Microscopy and spectroscopy approaches to study GPCR structure and function
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000441
European Regional Development Fund
20-09628Y
Grantová Agentura České Republiky
20-11563Y
Grantová Agentura České Republiky
LTC20074
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
38087925
DOI
10.1111/bph.16297
Knihovny.cz E-zdroje
- Klíčová slova
- G protein, G protein‐coupled receptor, biosensors, cell signalling, microscopy, spectroscopy, super‐resolution,
- MeSH
- lidé MeSH
- mikroskopie * metody MeSH
- receptory spřažené s G-proteiny * chemie metabolismus MeSH
- signální transdukce MeSH
- spektrální analýza * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- receptory spřažené s G-proteiny * MeSH
The GPCR signalling cascade is a key pathway responsible for the signal transduction of a multitude of physical and chemical stimuli, including light, odorants, neurotransmitters and hormones. Understanding the structural and functional properties of the GPCR cascade requires direct observation of signalling processes in high spatial and temporal resolution, with minimal perturbation to endogenous systems. Optical microscopy and spectroscopy techniques are uniquely suited to this purpose because they excel at multiple spatial and temporal scales and can be used in living objects. Here, we review recent developments in microscopy and spectroscopy technologies which enable new insights into GPCR signalling. We focus on advanced techniques with high spatial and temporal resolution, single-molecule methods, labelling strategies and approaches suitable for endogenous systems and large living objects. This review aims to assist researchers in choosing appropriate microscopy and spectroscopy approaches for a variety of applications in the study of cellular signalling. LINKED ARTICLES: This article is part of a themed issue Complexity of GPCR Modulation and Signaling (ERNST). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.14/issuetoc.
Celtarys Research S L Santiago Spain
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Airan, R. D., Thompson, K. R., Fenno, L. E., Bernstein, H., & Deisseroth, K. (2009). Temporally precise in vivo control of intracellular signalling. Nature, 458, 1025–1029. https://doi.org/10.1038/nature07926
Alam, M. K., El‐Sayed, A., Barreto, K., Bernhard, W., Fonge, H., & Geyer, C. R. (2019). Site‐specific fluorescent labeling of antibodies and diabodies using SpyTag/SpyCatcher system for in vivo optical imaging. Molecular Imaging and Biology, 21, 54–66. https://doi.org/10.1007/s11307-018-1222-y
Albizu, L., Cottet, M., Kralikova, M., Stoev, S., Seyer, R., Brabet, I., Roux, T., Bazin, H., Bourrier, E., Lamarque, L., Breton, C., Rives, M. L., Newman, A., Javitch, J., Trinquet, E., Manning, M., Pin, J. P., Mouillac, B., & Durroux, T. (2010). Time‐resolved FRET between GPCR ligands reveals oligomers in native tissues. Nature Chemical Biology, 6, 587–594. https://doi.org/10.1038/nchembio.396
Alcobia, D. C., Ziegler, A. I., Kondrashov, A., Comeo, E., Mistry, S., Kellam, B., Chang, A., Woolard, J., Hill, S. J., & Sloan, E. K. (2018). Visualizing ligand binding to a GPCR in vivo using NanoBRET. iScience, 6, 280–288. https://doi.org/10.1016/j.isci.2018.08.006
Alexander, S. P., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Abbracchio, M. P., Alexander, W., Al‐hosaini, K., Bäck, M., Barnes, N. M., Bathgate, R., … Ye, R. D. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein‐coupled receptors. British Journal of Pharmacology, 178(S1), S27–S156. https://doi.org/10.1111/bph.15538
Alvarez‐Curto, E., Inoue, A., Jenkins, L., Raihan, S. Z., Prihandoko, R., Tobin, A. B., & Milligan, G. (2016). Targeted elimination of G proteins and arrestins defines their specific contributions to both intensity and duration of G protein‐coupled receptor signaling. The Journal of Biological Chemistry, 291, 27147–27159. https://doi.org/10.1074/jbc.M116.754887
Antoine, T., Ott, D., Ebell, K., Hansen, K., Henry, L., Becker, F., & Hannus, S. (2016). Homogeneous time‐resolved G protein‐coupled receptor‐ligand binding assay based on fluorescence cross‐correlation spectroscopy. Analytical Biochemistry, 502, 24–35. https://doi.org/10.1016/j.ab.2016.02.017
Anton, S. E., Kayser, C., Maiellaro, I., Nemec, K., Möller, J., Koschinski, A., Zaccolo, M., Annibale, P., Falcke, M., Lohse, M. J., & Bock, A. (2022). Receptor‐associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. Cell, 185, 1130–1142. https://doi.org/10.1016/j.cell.2022.02.011
Araya, R., Andino‐Pavlovsky, V., Yuste, R., & Etchenique, R. (2013). Two‐photon optical interrogation of individual dendritic spines with caged dopamine. ACS Chemical Neuroscience, 4, 1163–1167. https://doi.org/10.1021/cn4000692
Arsic, A., Hagemann, C., Stajkovic, N., Schubert, T., & Nikic‐Spiegel, I. (2022). Minimal genetically encoded tags for fluorescent protein labeling in living neurons. Nature Communications, 13, 314. https://doi.org/10.1038/s41467-022-27956-y
Arttamangkul, S., Plazek, A., Platt, E. J., Jin, H., Murray, T. F., Birdsong, W. T., Rice, K. C., Farrens, D. L., & Williams, J. T. (2019). Visualizing endogenous opioid receptors in living neurons using ligand‐directed chemistry. eLife, 8, e49319. https://doi.org/10.7554/eLife.49319
Asher, W. B., Geggier, P., Holsey, M. D., Gilmore, G. T., Pati, A. K., Meszaros, J., Terry, D. S., Mathiasen, S., Kaliszewski, M. J., McCauley, M. D., Govindaraju, A., Zhou, Z., Harikumar, K. G., Jaqaman, K., Miller, L. J., Smith, A. W., Blanchard, S. C., & Javitch, J. A. (2021). Single‐molecule FRET imaging of GPCR dimers in living cells. Nature Methods, 18, 397–405. https://doi.org/10.1038/s41592-021-01081-y
Asher, W. B., Terry, D. S., Gregorio, G. G. A., Kahsai, A. W., Borgia, A., Xie, B., Modak, A., Zhu, Y., Jang, W., Govindaraju, A., Huang, L. Y., Inoue, A., Lambert, N. A., Gurevich, V. V., Shi, L., Lefkowitz, R. J., Blanchard, S. C., & Javitch, J. A. (2022). GPCR‐mediated beta‐arrestin activation deconvoluted with single‐molecule precision. Cell, 185, 1661–1675. https://doi.org/10.1016/j.cell.2022.03.042
Ast, J., Arvaniti, A., Fine, N. H. F., Nasteska, D., Ashford, F. B., Stamataki, Z., Koszegi, Z., Bacon, A., Jones, B. J., Lucey, M. A., Sasaki, S., Brierley, D. I., Hastoy, B., Tomas, A., D’Agostino, G., Reimann, F., Lynn, F. C., Reissaus, C. A., Linnemann, A. K., … Hodson, D. J. (2020). Super‐resolution microscopy compatible fluorescent probes reveal endogenous glucagon‐like peptide‐1 receptor distribution and dynamics. Nature Communications, 11, 467. https://doi.org/10.1038/s41467-020-14309-w
Axelrod, D. (1981). Cell‐substrate contacts illuminated by total internal reflection fluorescence. The Journal of Cell Biology, 89, 141–145. https://doi.org/10.1083/jcb.89.1.141
Banerjee, C., Liauw, B. W., & Vafabakhsh, R. (2022). Visualizing the conformational dynamics of membrane receptors using single‐molecule FRET. Journal of Visualized Experiments, 186, e64254. https://doi.org/10.3791/64254-v
Barbazan, J., Majellaro, M., Martinez, A. L., Brea, J. M., Sotelo, E., & Abal, M. (2022). Identification of A(2B)AR as a potential target in colorectal cancer using novel fluorescent GPCR ligands. Biomedicine & Pharmacotherapy, 153, 113408. https://doi.org/10.1016/j.biopha.2022.113408
Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott‐Schwartz, J., & Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642–1645. https://doi.org/10.1126/science.1127344
Bondar, A., Jang, W., Sviridova, E., & Lambert, N. A. (2020). Components of the Gs signaling cascade exhibit distinct changes in mobility and membrane domain localization upon beta2 ‐adrenergic receptor activation. Traffic, 21, 324–332. https://doi.org/10.1111/tra.12724
Bondar, A., & Lazar, J. (2014). Dissociated GalphaGTP and Gbetagamma protein subunits are the major activated form of heterotrimeric Gi/o proteins. The Journal of Biological Chemistry, 289, 1271–1281. https://doi.org/10.1074/jbc.M113.493643
Bondar, A., & Lazar, J. (2017). The G protein Gi1 exhibits basal coupling but not preassembly with G protein‐coupled receptors. The Journal of Biological Chemistry, 292, 9690–9698. https://doi.org/10.1074/jbc.M116.768127
Bondar, A., Rybakova, O., Melcr, J., Dohnálek, J., Khoroshyy, P., Ticháček, O., Timr, Š., Miclea, P., Sakhi, A., Marková, V., & Lazar, J. (2021). Quantitative linear dichroism imaging of molecular processes in living cells made simple by open software tools. Commun Biol, 4, 189. https://doi.org/10.1038/s42003-021-01694-1
Briddon, S. J., Kilpatrick, L. E., & Hill, S. J. (2018). Studying GPCR pharmacology in membrane microdomains: Fluorescence correlation spectroscopy comes of age. Trends in Pharmacological Sciences, 39, 158–174. https://doi.org/10.1016/j.tips.2017.11.004
Bunemann, M., Frank, M., & Lohse, M. J. (2003). Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proceedings of the National Academy of Sciences of the United States of America, 100, 16077–16082. https://doi.org/10.1073/pnas.2536719100
Caetano Crowley, F. A., Heit, B., & Ferguson, S. S. G. (2019). Super‐resolution imaging of G protein‐coupled receptors using ground state depletion microscopy. Methods in Molecular Biology, 1947, 323–336. https://doi.org/10.1007/978-1-4939-9121-1_18
Calebiro, D., Rieken, F., Wagner, J., Sungkaworn, T., Zabel, U., Borzi, A., Cocucci, E., Zürn, A., & Lohse, M. J. (2013). Single‐molecule analysis of fluorescently labeled G‐protein‐coupled receptors reveals complexes with distinct dynamics and organization. Proceedings of the National Academy of Sciences of the United States of America, 110, 743–748. https://doi.org/10.1073/pnas.1205798110
Carroll, E. C., Berlin, S., Levitz, J., Kienzler, M. A., Yuan, Z., Madsen, D., Larsen, D. S., & Isacoff, E. Y. (2015). Two‐photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. Proceedings of the National Academy of Sciences of the United States of America, 112, E776–E785. https://doi.org/10.1073/pnas.1416942112
Chen, F., Tillberg, P. W., & Boyden, E. S. (2015). Optical imaging. Expansion microscopy. Science, 347, 543–548. https://doi.org/10.1126/science.1260088
Chen, Y., Saulnier, J. L., Yellen, G., & Sabatini, B. L. (2014). A PKA activity sensor for quantitative analysis of endogenous GPCR signaling via 2‐photon FRET‐FLIM imaging. Frontiers in Pharmacology, 5, 56.
Cho, N. H., Cheveralls, K. C., Brunner, A. D., Kim, K., Michaelis, A. C., Raghavan, P., Kobayashi, H., Savy, L., Li, J. Y., Canaj, H., Kim, J. Y. S., Stewart, E. M., Gnann, C., McCarthy, F., Cabrera, J. P., Brunetti, R. M., Chhun, B. B., Dingle, G., Hein, M. Y., … Leonetti, M. D. (2022). OpenCell: Endogenous tagging for the cartography of human cellular organization. Science, 375, eabi6983. https://doi.org/10.1126/science.abi6983
Cole, F., Zaehringer, J., Bohlen, J., Schroeder, T., Steiner, F., Stefani, F. D., & Tinnefeld, P. (2023). Super‐resolved FRET and co‐tracking in pMINFLUX. bioRxiv: 2023.2003.2024.534096.
Denk, W. (1994). Two‐photon scanning photochemical microscopy: Mapping ligand‐gated ion channel distributions. Proceedings of the National Academy of Sciences of the United States of America, 91, 6629–6633. https://doi.org/10.1073/pnas.91.14.6629
Digby, G. J., Lober, R. M., Sethi, P. R., & Lambert, N. A. (2006). Some G protein heterotrimers physically dissociate in living cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 17789–17794. https://doi.org/10.1073/pnas.0607116103
Digman, M. A., & Gratton, E. (2009). Analysis of diffusion and binding in cells using the RICS approach. Microscopy Research and Technique, 72, 323–332. https://doi.org/10.1002/jemt.20655
Dressler, H., Economides, K., Favara, S., Wu, N. N., Pang, Z., & Polites, H. G. (2014). The CRE luc bioluminescence transgenic mouse model for detecting ligand activation of GPCRs. Journal of Biomolecular Screening, 19, 232–241. https://doi.org/10.1177/1087057113496465
Drube, J., Haider, R. S., Matthees, E. S. F., Reichel, M., Zeiner, J., Fritzwanker, S., Ziegler, C., Barz, S., Klement, L., Filor, J., Weitzel, V., Kliewer, A., Miess‐Tanneberg, E., Kostenis, E., Schulz, S., & Hoffmann, C. (2022). GPCR kinase knockout cells reveal the impact of individual GRKs on arrestin binding and GPCR regulation. Nature Communications, 13, 540. https://doi.org/10.1038/s41467-022-28152-8
Dudok, B., Barna, L., Ledri, M., Szabó, S. I., Szabadits, E., Pintér, B., Woodhams, S. G., Henstridge, C. M., Balla, G. Y., Nyilas, R., Varga, C., Lee, S. H., Matolcsi, M., Cervenak, J., Kacskovics, I., Watanabe, M., Sagheddu, C., Melis, M., Pistis, M., … Katona, I. (2015). Cell‐specific STORM super‐resolution imaging reveals nanoscale organization of cannabinoid signaling. Nature Neuroscience, 18, 75–86. https://doi.org/10.1038/nn.3892
Eichel, K., Jullié, D., Barsi‐Rhyne, B., Latorraca, N. R., Masureel, M., Sibarita, J. B., Dror, R. O., & von Zastrow, M. (2018). Catalytic activation of beta‐arrestin by GPCRs. Nature, 557, 381–386. https://doi.org/10.1038/s41586-018-0079-1
Eichel, K., Jullie, D., & von Zastrow, M. (2016). Beta‐arrestin drives MAP kinase signalling from clathrin‐coated structures after GPCR dissociation. Nature Cell Biology, 18, 303–310. https://doi.org/10.1038/ncb3307
Ergin, E., Dogan, A., Parmaksiz, M., Elcin, A. E., & Elcin, Y. M. (2016). Time‐resolved fluorescence resonance energy transfer [TR‐FRET] assays for biochemical processes. Current Pharmaceutical Biotechnology, 17, 1222–1230. https://doi.org/10.2174/1389201017666160809164527
Fernandes, D. D., Neale, C., Gomes, G. W., Li, Y., Malik, A., Pandey, A., Orazietti, A. P., Wang, X., Ye, L., Scott Prosser, R., & Gradinaru, C. C. (2021). Ligand modulation of the conformational dynamics of the A(2A) adenosine receptor revealed by single‐molecule fluorescence. Scientific Reports, 11, 5910. https://doi.org/10.1038/s41598-021-84069-0
Förster, T. (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik, 437, 55–75. https://doi.org/10.1002/andp.19484370105
Foust, D. J., & Piston, D. W. (2021). Measuring G Protein Activation with Spectrally Resolved Fluorescence Fluctuation Spectroscopy. bioRxiv: 2021.2011.2003.467169.
Galés, C., Rebois, R. V., Hogue, M., Trieu, P., Breit, A., Hébert, T. E., & Bouvier, M. (2005). Real‐time monitoring of receptor and G‐protein interactions in living cells. Nature Methods, 2, 177–184. https://doi.org/10.1038/nmeth743
Gautier, A., Juillerat, A., Heinis, C., Corrêa, I. R. Jr., Kindermann, M., Beaufils, F., & Johnsson, K. (2008). An engineered protein tag for multiprotein labeling in living cells. Chemistry & Biology, 15, 128–136. https://doi.org/10.1016/j.chembiol.2008.01.007
Gentzsch, C., Seier, K., Drakopoulos, A., Jobin, M. L., Lanoiselée, Y., Koszegi, Z., Maurel, D., Sounier, R., Hübner, H., Gmeiner, P., Granier, S., Calebiro, D., & Decker, M. (2020). Selective and wash‐resistant fluorescent dihydrocodeinone derivatives allow single‐molecule imaging of mu‐opioid receptor dimerization. Angewandte Chemie (International Ed. in English), 59, 5958–5964. https://doi.org/10.1002/anie.201912683
Gil, A. A., Carrasco‐López, C., Zhu, L., Zhao, E. M., Ravindran, P. T., Wilson, M. Z., Goglia, A. G., Avalos, J. L., & Toettcher, J. E. (2020). Optogenetic control of protein binding using light‐switchable nanobodies. Nature Communications, 11, 4044. https://doi.org/10.1038/s41467-020-17836-8
Gormal, R. S., Padmanabhan, P., Kasula, R., Bademosi, A. T., Coakley, S., Giacomotto, J., Blum, A., Joensuu, M., Wallis, T. P., Lo, H. P., Budnar, S., Rae, J., Ferguson, C., Bastiani, M., Thomas, W. G., Pardon, E., Steyaert, J., Yap, A. S., Goodhill, G. J., … Meunier, F. A. (2020). Modular transient nanoclustering of activated beta2‐adrenergic receptors revealed by single‐molecule tracking of conformation‐specific nanobodies. Proceedings of the National Academy of Sciences of the United States of America, 117, 30476–30487. https://doi.org/10.1073/pnas.2007443117
Götzke, H., Kilisch, M., Martínez‐Carranza, M., Sograte‐Idrissi, S., Rajavel, A., Schlichthaerle, T., Engels, N., Jungmann, R., Stenmark, P., Opazo, F., & Frey, S. (2019). The ALFA‐tag is a highly versatile tool for nanobody‐based bioscience applications. Nature Communications, 10, 4403. https://doi.org/10.1038/s41467-019-12301-7
Graham, T. G. W., Ferrie, J. J., Dailey, G. M., Tjian, R., & Darzacq, X. (2022). Detecting molecular interactions in live‐cell single‐molecule imaging with proximity‐assisted photoactivation (PAPA). eLife, 11, e76870. https://doi.org/10.7554/eLife.76870
Gregorio, G. G., Masureel, M., Hilger, D., Terry, D. S., Juette, M., Zhao, H., Zhou, Z., Perez‐Aguilar, J. M., Hauge, M., Mathiasen, S., Javitch, J. A., Weinstein, H., Kobilka, B. K., & Blanchard, S. C. (2017). Single‐molecule analysis of ligand efficacy in beta2AR‐G‐protein activation. Nature, 547, 68–73. https://doi.org/10.1038/nature22354
Grime, R. L., Goulding, J., Uddin, R., Stoddart, L. A., Hill, S. J., Poyner, D. R., Briddon, S. J., & Wheatley, M. (2020). Single molecule binding of a ligand to a G‐protein‐coupled receptor in real time using fluorescence correlation spectroscopy, rendered possible by nano‐encapsulation in styrene maleic acid lipid particles. Nanoscale, 12, 11518–11525. https://doi.org/10.1039/D0NR01060J
Grimes, J., Koszegi, Z., Lanoiselée, Y., Miljus, T., O’Brien, S. L., Stepniewski, T. M., Medel‐Lacruz, B., Baidya, M., Makarova, M., Mistry, R., Goulding, J., Drube, J., Hoffmann, C., Owen, D. M., Shukla, A. K., Selent, J., Hill, S. J., & Calebiro, D. (2023). Plasma membrane preassociation drives beta‐arrestin coupling to receptors and activation. Cell, 186, 2238–2255. https://doi.org/10.1016/j.cell.2023.04.018
Gustafsson, M. G. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy, 198, 82–87. https://doi.org/10.1046/j.1365-2818.2000.00710.x
Gustafsson, N., Culley, S., Ashdown, G., Owen, D. M., Pereira, P. M., & Henriques, R. (2016). Fast live‐cell conventional fluorophore nanoscopy with ImageJ through super‐resolution radial fluctuations. Nature Communications, 7, 12471. https://doi.org/10.1038/ncomms12471
Gwosch, K. C., Pape, J. K., Balzarotti, F., Hoess, P., Ellenberg, J., Ries, J., & Hell, S. W. (2020). MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nature Methods, 17, 217–224. https://doi.org/10.1038/s41592-019-0688-0
Han, M. J., He, Q. T., Yang, M., Chen, C., Yao, Y., Liu, X., Wang, Y., Zhu, Z. L., Zhu, K. K., Qu, C., Yang, F., Hu, C., Guo, X., Zhang, D., Chen, C., Sun, J. P., & Wang, J. (2021). Single‐molecule FRET and conformational analysis of beta‐arrestin‐1 through genetic code expansion and a se‐click reaction. Chemical Science, 12, 9114–9123. https://doi.org/10.1039/D1SC02653D
Harkes, R., Kukk, O., Mukherjee, S., Klarenbeek, J., van den Broek, B., & Jalink, K. (2021). Dynamic FRET‐FLIM based screening of signal transduction pathways. Scientific Reports, 11, 20711. https://doi.org/10.1038/s41598-021-00098-9
Hattori, M., & Ozawa, T. (2015). High‐throughput live cell imaging and analysis for temporal reaction of G protein‐coupled receptor based on split luciferase fragment complementation. Analytical Sciences, 31, 327–330. https://doi.org/10.2116/analsci.31.327
Hell, S. W., & Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: Stimulated‐emission‐depletion fluorescence microscopy. Optics Letters, 19, 780–782. https://doi.org/10.1364/OL.19.000780
Helmerich, D. A., Beliu, G., Taban, D., Meub, M., Streit, M., Kuhlemann, A., Doose, S., & Sauer, M. (2022). Photoswitching fingerprint analysis bypasses the 10‐nm resolution barrier. Nature Methods, 19, 986–994. https://doi.org/10.1038/s41592-022-01548-6
Herrick‐Davis, K., Grinde, E., Cowan, A., & Mazurkiewicz, J. E. (2013). Fluorescence correlation spectroscopy analysis of serotonin, adrenergic, muscarinic, and dopamine receptor dimerization: The oligomer number puzzle. Molecular Pharmacology, 84, 630–642. https://doi.org/10.1124/mol.113.087072
Heuninck, J., Hounsou, C., Dupuis, E., Trinquet, E., Mouillac, B., Pin, J. P., Bonnet, D., & Durroux, T. (2019). Time‐resolved FRET‐based assays to characterize G protein‐coupled receptor hetero‐oligomer pharmacology. Methods in Molecular Biology, 1947, 151–168. https://doi.org/10.1007/978-1-4939-9121-1_8
Irannejad, R., Tomshine, J. C., Tomshine, J. R., Chevalier, M., Mahoney, J. P., Steyaert, J., Rasmussen, S. G. F., Sunahara, R. K., el‐Samad, H., Huang, B., & von Zastrow, M. (2013). Conformational biosensors reveal GPCR signalling from endosomes. Nature, 495, 534–538. https://doi.org/10.1038/nature12000
Işbilir, A., Möller, J., Arimont, M., Bobkov, V., Perpiñá‐Viciano, C., Hoffmann, C., Inoue, A., Heukers, R., de Graaf, C., Smit, M. J., Annibale, P., & Lohse, M. J. (2020). Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket‐specific inverse agonists. Proceedings of the National Academy of Sciences of the United States of America, 117, 29144–29154. https://doi.org/10.1073/pnas.2013319117
Jonas, K. C., Fanelli, F., Huhtaniemi, I. T., & Hanyaloglu, A. C. (2015). Single molecule analysis of functionally asymmetric G protein‐coupled receptor (GPCR) oligomers reveals diverse spatial and structural assemblies. The Journal of Biological Chemistry, 290, 3875–3892. https://doi.org/10.1074/jbc.M114.622498
Joseph, M. D., Tomas Bort, E., Grose, R. P., McCormick, P. J., & Simoncelli, S. (2021). Quantitative super‐resolution imaging for the analysis of GPCR oligomerization. Biomolecules, 11, 1503. https://doi.org/10.3390/biom11101503
Kasai, R. S., Ito, S. V., Awane, R. M., Fujiwara, T. K., & Kusumi, A. (2018). The class‐A GPCR dopamine D2 receptor forms transient dimers stabilized by agonists: Detection by single‐molecule tracking. Cell Biochemistry and Biophysics, 76, 29–37. https://doi.org/10.1007/s12013-017-0829-y
Kauk, M., & Hoffmann, C. (2018). Intramolecular and intermolecular FRET sensors for GPCRs ‐ Monitoring conformational changes and beyond. Trends in Pharmacological Sciences, 39, 123–135. https://doi.org/10.1016/j.tips.2017.10.011
Kilpatrick, L. E., & Hill, S. J. (2021). The use of fluorescence correlation spectroscopy to characterise the molecular mobility of G protein‐coupled receptors in membrane microdomains: An update. Biochemical Society Transactions, 49, 1547–1554. https://doi.org/10.1042/BST20201001
Kim, H., Baek, I. Y., & Seong, J. (2022). Genetically encoded fluorescent biosensors for GPCR research. Frontiers in Cell and Development Biology, 10, 1–17. https://doi.org/10.3389/fcell.2022.1007893
Komatsuzaki, A., Ohyanagi, T., Tsukasaki, Y., Miyanaga, Y., Ueda, M., & Jin, T. (2015). Compact halo‐ligand‐conjugated quantum dots for multicolored single‐molecule imaging of overcrowding GPCR proteins on cell membranes. Small, 11, 1396–1401. https://doi.org/10.1002/smll.201402508
Kono, M., Conlon, E. G., Lux, S. Y., Yanagida, K., Hla, T., & Proia, R. L. (2017). Bioluminescence imaging of G protein‐coupled receptor activation in living mice. Nature Communications, 8, 1163. https://doi.org/10.1038/s41467-017-01340-7
Kroning, K. E., & Wang, W. (2022). Genetically encoded tools for in vivo G‐protein‐coupled receptor agonist detection at cellular resolution. Clinical and Translational Medicine, 12, e1124. https://doi.org/10.1002/ctm2.1124
Laine, R. F., Heil, H. S., Coelho, S., Nixon‐Abell, J., Jimenez, A., Wiesner, T., Martínez, D., Galgani, T., Régnier, L., Stubb, A., Follain, G., Webster, S., Goyette, J., Dauphin, A., Salles, A., Culley, S., Jacquemet, G., Hajj, B., Leterrier, C., & Henriques, R. (2022). High‐fidelity 3D live‐cell nanoscopy through data‐driven enhanced super‐resolution radial fluctuation. bioRxiv: 2022.2004.2007.487490.
Lamichhane, R., Liu, J. J., Pljevaljcic, G., White, K. L., van der Schans, E., Katritch, V., Stevens, R. C., Wüthrich, K., & Millar, D. P. (2015). Single‐molecule view of basal activity and activation mechanisms of the G protein‐coupled receptor beta2AR. Proceedings of the National Academy of Sciences of the United States of America, 112, 14254–14259. https://doi.org/10.1073/pnas.1519626112
Latty, S. L., Felce, J. H., Weimann, L., Lee, S. F., Davis, S. J., & Klenerman, D. (2015). Referenced single‐molecule measurements differentiate between GPCR oligomerization states. Biophysical Journal, 109, 1798–1806. https://doi.org/10.1016/j.bpj.2015.09.004
Lazar, J., Bondar, A., Timr, S., & Firestein, S. J. (2011). Two‐photon polarization microscopy reveals protein structure and function. Nature Methods, 8, 684–690. https://doi.org/10.1038/nmeth.1643
Lecat‐Guillet, N., Quast, R. B., Liu, H., Bourrier, E., Møller, T. C., Rovira, X., Soldevila, S., Lamarque, L., Trinquet, E., Liu, J., Pin, J. P., Rondard, P., & Margeat, E. (2023). Concerted conformational changes control metabotropic glutamate receptor activity. Science Advances, 9, eadf1378. https://doi.org/10.1126/sciadv.adf1378
Li, H., Yang, J., Tian, C., Diao, M., Wang, Q., Zhao, S., Li, S., Tan, F., Hua, T., Qin, Y., Lin, C. P., Deska‐Gauthier, D., Thompson, G. J., Zhang, Y., Shui, W., Liu, Z. J., Wang, T., & Zhong, G. (2020). Organized cannabinoid receptor distribution in neurons revealed by super‐resolution fluorescence imaging. Nature Communications, 11, 5699. https://doi.org/10.1038/s41467-020-19510-5
Liese, J., Rooijakkers, S. H., van Strijp, J. A., Novick, R. P., & Dustin, M. L. (2013). Intravital two‐photon microscopy of host‐pathogen interactions in a mouse model of Staphylococcus aureus skin abscess formation. Cellular Microbiology, 15, 891–909. https://doi.org/10.1111/cmi.12085
Lieto, A. M., Cush, R. C., & Thompson, N. L. (2003). Ligand‐receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophysical Journal, 85, 3294–3302. https://doi.org/10.1016/S0006-3495(03)74748-1
Liput, D. J., Nguyen, T. A., Augustin, S. M., Lee, J. O., & Vogel, S. S. (2020). A guide to fluorescence lifetime microscopy and Forster's resonance energy transfer in neuroscience. Current Protocols in Neuroscience, 94, e108. https://doi.org/10.1002/cpns.108
Liu, B., Stone, O. J., Pablo, M., Herron, J. C., Nogueira, A. T., Dagliyan, O., Grimm, J. B., Lavis, L. D., Elston, T. C., & Hahn, K. M. (2021). Biosensors based on peptide exposure show single molecule conformations in live cells. Cell, 184, 5670–5685. https://doi.org/10.1016/j.cell.2021.09.026
Lockyer, J., Reading, A., Vicenzi, S., Delandre, C., Marshall, O., Gasperini, R., Foa, L., & Lin, J. Y. (2023). Optogenetic inhibition of Gα signalling alters and regulates circuit functionality and early circuit formation. bioRxiv: 2023.2005.2006.539674.
Lohse, M. J., & Hofmann, K. P. (2015). Spatial and temporal aspects of signaling by G‐protein‐coupled receptors. Molecular Pharmacology, 88, 572–578. https://doi.org/10.1124/mol.115.100248
Los, G. V., Encell, L. P., McDougall, M. G., Hartzell, D. D., Karassina, N., Zimprich, C., Wood, M. G., Learish, R., Ohana, R. F., Urh, M., Simpson, D., Mendez, J., Zimmerman, K., Otto, P., Vidugiris, G., Zhu, J., Darzins, A., Klaubert, D. H., Bulleit, R. F., & Wood, K. V. (2008). HaloTag: A novel protein labeling technology for cell imaging and protein analysis. ACS Chemical Biology, 3, 373–382. https://doi.org/10.1021/cb800025k
Maslov, I., Volkov, O., Khorn, P., Orekhov, P., Gusach, A., Kuzmichev, P., Gerasimov, A., Luginina, A., Coucke, Q., Bogorodskiy, A., Gordeliy, V., Wanninger, S., Barth, A., Mishin, A., Hofkens, J., Cherezov, V., Gensch, T., Hendrix, J., & Borshchevskiy, V. (2023). Sub‐millisecond conformational dynamics of the A(2A) adenosine receptor revealed by single‐molecule FRET. Commun Biol, 6, 362. https://doi.org/10.1038/s42003-023-04727-z
Masullo, L. A., Szalai, A. M., Lopez, L. F., Pilo‐Pais, M., Acuna, G. P., & Stefani, F. D. (2022). An alternative to MINFLUX that enables nanometer resolution in a confocal microscope. Light: Science & Applications, 11, 199. https://doi.org/10.1038/s41377-022-00896-4
Maziarz, M., Park, J. C., Leyme, A., Marivin, A., Garcia‐Lopez, A., Patel, P. P., & Garcia‐Marcos, M. (2020). Revealing the activity of trimeric G‐proteins in live cells with a versatile biosensor design. Cell, 182, 770–785.e16. https://doi.org/10.1016/j.cell.2020.06.020
Mihaila, T. S., Bäte, C., Ostersehlt, L. M., Pape, J. K., Keller‐Findeisen, J., Sahl, S. J., & Hell, S. W. (2022). Enhanced incorporation of subnanometer tags into cellular proteins for fluorescence nanoscopy via optimized genetic code expansion. Proceedings of the National Academy of Sciences of the United States of America, 119, e2201861119. https://doi.org/10.1073/pnas.2201861119
Möller, J., Isbilir, A., Sungkaworn, T., Osberg, B., Karathanasis, C., Sunkara, V., Grushevskyi, E. O., Bock, A., Annibale, P., Heilemann, M., Schütte, C., & Lohse, M. J. (2020). Single‐molecule analysis reveals agonist‐specific dimer formation of micro‐opioid receptors. Nature Chemical Biology, 16, 946–954. https://doi.org/10.1038/s41589-020-0566-1
Myskova, J., Rybakova, O., Brynda, J., Khoroshyy, P., Bondar, A., & Lazar, J. (2020). Directionality of light absorption and emission in representative fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America, 117, 32395–32401. https://doi.org/10.1073/pnas.2017379117
Nehmé, R., Carpenter, B., Singhal, A., Strege, A., Edwards, P. C., White, C. F., du, H., Grisshammer, R., & Tate, C. G. (2017). Mini‐G proteins: Novel tools for studying GPCRs in their active conformation. PLoS ONE, 12, e0175642. https://doi.org/10.1371/journal.pone.0175642
Olsen, R. H. J., DiBerto, J. F., English, J. G., Glaudin, A. M., Krumm, B. E., Slocum, S. T., Che, T., Gavin, A. C., McCorvy, J. D., Roth, B. L., & Strachan, R. T. (2020). TRUPATH, an open‐source biosensor platform for interrogating the GPCR transducerome. Nature Chemical Biology, 16, 841–849. https://doi.org/10.1038/s41589-020-0535-8
Olsen, R. H. J., & English, J. G. (2023). Advancements in G protein‐coupled receptor biosensors to study GPCR‐G protein coupling. British Journal of Pharmacology, 180, 1433–1443. https://doi.org/10.1111/bph.15962
Ostersehlt, L. M., Jans, D. C., Wittek, A., Keller‐Findeisen, J., Inamdar, K., Sahl, S. J., Hell, S. W., & Jakobs, S. (2022). DNA‐PAINT MINFLUX nanoscopy. Nature Methods, 19, 1072–1075. https://doi.org/10.1038/s41592-022-01577-1
Patriarchi, T., Cho, J. R., Merten, K., Howe, M. W., Marley, A., Xiong, W. H., Folk, R. W., Broussard, G. J., Liang, R., Jang, M. J., Zhong, H., Dombeck, D., von Zastrow, M., Nimmerjahn, A., Gradinaru, V., Williams, J. T., & Tian, L. (2018). Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science, 360, eaat4422. https://doi.org/10.1126/science.aat4422
Payne, N. C., Kalyakina, A. S., Singh, K., Tye, M. A., & Mazitschek, R. (2021). Bright and stable luminescent probes for target engagement profiling in live cells. Nature Chemical Biology, 17, 1168–1177. https://doi.org/10.1038/s41589-021-00877-5
Petelák, A., Lambert, N. A., & Bondar, A. (2023). Serotonin 5‐HT7 receptor slows down the Gs protein: A single molecule perspective. Molecular Biology of the Cell, 0, mbc. E23‐03‐0117.
Pham, C., Moro, D. H., Mouffle, C., Didienne, S., Hepp, R., Pfrieger, F. W., Mangin, J. M., Legendre, P., Martin, C., Luquet, S., Cauli, B., & Li, D. (2020). Mapping astrocyte activity domains by light sheet imaging and spatio‐temporal correlation screening. NeuroImage, 220, 117069. https://doi.org/10.1016/j.neuroimage.2020.117069
Philip, F., Sengupta, P., & Scarlata, S. (2007). Signaling through a G protein‐coupled receptor and its corresponding G protein follows a stoichiometrically limited model. The Journal of Biological Chemistry, 282, 19203–19216. https://doi.org/10.1074/jbc.M701558200
Polit, A., Rysiewicz, B., Mystek, P., Blasiak, E., & Dziedzicka‐Wasylewska, M. (2020). The Galphai protein subclass selectivity to the dopamine D(2) receptor is also decided by their location at the cell membrane. Cell Communication and Signaling: CCS, 18, 189. https://doi.org/10.1186/s12964-020-00685-9
Pulin, M., Stockhausen, K. E., Masseck, O. A., Kubitschke, M., Busse, B., Wiegert, J. S., & Oertner, T. G. (2022). Orthogonally‐polarized excitation for improved two‐photon and second‐harmonic‐generation microscopy, applied to neurotransmitter imaging with GPCR‐based sensors. Biomedical Optics Express, 13, 777–790. https://doi.org/10.1364/BOE.448760
Quast, R. B., & Margeat, E. (2019). Studying GPCR conformational dynamics by single molecule fluorescence. Molecular and Cellular Endocrinology, 493, 110469. https://doi.org/10.1016/j.mce.2019.110469
Raïch, I., Rivas‐Santisteban, R., Lillo, A., Lillo, J., Reyes‐Resina, I., Nadal, X., Ferreiro‐Vera, C., de Medina, V. S., Majellaro, M., Sotelo, E., Navarro, G., & Franco, R. (2021). Similarities and differences upon binding of naturally occurring delta(9)‐tetrahydrocannabinol‐derivatives to cannabinoid CB(1) and CB(2) receptors. Pharmacological Research, 174, 105970. https://doi.org/10.1016/j.phrs.2021.105970
Rasmussen, S. G., DeVree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., Thian, F. S., Chae, P. S., Pardon, E., Calinski, D., Mathiesen, J. M., Shah, S. T. A., Lyons, J. A., Caffrey, M., Gellman, S. H., Steyaert, J., Skiniotis, G., Weis, W. I., Sunahara, R. K., & Kobilka, B. K. (2011). Crystal structure of the beta2 adrenergic receptor‐Gs protein complex. Nature, 477, 549–555. https://doi.org/10.1038/nature10361
Ravotto, L., Duffet, L., Zhou, X., Weber, B., & Patriarchi, T. (2020). A bright and colorful future for G‐protein coupled receptor sensors. Frontiers in Cellular Neuroscience, 14, 67. https://doi.org/10.3389/fncel.2020.00067
Reinhardt, S. C. M., Masullo, L. A., Baudrexel, I., Steen, P. R., Kowalewski, R., Eklund, A. S., Strauss, S., Unterauer, E. M., Schlichthaerle, T., Strauss, M. T., Klein, C., & Jungmann, R. (2023). Angstrom‐resolution fluorescence microscopy. Nature, 617, 711–716. https://doi.org/10.1038/s41586-023-05925-9
Remy, I., & Michnick, S. W. (2006). A highly sensitive protein‐protein interaction assay based on Gaussia luciferase. Nature Methods, 3, 977–979. https://doi.org/10.1038/nmeth979
Rico, C. A., Berchiche, Y. A., Horioka, M., Peeler, J. C., Lorenzen, E., Tian, H., Kazmi, M. A., Fürstenberg, A., Gaertner, H., Hartley, O., Sakmar, T. P., & Huber, T. (2019). High‐affinity binding of chemokine analogs that display ligand bias at the HIV‐1 Coreceptor CCR5. Biophysical Journal, 117, 903–919. https://doi.org/10.1016/j.bpj.2019.07.043
Rimoli, C. V., Valades‐Cruz, C. A., Curcio, V., Mavrakis, M., & Brasselet, S. (2022). 4polar‐STORM polarized super‐resolution imaging of actin filament organization in cells. Nature Communications, 13, 301. https://doi.org/10.1038/s41467-022-27966-w
Rose, R. H., Briddon, S. J., & Hill, S. J. (2012). A novel fluorescent histamine H(1) receptor antagonist demonstrates the advantage of using fluorescence correlation spectroscopy to study the binding of lipophilic ligands. British Journal of Pharmacology, 165, 1789–1800. https://doi.org/10.1111/j.1476-5381.2011.01640.x
Rosier, N., Grätz, L., Schihada, H., Möller, J., Işbilir, A., Humphrys, L. J., Nagl, M., Seibel, U., Lohse, M. J., & Pockes, S. (2021). A versatile sub‐nanomolar fluorescent ligand enables nanoBRET binding studies and single‐molecule microscopy at the histamine H(3) receptor. Journal of Medicinal Chemistry, 64, 11695–11708. https://doi.org/10.1021/acs.jmedchem.1c01089
Rust, M. J., Bates, M., & Zhuang, X. (2006). Sub‐diffraction‐limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 3, 793–795. https://doi.org/10.1038/nmeth929
Sanchez, M. F., Els‐Heindl, S., Beck‐Sickinger, A. G., Wieneke, R., & Tampe, R. (2021). Photoinduced receptor confinement drives ligand‐independent GPCR signaling. Science, 371, eabb7657. https://doi.org/10.1126/science.abb7657
Scarselli, M., Annibale, P., & Radenovic, A. (2012). Cell type‐specific beta2‐adrenergic receptor clusters identified using photoactivated localization microscopy are not lipid raft related, but depend on actin cytoskeleton integrity. The Journal of Biological Chemistry, 287, 16768–16780. https://doi.org/10.1074/jbc.M111.329912
Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F., & Jungmann, R. (2017). Super‐resolution microscopy with DNA‐PAINT. Nature Protocols, 12, 1198–1228. https://doi.org/10.1038/nprot.2017.024
Schoenlein, R. W., Peteanu, L. A., Mathies, R. A., & Shank, C. V. (1991). The first step in vision: Femtosecond isomerization of rhodopsin. Science, 254, 412–415. https://doi.org/10.1126/science.1925597
Sezgin, E., Schneider, F., Galiani, S., Urbančič, I., Waithe, D., Lagerholm, B. C., & Eggeling, C. (2019). Measuring nanoscale diffusion dynamics in cellular membranes with super‐resolution STED‐FCS. Nature Protocols, 14, 1054–1083. https://doi.org/10.1038/s41596-019-0127-9
Shaib, A. H., Chouaib, A. A., Chowdhury, R., Mihaylov, D., Zhang, C., Imani, V., Georgiev, S. V., Mougios, N., Monga, M., Reshetniak, S., Mimoso, T., Chen, H., Fatehbasharzad, P., Crzan, D., Saal, K.‐A., Alawar, N., Eilts, J., Kang, J., Alvarez, L., … Rizzoli, S. O. (2023). Visualizing proteins by expansion microscopy. bioRxiv: 2022.2008.2003.502284.
Shen, A., Nieves‐Cintron, M., Deng, Y., Shi, Q., Chowdhury, D., Qi, J., Hell, J. W., Navedo, M. F., & Xiang, Y. K. (2018). Functionally distinct and selectively phosphorylated GPCR subpopulations co‐exist in a single cell. Nature Communications, 9, 1050. https://doi.org/10.1038/s41467-018-03459-7
Siddig, S., Aufmkolk, S., Doose, S., Jobin, M. L., Werner, C., Sauer, M., & Calebiro, D. (2020). Super‐resolution imaging reveals the nanoscale organization of metabotropic glutamate receptors at presynaptic active zones. Science Advances, 6, eaay7193. https://doi.org/10.1126/sciadv.aay7193
Sleno, R., Devost, D., Pétrin, D., Zhang, A., Bourque, K., Shinjo, Y., Aoki, J., Inoue, A., & Hébert, T. E. (2017). Conformational biosensors reveal allosteric interactions between heterodimeric AT1 angiotensin and prostaglandin F2alpha receptors. The Journal of Biological Chemistry, 292, 12139–12152. https://doi.org/10.1074/jbc.M117.793877
Sotolongo Bellón, J., Birkholz, O., Richter, C. P., Eull, F., Kenneweg, H., Wilmes, S., Rothbauer, U., You, C., Walter, M. R., Kurre, R., & Piehler, J. (2022). Four‐color single‐molecule imaging with engineered tags resolves the molecular architecture of signaling complexes in the plasma membrane. Cell Rep Methods, 2, 100165. https://doi.org/10.1016/j.crmeth.2022.100165
Sotoma, S., Iimura, J., Igarashi, R., Hirosawa, K. M., Ohnishi, H., Mizukami, S., Kikuchi, K., Fujiwara, T., Shirakawa, M., & Tochio, H. (2016). Selective labeling of proteins on living cell membranes using fluorescent Nanodiamond probes. Nanomaterials (Basel), 6, 56. https://doi.org/10.3390/nano6040056
Stoddart, L. A., Kindon, N. D., Otun, O., Harwood, C. R., Patera, F., Veprintsev, D. B., Woolard, J., Briddon, S. J., Franks, H. A., Hill, S. J., & Kellam, B. (2020). Ligand‐directed covalent labelling of a GPCR with a fluorescent tag in live cells. Commun Biol, 3, 722. https://doi.org/10.1038/s42003-020-01451-w
Sun, F., Zeng, J., Jing, M., Zhou, J., Feng, J., & Owen, S. F. (2018). A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, Fish, and mice. Cell, 174, 481–496.
Sungkaworn, T., Jobin, M. L., Burnecki, K., Weron, A., Lohse, M. J., & Calebiro, D. (2017). Single‐molecule imaging reveals receptor‐G protein interactions at cell surface hot spots. Nature, 550, 543–547. https://doi.org/10.1038/nature24264
Suofu, Y., Li, W., Jean‐Alphonse, F. G., Jia, J., Khattar, N. K., Li, J., Baranov, S. V., Leronni, D., Mihalik, A. C., He, Y., Cecon, E., Wehbi, V. L., Kim, J., Heath, B. E., Baranova, O. V., Wang, X., Gable, M. J., Kretz, E. S., di Benedetto, G., … Friedlander, R. M. (2017). Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proceedings of the National Academy of Sciences of the United States of America, 114, E7997–E8006. https://doi.org/10.1073/pnas.1705768114
Szalai, A. M., Armando, N. G., Barabas, F. M., Stefani, F. D., Giordano, L., Bari, S. E., Cavasotto, C. N., Silberstein, S., & Aramendía, P. F. (2018). A fluorescence nanoscopy marker for corticotropin‐releasing hormone type 1 receptor: Computer design, synthesis, signaling effects, super‐resolved fluorescence imaging, and in situ affinity constant in cells. Physical Chemistry Chemical Physics, 20, 29212–29220. https://doi.org/10.1039/C8CP06196C
Tahk, M. J., Laasfeld, T., Meriste, E., Brea, J., Loza, M. I., Majellaro, M., Contino, M., Sotelo, E., & Rinken, A. (2023). Fluorescence based HTS‐compatible ligand binding assays for dopamine D(3) receptors in baculovirus preparations and live cells. Frontiers in Molecular Biosciences, 10, 1–12. https://doi.org/10.3389/fmolb.2023.1119157
Takakura, H., Hattori, M., Takeuchi, M., & Ozawa, T. (2012). Visualization and quantitative analysis of G protein‐coupled receptor‐beta‐arrestin interaction in single cells and specific organs of living mice using split luciferase complementation. ACS Chemical Biology, 7, 901–910. https://doi.org/10.1021/cb200360z
Tomas Bort, E., Joseph, M. D., Wang, Q., Carter, E. P., Roth, N. J., Gibson, J., Samadi, A., Kocher, H. M., Simoncelli, S., McCormick, P. J., & Grose, R. P. (2023). Purinergic GPCR‐integrin interactions drive pancreatic cancer cell invasion. eLife, 12, e86971. https://doi.org/10.7554/eLife.86971
Tsvetanova, N. G., Irannejad, R., & von Zastrow, M. (2015). G protein‐coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes. The Journal of Biological Chemistry, 290, 6689–6696. https://doi.org/10.1074/jbc.R114.617951
Voie, A. H., Burns, D. H., & Spelman, F. A. (1993). Orthogonal‐plane fluorescence optical sectioning: Three‐dimensional imaging of macroscopic biological specimens. Journal of Microscopy, 170, 229–236. https://doi.org/10.1111/j.1365-2818.1993.tb03346.x
Wan, Q., Okashah, N., Inoue, A., Nehmé, R., Carpenter, B., Tate, C. G., & Lambert, N. A. (2018). Mini G protein probes for active G protein‐coupled receptors (GPCRs) in live cells. The Journal of Biological Chemistry, 293, 7466–7473. https://doi.org/10.1074/jbc.RA118.001975
Wang, T., Li, G., Wang, D., Li, F., Men, D., Hu, T., Xi, Y., & Zhang, X. E. (2019). Quantitative profiling of integrin alphavbeta3 on single cells with quantum dot labeling to reveal the phenotypic heterogeneity of glioblastoma. Nanoscale, 11, 18224–18231. https://doi.org/10.1039/C9NR01105F
Wang, Y., Eddison, M., Fleishman, G., Weigert, M., Xu, S., Wang, T., Rokicki, K., Goina, C., Henry, F. E., Lemire, A. L., Schmidt, U., Yang, H., Svoboda, K., Myers, E. W., Saalfeld, S., Korff, W., Sternson, S. M., & Tillberg, P. W. (2021). EASI‐FISH for thick tissue defines lateral hypothalamus spatio‐molecular organization. Cell, 184, 6361–6377. https://doi.org/10.1016/j.cell.2021.11.024
Weber, M., Leutenegger, M., Stoldt, S., Jakobs, S., Mihaila, T. S., Butkevich, A. N., & Hell, S. W. (2021). MINSTED fluorescence localization and nanoscopy. Nature Photonics, 15, 361–366. https://doi.org/10.1038/s41566-021-00774-2
Wohland, T., Shi, X., Sankaran, J., & Stelzer, E. H. (2010). Single plane illumination fluorescence correlation spectroscopy (SPIM‐FCS) probes inhomogeneous three‐dimensional environments. Optics Express, 18, 10627–10641. https://doi.org/10.1364/OE.18.010627
Yang, D., Zhou, Q., Labroska, V., Qin, S., Darbalaei, S., Wu, Y., Yuliantie, E., Xie, L., Tao, H., Cheng, J., Liu, Q., Zhao, S., Shui, W., Jiang, Y., & Wang, M. W. (2021). G protein‐coupled receptors: Structure‐ and function‐based drug discovery. Signal Transduction and Targeted Therapy, 6, 7. https://doi.org/10.1038/s41392-020-00435-w
Yang, J., Gong, Z., Lu, Y. B., Xu, C. J., Wei, T. F., Yang, M. S., Zhan, T. W., Yang, Y. H., Lin, L., Liu, J., Tang, C., & Zhang, W. P. (2020). FLIM‐FRET‐based structural characterization of a class‐a GPCR dimer in the cell membrane. Journal of Molecular Biology, 432, 4596–4611. https://doi.org/10.1016/j.jmb.2020.06.009
Yasui, M., Hiroshima, M., Kozuka, J., Sako, Y., & Ueda, M. (2018). Automated single‐molecule imaging in living cells. Nature Communications, 9, 3061. https://doi.org/10.1038/s41467-018-05524-7