated in controlled conditions for reaction to six common Pgt pathotypes (TPMKC, TTTTF, JRCQC, TRTTF, TTKSK/Ug99, and TKTTF). Most resistant accessions originated from the Southern Levant wild emmer lineage, with some showing a resistance reaction toward three to six tested races. Association analysis was conducted considering a 12K polymorphic single-nucleotide polymorphisms dataset, kinship relatedness between accessions, and population structure. Eleven significant marker-trait associations (MTA) were identified across the genome, which explained from 17% to up to 49% of phenotypic variance with an average 1.5 additive effect (based on the 1-9 scoring scale). The identified loci were either effective against single or multiple races. Some MTAs colocalized with known Pgt resistance genes, while others represent novel resistance loci useful for durum and bread wheat prebreeding. Candidate genes with an annotated function related to plant response to pathogens were identified at the regions linked to the resistance and defined according to the estimated small LD (about 126 kb), as typical of wild species.

Zobrazit více v PubMed

Alexander, D. H. , Novembre, J. , & Lange, K. (2009). Fast model‐based estimation of ancestry in unrelated individuals. Genome Research, 19, 1655–1664. 10.1101/gr.094052.109 PubMed DOI PMC

Anikster, Y. , Manisterski, J. , Long, D. L. , & Leonard, K. J. (2005). Leaf rust and stem rust resistance in Triticum dicoccoides populations in Israel. Plant Disease, 89(1), 55–62. 10.1094/PD-89-0055 PubMed DOI

Avni, R. , Nave, M. , Barad, O. , Baruch, K. , Twardziok, S. O. , Gundlach, H. , Hale, I. , Mascher, M. , Spannagl, M. , Wiebe, K. , Jordan, K. W. , Golan, G. , Deek, J. , Ben‐Zvi, B. , Ben‐Zvi, G. , Himmelbach, A. , MacLachlan, R. P. , Sharpe, A. G. , Fritz, A. , … Distelfeld, A. (2017). Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 357(6346), 93–97. 10.1126/science.aan0032 PubMed DOI

Bradbury, P. J. , Zhang, Z. , Kroon, D. E. , Casstevens, T. M. , Ramdoss, Y. , & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23(19), 2633–2635. 10.1093/bioinformatics/btm308 PubMed DOI

Chang, C. C. , Chow, C. C. , Tellier, L. C. , Vattikuti, S. , Purcell, S. M. , & Lee, J. J. (2015). Second‐generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience, 4(1). 10.1186/s13742-015-0047-8 PubMed DOI PMC

Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. The Journal of the American Statistical Association, 74(368), 829–836. 10.2307/2286407 DOI

Dadkhodaie, N. A. , Karaoglou, H. , Wellings, C. R. , & Parks, R. F. (2011). Mapping genes Lr53 and Yr35 on the short arm of chromosome 6B of common wheat with microsatellite markers and studies of their association with Lr36. Theoretical Applied Genetics, 122, 479–487. 10.1007/s00122-010-1462-y PubMed DOI

Doyle, J. J. , & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15. 10.1016/0031-9422(80)85004-7 DOI

Earl, D. A. , & Von Holdt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. 10.1007/s12686-011-9548-7 DOI

Excoffier, L. , & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567. 10.1111/j.1755-0998.2010.02847.x PubMed DOI

Fu, D. , Uauy, C. , Distelfeld, A. , Blechl, A. , Epstein, L. , Chen, X. , Sela, H. , Fahima, T. , & Dubcovsky, J. (2009). A kinase‐START gene confers temperature‐dependent resistance to wheat stripe rust. Science, 323, 1357–1360. 10.1126/science.1166289 PubMed DOI PMC

Fu, Y. B. (2015). Understanding crop genetic diversity under modern plant breeding. Theoretical Applied Genetics, 128, 2131–2142. 10.1007/s00122-015-2585-y PubMed DOI PMC

Gao, Y. , He, C. , Zhang, D. , Liu, X. , Xu, Z. , Tian, Y. , Liu, X. H. , Zang, S. , Pauly, M. , Zhou, Y. , & Zhang, B. (2017). Two trichome birefringence‐like proteins mediate xylan acetylation, which is essential for leaf blight resistance in rice. Plant Physiology, 173(1), 470–481. 10.1104/pp.16.01618 PubMed DOI PMC

Guo, X. , Liu, D. , & Chong, K. (2018). Cold signaling in plants: insights into mechanisms and regulation. Journal of Integrative Plant Biology, 60, 745–756. 10.1111/jipb.12706 PubMed DOI

Hale, I. , Zhang, X. , Fu, D. , & Dubcovsky, J. (2012). Registration of wheat lines carrying the partial stripe rust resistance gene Yr36 without the Gpc‐B1 high grain protein content allele. Journal of Plant Registrations, 7(1), 108–112. 10.3198/jpr2012.03.0150crg PubMed DOI PMC

He, F. , Pasam, R. , Shi, F. , Kant, S. , Keeble‐Gagnere, G. , Kay, P. , Forrest, K. , Fritz, A. , Hucl, P. , Wiebe, K. , Knox, R. , Cuthbert, R. , Pozniak, C. , Akhunova, A. , Morrell, P. L. , Davies, J. P. , Webb, S. R. , Spangenberg, G. , Hayes, B. , … Akhunov, E. (2019). Exome sequencing highlights the role of wild‐relative introgression in shaping the adaptive landscape of the wheat genome. Nature Genetics, 51(5), 896–904. 10.1038/s41588-019-0382-2 PubMed DOI

Huang, L. , Raats, D. , Sela, H. , Klymiuk, V. , Lidzbarsky, G. , Feng, L. , Krugman, T. , & Fahima, T. (2016). Evolution and adaptation of wild emmer wheat populations to biotic and abiotic stresses. Annual Review of Phytopathology, 54(1), 279–301. 10.1146/annurev-phyto-080614-120254 PubMed DOI

Huang, S. , & Steffenson, B. (2018). Resistance of Aegilops longissimi to the rusts of wheat. Plant Disease, 102, 1124–1135. 10.1094/PDIS-06-17-0880-RE PubMed DOI

Jin, Y. , Singh, R. P. , Ward, R. W. , Wanyera, R. , Kinyua, M. , Njau, P. , Fetch, T. , Pretorius, Z. A. , & Yahyaoui, A. (2007). Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici . Plant Disease, 91(9), 1096–1099. 10.1094/PDIS-91-9-1096 PubMed DOI

Jin, Y. , Szabo, L. J. , Pretorius, Z. A. , Singh, R. P. , Ward, R. , & Fetch, T. (2008). Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici . Plant Disease, 92, 923–926. 10.1094/PDIS-92-6-0923 PubMed DOI

Jombart, T. , Devillard, S. , & Balloux, F. (2010). Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics, 11(1), 94. 10.1186/1471-2156-11-94 PubMed DOI PMC

Klymiuk, V. , Fatiukha, A. , Huang, L. , Wei, Z. , Kis‐Papo, T. , Saranga, Y. , Krugman, T. , & Fahima, T. (2019). Durum wheat as a bridge between wild emmer wheat genetic resources and bread wheat in applications of genetic and genomic research in cereals. In Miedaner T. & Korzun V. (Eds.), Applications of genetic and genomic research in cereals (pp. 201–230). Woodhead Publishing Series in Food Science, Technology and Nutrition. 10.1016/B978-0-08-102163-7.00010-7 DOI

Klymiuk, V. , Yaniv, E. , Huang, L. , Raats, D. , Fatiukha, A. , Chen, S. , Feng, L. , Frenkel, Z. , Krugman, T. , Lidzbarsky, G. , Chang, W. , Jääskeläinen, M. J. , Schudoma, C. , Paulin, L. , Laine, P. , Bariana, H. , Sela, H. , Saleem, K. , Sørensen, C. K. , … Fahima, T. (2018). Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase‐pseudokinase family. Nature Communications, 9(1), 3735. 10.1038/s41467-018-06138-9 PubMed DOI PMC

Knott, D. R. , Bai, D. , & Zale, J. (2005). The transfer of leaf and stem rust resistance from wild emmer wheats to durum and common wheat. Canadian Journal of Plant Science, 85(1), 49–57. 10.4141/P03-212 DOI

Kruskal, W. H. , & Wallis, W. A. (1952). Use of ranks in one‐criterion variance analysis. The Journal of the American Statistical Association, 47(260), 583–621.

Letta, T. , Maccaferri, M. , Badebo, A. , Ammar, K. , Ricci, A. , Crossa, J. , & Tuberosa, R. (2013). Searching for novel sources of field resistance to Ug99 and Ethiopian stem rust races in durum wheat via association mapping. Theoretical Applied Genetics, 126, 1237–1256. 10.1007/s00122-013-2050-8 PubMed DOI

Letta, T. , Olivera, P. , Maccaferri, M. , Jin, Y. , Ammar, K. , Badebo, A. , Salvi, S. , Noli, E. , Crossa, J. , & Tuberosa, R. (2014). Association mapping reveals novel stem rust resistance loci in durum wheat at the seedling stage. The Plant Genome, 7. 10.3835/plantgenome2013.08.0026 DOI

Li, X. , Tan, L. , Zhu, Z. , Huang, H. , Liu, Y. , Hu, S. , & Sun, C. (2009). Patterns of nucleotide diversity in wild and cultivated rice. Plant Systematics and Evolution, 281, 97–106. 10.1007/s00606-009-0191-7 DOI

Li, Y. C. , Röder, M. S. , Fahima, T. , Kirzhner, V. M. , Beiles, A. , Korol, A. B. , & Nevo, E. (2000). Natural selection causing microsatellite divergence in wild emmer wheat at the ecologically variable microsite at Ammiad, Israel. Theoretical Applied Genetics, 100, 985–999. 10.1007/s001220051380 DOI

Luo, M. C. , Yang, Z. L. , You, F. M. , Kawahara, T. , Waines, J. G. , & Dvorak, J. (2007). The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theoretical Applied Genetics, 114, 947–959. 10.1007/s00122-006-0474-0 PubMed DOI

Maccaferri, M. , Harris, N. S. , Twardziok, S. O. , Pasam, R. K. , Gundlach, H. , Spannagl, M. , Ormanbekova, D. , Lux, T. , Prade, V. M. , Milner, S. G. , Himmelbach, A. , Mascher, M. , Bagnaresi, P. , Faccioli, P. , Cozzi, P. , Lauria, M. , Lazzari, B. , Stella, A. , Manconi, A. , … Cattivelli, L. (2019). Durum wheat genome highlights past domestication signatures and future improvement targets. Nature Genetics, 51(5), 885–895. 10.1038/s41588-019-0381-3 PubMed DOI

Mamo, B. E. , Kevin, P. S. , Brueggeman, R. S. , & Steffenson, B. J. (2015). Genetic characterization of resistance to wheat stem rust race TTKSK in landrace and wild barley accessions identifies the Rpg4/Rpg5 locus. Phytopathology, 105, 99–109. 10.1094/PHYTO-12-13-0340-R PubMed DOI

Marais, G. F. , Pretorius, Z. A. , Wellings, C. R. , McCallum, B. , & Marais, A. S. (2005). Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides . Euphytica, 143, 115–123. 10.1007/s10681-005-2911-6 DOI

Mazzucotelli, E. , Sciara, G. , Mastrangelo, A. M. , Desiderio, F. , Xu, S. S. , Faris, J. , Hayden, M. J. , Tricker, P. J. , Ozkan, H. , Echenique, V. , Steffenson, B. J. , Knox, R. , Niane, A. A. , Udupa, S. M. , Longin, F. C. H. , Marone, D. , Petruzzino, G. , Corneti, S. , Ormanbekova, D. , … Bassi, F. M. (2020). The Global Durum Wheat Panel (GDP): An international platform to identify and exchange beneficial alleles. Frontiers in Plant Science, 11, 569905. 10.3389/fpls.2020.569905 PubMed DOI PMC

McVey, D. V. (1991). Reaction of a group of related wheat species (AABB genome and an AABBDD) to stem rust. Crop Science, 31, 1145–1149. 10.2135/cropsci1991.0011183X003100050012x DOI

McVey, D. V. , Long, D. L. , & Roberts, J. J. (2002). Races of Puccinia graminis in the United States during 1997 and 1998. Plant Disease, 86, 568–572. 10.1094/PDIS.2002.86.6.568 PubMed DOI

Megerssa, S. H. , Ammar, K. , Acevedo, M. , Brown‐Guedira, G. , Ward, B. , Degete, A. G. , Randhawa, M. S. , & Sorrells, M. E. (2020). Multiple‐race stem rust resistance loci identified in durum wheat using genome‐wide association mapping. Frontiers in Plant Science, 11, 598509. 10.3389/fpls.2020.598509 PubMed DOI PMC

Morrell, P. L. , Toleno, D. M. , Lundy, K. E. , & Clegg, M. T. (2005). Low levels of linkage disequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) despite high rates of self‐fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 2442–2447. 10.1073/pnas.0409804102 PubMed DOI PMC

Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 70, 3321–3323. PubMed PMC

Nevo, E. , Gerechter‐Amitai, Z. , & Beiles, A. (1991). Resistance of wild emmer wheat to stem rust: Ecological, pathological and allozyme associations. Euphytica, 53, 121–130. 10.1007/BF00023792 DOI

Nevo, E. , Korol, A. B. , Beiles, A. , & Fahima, T. (2002). Evolution of wild emmer and wheat improvement. Springer.

Oliveira, H. R. , Jacocks, L. , Czajkowska, B. I. , Kennedy, S. L. , & Brown, T. A. (2020). Multiregional origins of the domesticated tetraploid wheats. PLoS ONE, 15(1), e0227148. 10.1371/journal.pone.0227148 PubMed DOI PMC

Olivera, P. , Newcomb, M. , Szabo, L. J. , Rouse, M. , Johnson, J. , Gale, S. , Luster, D. G. , Hodson, D. , Cox, J. A. , Burgin, L. , Hort, M. , Gilligan, C. A. , Patpour, M. , Justesen, A. F. , Hovmøller, M. S. , Woldeab, G. , Hailu, E. , Hundie, B. , Tadesse, K. , … Jin, Y. (2015). Phenotypic and Genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013–2014. Phytopathology, 105, 917–928. 10.1094/PHYTO-11-14-0302-FI PubMed DOI

Olivera, P. D. , Jin, Y. , Rouse, M. , Badebo, A. , Fetch, T., Jr. , Singh, R. P. , & Yahyaoui, A. (2012). Races of Puccinia graminis f. sp. tritici with combined virulence to Sr13 and Sr9e in a field stem rust screening nursery in Ethiopia. Plant Disease, 96, 623–628. 10.1094/pdis-09-11-0793 PubMed DOI

Ozkan, H. , Brandolini, A. , Pozzi, C. , Effgen, S. , Wunder, J. , & Salamini, F. (2005). A reconsideration of the domestication geography of tetraploid wheat. Theoretical Applied Genetics, 110, 1052–1060. 10.1007/s00122-005-1925-8 PubMed DOI

Özkan, H. , Willcox, G. , Graner, A. , Salamini, F. , & Kilian, B. (2011). Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genetic Resources and Crop Evolution, 58, 11–53. 10.1007/s10722-010-9581-5 DOI

Peakall, R. , & Smouse, P. E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research‐an update. Bioinformatics, 28(19), 2537–2539. 10.1093/bioinformatics/bts460 PubMed DOI PMC

Peng, J. , Zhiyong, L. , Xionglun, L. , Yan, J. , Sun, D. , & Nevo, E. (2021). Evolutionary agriculture domestication of wild emmer wheat. In Wasser S. P. & Frenkel‐Morgenstern M. (Eds.), New horizons in evolution (pp. 193–255). Academic Press. 10.1016/B978-0-323-90752-1.00007-9 DOI

Perrier, X. , Flori, A. , & Bonnot, F. (2003). Data analysis methods. In Hamon P., Seguin M., Perrier X., & Glaszmann J. C. (Eds.), Genetic diversity of cultivated tropical plants (pp. 43–76). Science Publishers.

Pretorius, Z. A. , Singh, R. P. , Wagoire, W. W. , & Payne, T. S. (2000). Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda. Plant Disease, 84(2), 203. 10.1094/pdis.2000.84.2.203b PubMed DOI

Pritchard, J. K. , Stephens, M. , & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959. 10.1093/genetics/155.2.945 PubMed DOI PMC

R Development Core Team . (2011). R: A language and environment for statistical computing . R Foundation for Statistical Computing.

Ren, J. , Chen, L. , Sun, D. , You, F. M. , Wang, J. , Peng, Y. , Nevo, E. , Beiles, A. , Sun, D. , Luo, M. C. , & Peng, J. (2013). SNP‐revealed genetic diversity in wild emmer wheat correlates with ecological factors. BMC Evolutionary Biology, 13, 169. 10.1186/1471-2148-13-169 PubMed DOI PMC

Roelfs, A. P. , & Martens, J. W. (1988). An international system of nomenclature for Puccinia graminis f. sp. tritici . Phytopathology, 78, 526–533.

Saccomanno, A. , Matny, O. , Marone, D. , Laidò, G. , Petruzzino, G. , Mazzucotelli, E. , Desiderio, F. , Blanco, A. , Gadaleta, A. , Pecchioni, N. , De Vita, P. , Steffenson, B. , & Mastrangelo, A. M. (2018). Genetic mapping of loci for resistance to stem rust in a tetraploid wheat collection. International Journal of Molecular Sciences, 19, 3907. 10.3390/ijms19123907 PubMed DOI PMC

Sela, H. , Ezrati, S. , Ben‐Yehuda, P. , Manisterski, J. , Akhunov, E. , Dvorak, J. , Breiman, A. , & Korol, A. (2014). Linkage disequilibrium and association analysis of stripe rust resistance in wild emmer wheat (Triticum turgidum ssp. dicoccoides) population in Israel. Theoretical Applied Genetics, 127, 2453–2463. 10.1007/s00122-014-2389-5 PubMed DOI

Sela, H. , Loutre, C. , Keller, B. , Schulman, A. , Nevo, E. , Korol, A. , & Fahima, T. (2011). Rapid linkage disequilibrium decay in the Lr10 gene in wild emmer wheat (Triticum dicoccoides) populations. Theoretical Applied Genetics, 122(1), 175–187. 10.1007/s00122-010-1434-2 PubMed DOI

Stakman, E. C. , Stewart, P. M. , & Loegering, W. (1962). Identification of physiologic races of Puccinia graminis var. tritici. US Department of Agriculture, Agricultural Research Service.

Steffenson, B. J. , Jin, Y. , Brueggeman, R. S. , Kleinhofs, A. , & Sun, Y. (2009). Resistance to stem rust race TTKSK maps to the rpg4/Rpg5 complex of chromosome 5H of barley. Phytopathology, 99, 1135–1141. 10.1094/PHYTO-99-10-1135 PubMed DOI

Strejčková, B. , Mazzucotelli, E. , Čegan, R. , Milec, Z. , Brus, J. , Çakır, E. , Mastrangelo, A. M. , Özkan, H. , & Šafář, J. (2023). Wild emmer wheat, the progenitor of modern bread wheat, exhibits great diversity in the VERNALIZATION1 gene. Frontiers in Plant Science, 13, 1106164. 10.3389/fpls.2022.1106164 PubMed DOI PMC

Swarup, S. , Cargill, E. J. , Crosby, K. , Flagel, L. , Kniskern, J. , & Glenn, K. C. (2021). Genetic diversity is indispensable for plant breeding to improve crops. Crop Science, 61, 839–852. 10.1002/csc2.20377 DOI

Tene, M. , Adhikari, E. , Cobo, N. , Jordan, K. W. , Matny, O. , del Blanco, I. A. , Roter, J. , Ezrati, S. , Govta, L. , Manisterski, J. , Yehuda, P. B. , Chen, X. , Steffenson, B. , Akhunov, E. , & Sela, H. (2022). GWAS for stripe rust resistance in wild emmer wheat (Triticum dicoccoides) population: Obstacles and solutions. Crops, 2(1), 42–61. 10.3390/crops2010005 DOI

The, T. T. , Nevo, E. , & McIntosh, R. A. (1993). Responses of Israeli wild emmers to selected Australian pathotypes of Puccinia species. Euphytica, 71, 75–81.

Wang, Z. , Xie, J. , Guo, L. , Zhang, D. , Li, G. , Fang, T. , Chen, Y. , LI, J. , Wu, Q. , Lu, P. , Li, M. , Wu, H. , Zhang, H. , Zhang, Y. , Yang, W. , Luo, M. , Tzion, F. , & Liu, Z. (2018). Molecular mapping of YrTZ2, a stripe rust resistance gene in wild emmer accession TZ‐2 and its comparative analyses with Aegilops tauschii . Journal of Integrative Agriculture, 17(6), 1267–1275. 10.1016/S2095-3119(17)61846-X DOI

Yadav, I. S. , Singh, N. , Wu, S. , Raupp, J. , Wilson, D. L. , Rawat, N. , Gill, B. S. , Poland, J. , & Tiwari, V. K. (2023). Exploring genetic diversity of wild and related tetraploid wheat species Triticum turgidum and Triticum timopheevii . Journal of advanced research, 48, 47–60. 10.1016/j.jare.2022.08.020 PubMed DOI PMC

Yaniv, E. , Raats, D. , Ronin, Y. , Korol, A. B. , Grama, A. , Bariana, H. , Dubcovsky, J. , & Schulman, A. H. (2015). Evaluation of marker‐assisted selection for the stripe rust resistance gene Yr15, introgressed from wild emmer wheat. Molecular Breeding, 35, 43. 10.1007/s11032-015-0238-0 PubMed DOI PMC

Zhang, D. , Bowden, R. L. , Yu, J. , Carver, B. F. , & Bai, G. (2014). Association analysis of stem rust resistance in U.S. winter wheat. PLoS ONE, 9(7), e103747. 10.1371/journal.pone.0103747 PubMed DOI PMC

Zhang, Y. , Hu, X. , Islam, S. , She, M. , Peng, Y. , Yu, Z. , Wylie, S. , Juhasz, A. , Dowla, M. , Yang, R. , Zhang, J. , Wang, X. , Dell, B. , Chen, X. , Nevo, E. , Sun, D. , & Ma, W. (2018). New insights into the evolution of wheat avenin‐like proteins in wild emmer wheat (Triticum dicoccoides). Proceedings of the National Academy of Sciences of the United States of America, 115(52), 13312–13317. 10.1073/pnas.1812855115 PubMed DOI PMC

Zhou, Z. , Jiang, Y. , Wang, Z. , Gou, Z. , Lyu, J. , Li, W. , Yu, Y. , Shu, L. , Zhao, Y. , Ma, Y. , Fang, C. , Shen, Y. , Liu, T. , Li, C. , Li, Q. , Wu, M. , Wang, M. , Wu, Y. , Dong, Y. , … Tian, Z. (2015). Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology, 33, 408–414. 10.1038/nbt.3096 PubMed DOI

Zhu, T. , Wang, L. , Rimbert, H. , Rodriguez, J. C. , Deal, K. R. , & Oliveira, D. (2021). Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. The Plant Journal, 107, 303–314. 10.1111/tpj.15289 PubMed DOI PMC

Zhu, T. , Wang, L. , Rodriguez, J. C. , Deal, K. R. , Avni, R. , Distelfeld, A. , McGuire, P. E. , Dvorak, J. , & Luo, M. C. (2019). Improved genome sequence of wild emmer wheat Zavitan with the aid of optical maps. G3: Genes, Genomes, Genetics, 9(3), 619–624. 10.1534/g3.118.200902 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...