Microscopy and spectroscopy approaches to study GPCR structure and function

. 2025 Jul ; 182 (14) : 3090-3108. [epub] 20240103

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38087925

Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000441 European Regional Development Fund
20-09628Y Grantová Agentura České Republiky
20-11563Y Grantová Agentura České Republiky
LTC20074 Ministerstvo Školství, Mládeže a Tělovýchovy

The GPCR signalling cascade is a key pathway responsible for the signal transduction of a multitude of physical and chemical stimuli, including light, odorants, neurotransmitters and hormones. Understanding the structural and functional properties of the GPCR cascade requires direct observation of signalling processes in high spatial and temporal resolution, with minimal perturbation to endogenous systems. Optical microscopy and spectroscopy techniques are uniquely suited to this purpose because they excel at multiple spatial and temporal scales and can be used in living objects. Here, we review recent developments in microscopy and spectroscopy technologies which enable new insights into GPCR signalling. We focus on advanced techniques with high spatial and temporal resolution, single-molecule methods, labelling strategies and approaches suitable for endogenous systems and large living objects. This review aims to assist researchers in choosing appropriate microscopy and spectroscopy approaches for a variety of applications in the study of cellular signalling. LINKED ARTICLES: This article is part of a themed issue Complexity of GPCR Modulation and Signaling (ERNST). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.14/issuetoc.

Zobrazit více v PubMed

Airan, R. D., Thompson, K. R., Fenno, L. E., Bernstein, H., & Deisseroth, K. (2009). Temporally precise in vivo control of intracellular signalling. Nature, 458, 1025–1029. https://doi.org/10.1038/nature07926

Alam, M. K., El‐Sayed, A., Barreto, K., Bernhard, W., Fonge, H., & Geyer, C. R. (2019). Site‐specific fluorescent labeling of antibodies and diabodies using SpyTag/SpyCatcher system for in vivo optical imaging. Molecular Imaging and Biology, 21, 54–66. https://doi.org/10.1007/s11307-018-1222-y

Albizu, L., Cottet, M., Kralikova, M., Stoev, S., Seyer, R., Brabet, I., Roux, T., Bazin, H., Bourrier, E., Lamarque, L., Breton, C., Rives, M. L., Newman, A., Javitch, J., Trinquet, E., Manning, M., Pin, J. P., Mouillac, B., & Durroux, T. (2010). Time‐resolved FRET between GPCR ligands reveals oligomers in native tissues. Nature Chemical Biology, 6, 587–594. https://doi.org/10.1038/nchembio.396

Alcobia, D. C., Ziegler, A. I., Kondrashov, A., Comeo, E., Mistry, S., Kellam, B., Chang, A., Woolard, J., Hill, S. J., & Sloan, E. K. (2018). Visualizing ligand binding to a GPCR in vivo using NanoBRET. iScience, 6, 280–288. https://doi.org/10.1016/j.isci.2018.08.006

Alexander, S. P., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Abbracchio, M. P., Alexander, W., Al‐hosaini, K., Bäck, M., Barnes, N. M., Bathgate, R., … Ye, R. D. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein‐coupled receptors. British Journal of Pharmacology, 178(S1), S27–S156. https://doi.org/10.1111/bph.15538

Alvarez‐Curto, E., Inoue, A., Jenkins, L., Raihan, S. Z., Prihandoko, R., Tobin, A. B., & Milligan, G. (2016). Targeted elimination of G proteins and arrestins defines their specific contributions to both intensity and duration of G protein‐coupled receptor signaling. The Journal of Biological Chemistry, 291, 27147–27159. https://doi.org/10.1074/jbc.M116.754887

Antoine, T., Ott, D., Ebell, K., Hansen, K., Henry, L., Becker, F., & Hannus, S. (2016). Homogeneous time‐resolved G protein‐coupled receptor‐ligand binding assay based on fluorescence cross‐correlation spectroscopy. Analytical Biochemistry, 502, 24–35. https://doi.org/10.1016/j.ab.2016.02.017

Anton, S. E., Kayser, C., Maiellaro, I., Nemec, K., Möller, J., Koschinski, A., Zaccolo, M., Annibale, P., Falcke, M., Lohse, M. J., & Bock, A. (2022). Receptor‐associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. Cell, 185, 1130–1142. https://doi.org/10.1016/j.cell.2022.02.011

Araya, R., Andino‐Pavlovsky, V., Yuste, R., & Etchenique, R. (2013). Two‐photon optical interrogation of individual dendritic spines with caged dopamine. ACS Chemical Neuroscience, 4, 1163–1167. https://doi.org/10.1021/cn4000692

Arsic, A., Hagemann, C., Stajkovic, N., Schubert, T., & Nikic‐Spiegel, I. (2022). Minimal genetically encoded tags for fluorescent protein labeling in living neurons. Nature Communications, 13, 314. https://doi.org/10.1038/s41467-022-27956-y

Arttamangkul, S., Plazek, A., Platt, E. J., Jin, H., Murray, T. F., Birdsong, W. T., Rice, K. C., Farrens, D. L., & Williams, J. T. (2019). Visualizing endogenous opioid receptors in living neurons using ligand‐directed chemistry. eLife, 8, e49319. https://doi.org/10.7554/eLife.49319

Asher, W. B., Geggier, P., Holsey, M. D., Gilmore, G. T., Pati, A. K., Meszaros, J., Terry, D. S., Mathiasen, S., Kaliszewski, M. J., McCauley, M. D., Govindaraju, A., Zhou, Z., Harikumar, K. G., Jaqaman, K., Miller, L. J., Smith, A. W., Blanchard, S. C., & Javitch, J. A. (2021). Single‐molecule FRET imaging of GPCR dimers in living cells. Nature Methods, 18, 397–405. https://doi.org/10.1038/s41592-021-01081-y

Asher, W. B., Terry, D. S., Gregorio, G. G. A., Kahsai, A. W., Borgia, A., Xie, B., Modak, A., Zhu, Y., Jang, W., Govindaraju, A., Huang, L. Y., Inoue, A., Lambert, N. A., Gurevich, V. V., Shi, L., Lefkowitz, R. J., Blanchard, S. C., & Javitch, J. A. (2022). GPCR‐mediated beta‐arrestin activation deconvoluted with single‐molecule precision. Cell, 185, 1661–1675. https://doi.org/10.1016/j.cell.2022.03.042

Ast, J., Arvaniti, A., Fine, N. H. F., Nasteska, D., Ashford, F. B., Stamataki, Z., Koszegi, Z., Bacon, A., Jones, B. J., Lucey, M. A., Sasaki, S., Brierley, D. I., Hastoy, B., Tomas, A., D’Agostino, G., Reimann, F., Lynn, F. C., Reissaus, C. A., Linnemann, A. K., … Hodson, D. J. (2020). Super‐resolution microscopy compatible fluorescent probes reveal endogenous glucagon‐like peptide‐1 receptor distribution and dynamics. Nature Communications, 11, 467. https://doi.org/10.1038/s41467-020-14309-w

Axelrod, D. (1981). Cell‐substrate contacts illuminated by total internal reflection fluorescence. The Journal of Cell Biology, 89, 141–145. https://doi.org/10.1083/jcb.89.1.141

Banerjee, C., Liauw, B. W., & Vafabakhsh, R. (2022). Visualizing the conformational dynamics of membrane receptors using single‐molecule FRET. Journal of Visualized Experiments, 186, e64254. https://doi.org/10.3791/64254-v

Barbazan, J., Majellaro, M., Martinez, A. L., Brea, J. M., Sotelo, E., & Abal, M. (2022). Identification of A(2B)AR as a potential target in colorectal cancer using novel fluorescent GPCR ligands. Biomedicine & Pharmacotherapy, 153, 113408. https://doi.org/10.1016/j.biopha.2022.113408

Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., Davidson, M. W., Lippincott‐Schwartz, J., & Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642–1645. https://doi.org/10.1126/science.1127344

Bondar, A., Jang, W., Sviridova, E., & Lambert, N. A. (2020). Components of the Gs signaling cascade exhibit distinct changes in mobility and membrane domain localization upon beta2 ‐adrenergic receptor activation. Traffic, 21, 324–332. https://doi.org/10.1111/tra.12724

Bondar, A., & Lazar, J. (2014). Dissociated GalphaGTP and Gbetagamma protein subunits are the major activated form of heterotrimeric Gi/o proteins. The Journal of Biological Chemistry, 289, 1271–1281. https://doi.org/10.1074/jbc.M113.493643

Bondar, A., & Lazar, J. (2017). The G protein Gi1 exhibits basal coupling but not preassembly with G protein‐coupled receptors. The Journal of Biological Chemistry, 292, 9690–9698. https://doi.org/10.1074/jbc.M116.768127

Bondar, A., Rybakova, O., Melcr, J., Dohnálek, J., Khoroshyy, P., Ticháček, O., Timr, Š., Miclea, P., Sakhi, A., Marková, V., & Lazar, J. (2021). Quantitative linear dichroism imaging of molecular processes in living cells made simple by open software tools. Commun Biol, 4, 189. https://doi.org/10.1038/s42003-021-01694-1

Briddon, S. J., Kilpatrick, L. E., & Hill, S. J. (2018). Studying GPCR pharmacology in membrane microdomains: Fluorescence correlation spectroscopy comes of age. Trends in Pharmacological Sciences, 39, 158–174. https://doi.org/10.1016/j.tips.2017.11.004

Bunemann, M., Frank, M., & Lohse, M. J. (2003). Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proceedings of the National Academy of Sciences of the United States of America, 100, 16077–16082. https://doi.org/10.1073/pnas.2536719100

Caetano Crowley, F. A., Heit, B., & Ferguson, S. S. G. (2019). Super‐resolution imaging of G protein‐coupled receptors using ground state depletion microscopy. Methods in Molecular Biology, 1947, 323–336. https://doi.org/10.1007/978-1-4939-9121-1_18

Calebiro, D., Rieken, F., Wagner, J., Sungkaworn, T., Zabel, U., Borzi, A., Cocucci, E., Zürn, A., & Lohse, M. J. (2013). Single‐molecule analysis of fluorescently labeled G‐protein‐coupled receptors reveals complexes with distinct dynamics and organization. Proceedings of the National Academy of Sciences of the United States of America, 110, 743–748. https://doi.org/10.1073/pnas.1205798110

Carroll, E. C., Berlin, S., Levitz, J., Kienzler, M. A., Yuan, Z., Madsen, D., Larsen, D. S., & Isacoff, E. Y. (2015). Two‐photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. Proceedings of the National Academy of Sciences of the United States of America, 112, E776–E785. https://doi.org/10.1073/pnas.1416942112

Chen, F., Tillberg, P. W., & Boyden, E. S. (2015). Optical imaging. Expansion microscopy. Science, 347, 543–548. https://doi.org/10.1126/science.1260088

Chen, Y., Saulnier, J. L., Yellen, G., & Sabatini, B. L. (2014). A PKA activity sensor for quantitative analysis of endogenous GPCR signaling via 2‐photon FRET‐FLIM imaging. Frontiers in Pharmacology, 5, 56.

Cho, N. H., Cheveralls, K. C., Brunner, A. D., Kim, K., Michaelis, A. C., Raghavan, P., Kobayashi, H., Savy, L., Li, J. Y., Canaj, H., Kim, J. Y. S., Stewart, E. M., Gnann, C., McCarthy, F., Cabrera, J. P., Brunetti, R. M., Chhun, B. B., Dingle, G., Hein, M. Y., … Leonetti, M. D. (2022). OpenCell: Endogenous tagging for the cartography of human cellular organization. Science, 375, eabi6983. https://doi.org/10.1126/science.abi6983

Cole, F., Zaehringer, J., Bohlen, J., Schroeder, T., Steiner, F., Stefani, F. D., & Tinnefeld, P. (2023). Super‐resolved FRET and co‐tracking in pMINFLUX. bioRxiv: 2023.2003.2024.534096.

Denk, W. (1994). Two‐photon scanning photochemical microscopy: Mapping ligand‐gated ion channel distributions. Proceedings of the National Academy of Sciences of the United States of America, 91, 6629–6633. https://doi.org/10.1073/pnas.91.14.6629

Digby, G. J., Lober, R. M., Sethi, P. R., & Lambert, N. A. (2006). Some G protein heterotrimers physically dissociate in living cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 17789–17794. https://doi.org/10.1073/pnas.0607116103

Digman, M. A., & Gratton, E. (2009). Analysis of diffusion and binding in cells using the RICS approach. Microscopy Research and Technique, 72, 323–332. https://doi.org/10.1002/jemt.20655

Dressler, H., Economides, K., Favara, S., Wu, N. N., Pang, Z., & Polites, H. G. (2014). The CRE luc bioluminescence transgenic mouse model for detecting ligand activation of GPCRs. Journal of Biomolecular Screening, 19, 232–241. https://doi.org/10.1177/1087057113496465

Drube, J., Haider, R. S., Matthees, E. S. F., Reichel, M., Zeiner, J., Fritzwanker, S., Ziegler, C., Barz, S., Klement, L., Filor, J., Weitzel, V., Kliewer, A., Miess‐Tanneberg, E., Kostenis, E., Schulz, S., & Hoffmann, C. (2022). GPCR kinase knockout cells reveal the impact of individual GRKs on arrestin binding and GPCR regulation. Nature Communications, 13, 540. https://doi.org/10.1038/s41467-022-28152-8

Dudok, B., Barna, L., Ledri, M., Szabó, S. I., Szabadits, E., Pintér, B., Woodhams, S. G., Henstridge, C. M., Balla, G. Y., Nyilas, R., Varga, C., Lee, S. H., Matolcsi, M., Cervenak, J., Kacskovics, I., Watanabe, M., Sagheddu, C., Melis, M., Pistis, M., … Katona, I. (2015). Cell‐specific STORM super‐resolution imaging reveals nanoscale organization of cannabinoid signaling. Nature Neuroscience, 18, 75–86. https://doi.org/10.1038/nn.3892

Eichel, K., Jullié, D., Barsi‐Rhyne, B., Latorraca, N. R., Masureel, M., Sibarita, J. B., Dror, R. O., & von Zastrow, M. (2018). Catalytic activation of beta‐arrestin by GPCRs. Nature, 557, 381–386. https://doi.org/10.1038/s41586-018-0079-1

Eichel, K., Jullie, D., & von Zastrow, M. (2016). Beta‐arrestin drives MAP kinase signalling from clathrin‐coated structures after GPCR dissociation. Nature Cell Biology, 18, 303–310. https://doi.org/10.1038/ncb3307

Ergin, E., Dogan, A., Parmaksiz, M., Elcin, A. E., & Elcin, Y. M. (2016). Time‐resolved fluorescence resonance energy transfer [TR‐FRET] assays for biochemical processes. Current Pharmaceutical Biotechnology, 17, 1222–1230. https://doi.org/10.2174/1389201017666160809164527

Fernandes, D. D., Neale, C., Gomes, G. W., Li, Y., Malik, A., Pandey, A., Orazietti, A. P., Wang, X., Ye, L., Scott Prosser, R., & Gradinaru, C. C. (2021). Ligand modulation of the conformational dynamics of the A(2A) adenosine receptor revealed by single‐molecule fluorescence. Scientific Reports, 11, 5910. https://doi.org/10.1038/s41598-021-84069-0

Förster, T. (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik, 437, 55–75. https://doi.org/10.1002/andp.19484370105

Foust, D. J., & Piston, D. W. (2021). Measuring G Protein Activation with Spectrally Resolved Fluorescence Fluctuation Spectroscopy. bioRxiv: 2021.2011.2003.467169.

Galés, C., Rebois, R. V., Hogue, M., Trieu, P., Breit, A., Hébert, T. E., & Bouvier, M. (2005). Real‐time monitoring of receptor and G‐protein interactions in living cells. Nature Methods, 2, 177–184. https://doi.org/10.1038/nmeth743

Gautier, A., Juillerat, A., Heinis, C., Corrêa, I. R. Jr., Kindermann, M., Beaufils, F., & Johnsson, K. (2008). An engineered protein tag for multiprotein labeling in living cells. Chemistry & Biology, 15, 128–136. https://doi.org/10.1016/j.chembiol.2008.01.007

Gentzsch, C., Seier, K., Drakopoulos, A., Jobin, M. L., Lanoiselée, Y., Koszegi, Z., Maurel, D., Sounier, R., Hübner, H., Gmeiner, P., Granier, S., Calebiro, D., & Decker, M. (2020). Selective and wash‐resistant fluorescent dihydrocodeinone derivatives allow single‐molecule imaging of mu‐opioid receptor dimerization. Angewandte Chemie (International Ed. in English), 59, 5958–5964. https://doi.org/10.1002/anie.201912683

Gil, A. A., Carrasco‐López, C., Zhu, L., Zhao, E. M., Ravindran, P. T., Wilson, M. Z., Goglia, A. G., Avalos, J. L., & Toettcher, J. E. (2020). Optogenetic control of protein binding using light‐switchable nanobodies. Nature Communications, 11, 4044. https://doi.org/10.1038/s41467-020-17836-8

Gormal, R. S., Padmanabhan, P., Kasula, R., Bademosi, A. T., Coakley, S., Giacomotto, J., Blum, A., Joensuu, M., Wallis, T. P., Lo, H. P., Budnar, S., Rae, J., Ferguson, C., Bastiani, M., Thomas, W. G., Pardon, E., Steyaert, J., Yap, A. S., Goodhill, G. J., … Meunier, F. A. (2020). Modular transient nanoclustering of activated beta2‐adrenergic receptors revealed by single‐molecule tracking of conformation‐specific nanobodies. Proceedings of the National Academy of Sciences of the United States of America, 117, 30476–30487. https://doi.org/10.1073/pnas.2007443117

Götzke, H., Kilisch, M., Martínez‐Carranza, M., Sograte‐Idrissi, S., Rajavel, A., Schlichthaerle, T., Engels, N., Jungmann, R., Stenmark, P., Opazo, F., & Frey, S. (2019). The ALFA‐tag is a highly versatile tool for nanobody‐based bioscience applications. Nature Communications, 10, 4403. https://doi.org/10.1038/s41467-019-12301-7

Graham, T. G. W., Ferrie, J. J., Dailey, G. M., Tjian, R., & Darzacq, X. (2022). Detecting molecular interactions in live‐cell single‐molecule imaging with proximity‐assisted photoactivation (PAPA). eLife, 11, e76870. https://doi.org/10.7554/eLife.76870

Gregorio, G. G., Masureel, M., Hilger, D., Terry, D. S., Juette, M., Zhao, H., Zhou, Z., Perez‐Aguilar, J. M., Hauge, M., Mathiasen, S., Javitch, J. A., Weinstein, H., Kobilka, B. K., & Blanchard, S. C. (2017). Single‐molecule analysis of ligand efficacy in beta2AR‐G‐protein activation. Nature, 547, 68–73. https://doi.org/10.1038/nature22354

Grime, R. L., Goulding, J., Uddin, R., Stoddart, L. A., Hill, S. J., Poyner, D. R., Briddon, S. J., & Wheatley, M. (2020). Single molecule binding of a ligand to a G‐protein‐coupled receptor in real time using fluorescence correlation spectroscopy, rendered possible by nano‐encapsulation in styrene maleic acid lipid particles. Nanoscale, 12, 11518–11525. https://doi.org/10.1039/D0NR01060J

Grimes, J., Koszegi, Z., Lanoiselée, Y., Miljus, T., O’Brien, S. L., Stepniewski, T. M., Medel‐Lacruz, B., Baidya, M., Makarova, M., Mistry, R., Goulding, J., Drube, J., Hoffmann, C., Owen, D. M., Shukla, A. K., Selent, J., Hill, S. J., & Calebiro, D. (2023). Plasma membrane preassociation drives beta‐arrestin coupling to receptors and activation. Cell, 186, 2238–2255. https://doi.org/10.1016/j.cell.2023.04.018

Gustafsson, M. G. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy, 198, 82–87. https://doi.org/10.1046/j.1365-2818.2000.00710.x

Gustafsson, N., Culley, S., Ashdown, G., Owen, D. M., Pereira, P. M., & Henriques, R. (2016). Fast live‐cell conventional fluorophore nanoscopy with ImageJ through super‐resolution radial fluctuations. Nature Communications, 7, 12471. https://doi.org/10.1038/ncomms12471

Gwosch, K. C., Pape, J. K., Balzarotti, F., Hoess, P., Ellenberg, J., Ries, J., & Hell, S. W. (2020). MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nature Methods, 17, 217–224. https://doi.org/10.1038/s41592-019-0688-0

Han, M. J., He, Q. T., Yang, M., Chen, C., Yao, Y., Liu, X., Wang, Y., Zhu, Z. L., Zhu, K. K., Qu, C., Yang, F., Hu, C., Guo, X., Zhang, D., Chen, C., Sun, J. P., & Wang, J. (2021). Single‐molecule FRET and conformational analysis of beta‐arrestin‐1 through genetic code expansion and a se‐click reaction. Chemical Science, 12, 9114–9123. https://doi.org/10.1039/D1SC02653D

Harkes, R., Kukk, O., Mukherjee, S., Klarenbeek, J., van den Broek, B., & Jalink, K. (2021). Dynamic FRET‐FLIM based screening of signal transduction pathways. Scientific Reports, 11, 20711. https://doi.org/10.1038/s41598-021-00098-9

Hattori, M., & Ozawa, T. (2015). High‐throughput live cell imaging and analysis for temporal reaction of G protein‐coupled receptor based on split luciferase fragment complementation. Analytical Sciences, 31, 327–330. https://doi.org/10.2116/analsci.31.327

Hell, S. W., & Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: Stimulated‐emission‐depletion fluorescence microscopy. Optics Letters, 19, 780–782. https://doi.org/10.1364/OL.19.000780

Helmerich, D. A., Beliu, G., Taban, D., Meub, M., Streit, M., Kuhlemann, A., Doose, S., & Sauer, M. (2022). Photoswitching fingerprint analysis bypasses the 10‐nm resolution barrier. Nature Methods, 19, 986–994. https://doi.org/10.1038/s41592-022-01548-6

Herrick‐Davis, K., Grinde, E., Cowan, A., & Mazurkiewicz, J. E. (2013). Fluorescence correlation spectroscopy analysis of serotonin, adrenergic, muscarinic, and dopamine receptor dimerization: The oligomer number puzzle. Molecular Pharmacology, 84, 630–642. https://doi.org/10.1124/mol.113.087072

Heuninck, J., Hounsou, C., Dupuis, E., Trinquet, E., Mouillac, B., Pin, J. P., Bonnet, D., & Durroux, T. (2019). Time‐resolved FRET‐based assays to characterize G protein‐coupled receptor hetero‐oligomer pharmacology. Methods in Molecular Biology, 1947, 151–168. https://doi.org/10.1007/978-1-4939-9121-1_8

Irannejad, R., Tomshine, J. C., Tomshine, J. R., Chevalier, M., Mahoney, J. P., Steyaert, J., Rasmussen, S. G. F., Sunahara, R. K., el‐Samad, H., Huang, B., & von Zastrow, M. (2013). Conformational biosensors reveal GPCR signalling from endosomes. Nature, 495, 534–538. https://doi.org/10.1038/nature12000

Işbilir, A., Möller, J., Arimont, M., Bobkov, V., Perpiñá‐Viciano, C., Hoffmann, C., Inoue, A., Heukers, R., de Graaf, C., Smit, M. J., Annibale, P., & Lohse, M. J. (2020). Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket‐specific inverse agonists. Proceedings of the National Academy of Sciences of the United States of America, 117, 29144–29154. https://doi.org/10.1073/pnas.2013319117

Jonas, K. C., Fanelli, F., Huhtaniemi, I. T., & Hanyaloglu, A. C. (2015). Single molecule analysis of functionally asymmetric G protein‐coupled receptor (GPCR) oligomers reveals diverse spatial and structural assemblies. The Journal of Biological Chemistry, 290, 3875–3892. https://doi.org/10.1074/jbc.M114.622498

Joseph, M. D., Tomas Bort, E., Grose, R. P., McCormick, P. J., & Simoncelli, S. (2021). Quantitative super‐resolution imaging for the analysis of GPCR oligomerization. Biomolecules, 11, 1503. https://doi.org/10.3390/biom11101503

Kasai, R. S., Ito, S. V., Awane, R. M., Fujiwara, T. K., & Kusumi, A. (2018). The class‐A GPCR dopamine D2 receptor forms transient dimers stabilized by agonists: Detection by single‐molecule tracking. Cell Biochemistry and Biophysics, 76, 29–37. https://doi.org/10.1007/s12013-017-0829-y

Kauk, M., & Hoffmann, C. (2018). Intramolecular and intermolecular FRET sensors for GPCRs ‐ Monitoring conformational changes and beyond. Trends in Pharmacological Sciences, 39, 123–135. https://doi.org/10.1016/j.tips.2017.10.011

Kilpatrick, L. E., & Hill, S. J. (2021). The use of fluorescence correlation spectroscopy to characterise the molecular mobility of G protein‐coupled receptors in membrane microdomains: An update. Biochemical Society Transactions, 49, 1547–1554. https://doi.org/10.1042/BST20201001

Kim, H., Baek, I. Y., & Seong, J. (2022). Genetically encoded fluorescent biosensors for GPCR research. Frontiers in Cell and Development Biology, 10, 1–17. https://doi.org/10.3389/fcell.2022.1007893

Komatsuzaki, A., Ohyanagi, T., Tsukasaki, Y., Miyanaga, Y., Ueda, M., & Jin, T. (2015). Compact halo‐ligand‐conjugated quantum dots for multicolored single‐molecule imaging of overcrowding GPCR proteins on cell membranes. Small, 11, 1396–1401. https://doi.org/10.1002/smll.201402508

Kono, M., Conlon, E. G., Lux, S. Y., Yanagida, K., Hla, T., & Proia, R. L. (2017). Bioluminescence imaging of G protein‐coupled receptor activation in living mice. Nature Communications, 8, 1163. https://doi.org/10.1038/s41467-017-01340-7

Kroning, K. E., & Wang, W. (2022). Genetically encoded tools for in vivo G‐protein‐coupled receptor agonist detection at cellular resolution. Clinical and Translational Medicine, 12, e1124. https://doi.org/10.1002/ctm2.1124

Laine, R. F., Heil, H. S., Coelho, S., Nixon‐Abell, J., Jimenez, A., Wiesner, T., Martínez, D., Galgani, T., Régnier, L., Stubb, A., Follain, G., Webster, S., Goyette, J., Dauphin, A., Salles, A., Culley, S., Jacquemet, G., Hajj, B., Leterrier, C., & Henriques, R. (2022). High‐fidelity 3D live‐cell nanoscopy through data‐driven enhanced super‐resolution radial fluctuation. bioRxiv: 2022.2004.2007.487490.

Lamichhane, R., Liu, J. J., Pljevaljcic, G., White, K. L., van der Schans, E., Katritch, V., Stevens, R. C., Wüthrich, K., & Millar, D. P. (2015). Single‐molecule view of basal activity and activation mechanisms of the G protein‐coupled receptor beta2AR. Proceedings of the National Academy of Sciences of the United States of America, 112, 14254–14259. https://doi.org/10.1073/pnas.1519626112

Latty, S. L., Felce, J. H., Weimann, L., Lee, S. F., Davis, S. J., & Klenerman, D. (2015). Referenced single‐molecule measurements differentiate between GPCR oligomerization states. Biophysical Journal, 109, 1798–1806. https://doi.org/10.1016/j.bpj.2015.09.004

Lazar, J., Bondar, A., Timr, S., & Firestein, S. J. (2011). Two‐photon polarization microscopy reveals protein structure and function. Nature Methods, 8, 684–690. https://doi.org/10.1038/nmeth.1643

Lecat‐Guillet, N., Quast, R. B., Liu, H., Bourrier, E., Møller, T. C., Rovira, X., Soldevila, S., Lamarque, L., Trinquet, E., Liu, J., Pin, J. P., Rondard, P., & Margeat, E. (2023). Concerted conformational changes control metabotropic glutamate receptor activity. Science Advances, 9, eadf1378. https://doi.org/10.1126/sciadv.adf1378

Li, H., Yang, J., Tian, C., Diao, M., Wang, Q., Zhao, S., Li, S., Tan, F., Hua, T., Qin, Y., Lin, C. P., Deska‐Gauthier, D., Thompson, G. J., Zhang, Y., Shui, W., Liu, Z. J., Wang, T., & Zhong, G. (2020). Organized cannabinoid receptor distribution in neurons revealed by super‐resolution fluorescence imaging. Nature Communications, 11, 5699. https://doi.org/10.1038/s41467-020-19510-5

Liese, J., Rooijakkers, S. H., van Strijp, J. A., Novick, R. P., & Dustin, M. L. (2013). Intravital two‐photon microscopy of host‐pathogen interactions in a mouse model of Staphylococcus aureus skin abscess formation. Cellular Microbiology, 15, 891–909. https://doi.org/10.1111/cmi.12085

Lieto, A. M., Cush, R. C., & Thompson, N. L. (2003). Ligand‐receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophysical Journal, 85, 3294–3302. https://doi.org/10.1016/S0006-3495(03)74748-1

Liput, D. J., Nguyen, T. A., Augustin, S. M., Lee, J. O., & Vogel, S. S. (2020). A guide to fluorescence lifetime microscopy and Forster's resonance energy transfer in neuroscience. Current Protocols in Neuroscience, 94, e108. https://doi.org/10.1002/cpns.108

Liu, B., Stone, O. J., Pablo, M., Herron, J. C., Nogueira, A. T., Dagliyan, O., Grimm, J. B., Lavis, L. D., Elston, T. C., & Hahn, K. M. (2021). Biosensors based on peptide exposure show single molecule conformations in live cells. Cell, 184, 5670–5685. https://doi.org/10.1016/j.cell.2021.09.026

Lockyer, J., Reading, A., Vicenzi, S., Delandre, C., Marshall, O., Gasperini, R., Foa, L., & Lin, J. Y. (2023). Optogenetic inhibition of Gα signalling alters and regulates circuit functionality and early circuit formation. bioRxiv: 2023.2005.2006.539674.

Lohse, M. J., & Hofmann, K. P. (2015). Spatial and temporal aspects of signaling by G‐protein‐coupled receptors. Molecular Pharmacology, 88, 572–578. https://doi.org/10.1124/mol.115.100248

Los, G. V., Encell, L. P., McDougall, M. G., Hartzell, D. D., Karassina, N., Zimprich, C., Wood, M. G., Learish, R., Ohana, R. F., Urh, M., Simpson, D., Mendez, J., Zimmerman, K., Otto, P., Vidugiris, G., Zhu, J., Darzins, A., Klaubert, D. H., Bulleit, R. F., & Wood, K. V. (2008). HaloTag: A novel protein labeling technology for cell imaging and protein analysis. ACS Chemical Biology, 3, 373–382. https://doi.org/10.1021/cb800025k

Maslov, I., Volkov, O., Khorn, P., Orekhov, P., Gusach, A., Kuzmichev, P., Gerasimov, A., Luginina, A., Coucke, Q., Bogorodskiy, A., Gordeliy, V., Wanninger, S., Barth, A., Mishin, A., Hofkens, J., Cherezov, V., Gensch, T., Hendrix, J., & Borshchevskiy, V. (2023). Sub‐millisecond conformational dynamics of the A(2A) adenosine receptor revealed by single‐molecule FRET. Commun Biol, 6, 362. https://doi.org/10.1038/s42003-023-04727-z

Masullo, L. A., Szalai, A. M., Lopez, L. F., Pilo‐Pais, M., Acuna, G. P., & Stefani, F. D. (2022). An alternative to MINFLUX that enables nanometer resolution in a confocal microscope. Light: Science & Applications, 11, 199. https://doi.org/10.1038/s41377-022-00896-4

Maziarz, M., Park, J. C., Leyme, A., Marivin, A., Garcia‐Lopez, A., Patel, P. P., & Garcia‐Marcos, M. (2020). Revealing the activity of trimeric G‐proteins in live cells with a versatile biosensor design. Cell, 182, 770–785.e16. https://doi.org/10.1016/j.cell.2020.06.020

Mihaila, T. S., Bäte, C., Ostersehlt, L. M., Pape, J. K., Keller‐Findeisen, J., Sahl, S. J., & Hell, S. W. (2022). Enhanced incorporation of subnanometer tags into cellular proteins for fluorescence nanoscopy via optimized genetic code expansion. Proceedings of the National Academy of Sciences of the United States of America, 119, e2201861119. https://doi.org/10.1073/pnas.2201861119

Möller, J., Isbilir, A., Sungkaworn, T., Osberg, B., Karathanasis, C., Sunkara, V., Grushevskyi, E. O., Bock, A., Annibale, P., Heilemann, M., Schütte, C., & Lohse, M. J. (2020). Single‐molecule analysis reveals agonist‐specific dimer formation of micro‐opioid receptors. Nature Chemical Biology, 16, 946–954. https://doi.org/10.1038/s41589-020-0566-1

Myskova, J., Rybakova, O., Brynda, J., Khoroshyy, P., Bondar, A., & Lazar, J. (2020). Directionality of light absorption and emission in representative fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America, 117, 32395–32401. https://doi.org/10.1073/pnas.2017379117

Nehmé, R., Carpenter, B., Singhal, A., Strege, A., Edwards, P. C., White, C. F., du, H., Grisshammer, R., & Tate, C. G. (2017). Mini‐G proteins: Novel tools for studying GPCRs in their active conformation. PLoS ONE, 12, e0175642. https://doi.org/10.1371/journal.pone.0175642

Olsen, R. H. J., DiBerto, J. F., English, J. G., Glaudin, A. M., Krumm, B. E., Slocum, S. T., Che, T., Gavin, A. C., McCorvy, J. D., Roth, B. L., & Strachan, R. T. (2020). TRUPATH, an open‐source biosensor platform for interrogating the GPCR transducerome. Nature Chemical Biology, 16, 841–849. https://doi.org/10.1038/s41589-020-0535-8

Olsen, R. H. J., & English, J. G. (2023). Advancements in G protein‐coupled receptor biosensors to study GPCR‐G protein coupling. British Journal of Pharmacology, 180, 1433–1443. https://doi.org/10.1111/bph.15962

Ostersehlt, L. M., Jans, D. C., Wittek, A., Keller‐Findeisen, J., Inamdar, K., Sahl, S. J., Hell, S. W., & Jakobs, S. (2022). DNA‐PAINT MINFLUX nanoscopy. Nature Methods, 19, 1072–1075. https://doi.org/10.1038/s41592-022-01577-1

Patriarchi, T., Cho, J. R., Merten, K., Howe, M. W., Marley, A., Xiong, W. H., Folk, R. W., Broussard, G. J., Liang, R., Jang, M. J., Zhong, H., Dombeck, D., von Zastrow, M., Nimmerjahn, A., Gradinaru, V., Williams, J. T., & Tian, L. (2018). Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science, 360, eaat4422. https://doi.org/10.1126/science.aat4422

Payne, N. C., Kalyakina, A. S., Singh, K., Tye, M. A., & Mazitschek, R. (2021). Bright and stable luminescent probes for target engagement profiling in live cells. Nature Chemical Biology, 17, 1168–1177. https://doi.org/10.1038/s41589-021-00877-5

Petelák, A., Lambert, N. A., & Bondar, A. (2023). Serotonin 5‐HT7 receptor slows down the Gs protein: A single molecule perspective. Molecular Biology of the Cell, 0, mbc. E23‐03‐0117.

Pham, C., Moro, D. H., Mouffle, C., Didienne, S., Hepp, R., Pfrieger, F. W., Mangin, J. M., Legendre, P., Martin, C., Luquet, S., Cauli, B., & Li, D. (2020). Mapping astrocyte activity domains by light sheet imaging and spatio‐temporal correlation screening. NeuroImage, 220, 117069. https://doi.org/10.1016/j.neuroimage.2020.117069

Philip, F., Sengupta, P., & Scarlata, S. (2007). Signaling through a G protein‐coupled receptor and its corresponding G protein follows a stoichiometrically limited model. The Journal of Biological Chemistry, 282, 19203–19216. https://doi.org/10.1074/jbc.M701558200

Polit, A., Rysiewicz, B., Mystek, P., Blasiak, E., & Dziedzicka‐Wasylewska, M. (2020). The Galphai protein subclass selectivity to the dopamine D(2) receptor is also decided by their location at the cell membrane. Cell Communication and Signaling: CCS, 18, 189. https://doi.org/10.1186/s12964-020-00685-9

Pulin, M., Stockhausen, K. E., Masseck, O. A., Kubitschke, M., Busse, B., Wiegert, J. S., & Oertner, T. G. (2022). Orthogonally‐polarized excitation for improved two‐photon and second‐harmonic‐generation microscopy, applied to neurotransmitter imaging with GPCR‐based sensors. Biomedical Optics Express, 13, 777–790. https://doi.org/10.1364/BOE.448760

Quast, R. B., & Margeat, E. (2019). Studying GPCR conformational dynamics by single molecule fluorescence. Molecular and Cellular Endocrinology, 493, 110469. https://doi.org/10.1016/j.mce.2019.110469

Raïch, I., Rivas‐Santisteban, R., Lillo, A., Lillo, J., Reyes‐Resina, I., Nadal, X., Ferreiro‐Vera, C., de Medina, V. S., Majellaro, M., Sotelo, E., Navarro, G., & Franco, R. (2021). Similarities and differences upon binding of naturally occurring delta(9)‐tetrahydrocannabinol‐derivatives to cannabinoid CB(1) and CB(2) receptors. Pharmacological Research, 174, 105970. https://doi.org/10.1016/j.phrs.2021.105970

Rasmussen, S. G., DeVree, B. T., Zou, Y., Kruse, A. C., Chung, K. Y., Kobilka, T. S., Thian, F. S., Chae, P. S., Pardon, E., Calinski, D., Mathiesen, J. M., Shah, S. T. A., Lyons, J. A., Caffrey, M., Gellman, S. H., Steyaert, J., Skiniotis, G., Weis, W. I., Sunahara, R. K., & Kobilka, B. K. (2011). Crystal structure of the beta2 adrenergic receptor‐Gs protein complex. Nature, 477, 549–555. https://doi.org/10.1038/nature10361

Ravotto, L., Duffet, L., Zhou, X., Weber, B., & Patriarchi, T. (2020). A bright and colorful future for G‐protein coupled receptor sensors. Frontiers in Cellular Neuroscience, 14, 67. https://doi.org/10.3389/fncel.2020.00067

Reinhardt, S. C. M., Masullo, L. A., Baudrexel, I., Steen, P. R., Kowalewski, R., Eklund, A. S., Strauss, S., Unterauer, E. M., Schlichthaerle, T., Strauss, M. T., Klein, C., & Jungmann, R. (2023). Angstrom‐resolution fluorescence microscopy. Nature, 617, 711–716. https://doi.org/10.1038/s41586-023-05925-9

Remy, I., & Michnick, S. W. (2006). A highly sensitive protein‐protein interaction assay based on Gaussia luciferase. Nature Methods, 3, 977–979. https://doi.org/10.1038/nmeth979

Rico, C. A., Berchiche, Y. A., Horioka, M., Peeler, J. C., Lorenzen, E., Tian, H., Kazmi, M. A., Fürstenberg, A., Gaertner, H., Hartley, O., Sakmar, T. P., & Huber, T. (2019). High‐affinity binding of chemokine analogs that display ligand bias at the HIV‐1 Coreceptor CCR5. Biophysical Journal, 117, 903–919. https://doi.org/10.1016/j.bpj.2019.07.043

Rimoli, C. V., Valades‐Cruz, C. A., Curcio, V., Mavrakis, M., & Brasselet, S. (2022). 4polar‐STORM polarized super‐resolution imaging of actin filament organization in cells. Nature Communications, 13, 301. https://doi.org/10.1038/s41467-022-27966-w

Rose, R. H., Briddon, S. J., & Hill, S. J. (2012). A novel fluorescent histamine H(1) receptor antagonist demonstrates the advantage of using fluorescence correlation spectroscopy to study the binding of lipophilic ligands. British Journal of Pharmacology, 165, 1789–1800. https://doi.org/10.1111/j.1476-5381.2011.01640.x

Rosier, N., Grätz, L., Schihada, H., Möller, J., Işbilir, A., Humphrys, L. J., Nagl, M., Seibel, U., Lohse, M. J., & Pockes, S. (2021). A versatile sub‐nanomolar fluorescent ligand enables nanoBRET binding studies and single‐molecule microscopy at the histamine H(3) receptor. Journal of Medicinal Chemistry, 64, 11695–11708. https://doi.org/10.1021/acs.jmedchem.1c01089

Rust, M. J., Bates, M., & Zhuang, X. (2006). Sub‐diffraction‐limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 3, 793–795. https://doi.org/10.1038/nmeth929

Sanchez, M. F., Els‐Heindl, S., Beck‐Sickinger, A. G., Wieneke, R., & Tampe, R. (2021). Photoinduced receptor confinement drives ligand‐independent GPCR signaling. Science, 371, eabb7657. https://doi.org/10.1126/science.abb7657

Scarselli, M., Annibale, P., & Radenovic, A. (2012). Cell type‐specific beta2‐adrenergic receptor clusters identified using photoactivated localization microscopy are not lipid raft related, but depend on actin cytoskeleton integrity. The Journal of Biological Chemistry, 287, 16768–16780. https://doi.org/10.1074/jbc.M111.329912

Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F., & Jungmann, R. (2017). Super‐resolution microscopy with DNA‐PAINT. Nature Protocols, 12, 1198–1228. https://doi.org/10.1038/nprot.2017.024

Schoenlein, R. W., Peteanu, L. A., Mathies, R. A., & Shank, C. V. (1991). The first step in vision: Femtosecond isomerization of rhodopsin. Science, 254, 412–415. https://doi.org/10.1126/science.1925597

Sezgin, E., Schneider, F., Galiani, S., Urbančič, I., Waithe, D., Lagerholm, B. C., & Eggeling, C. (2019). Measuring nanoscale diffusion dynamics in cellular membranes with super‐resolution STED‐FCS. Nature Protocols, 14, 1054–1083. https://doi.org/10.1038/s41596-019-0127-9

Shaib, A. H., Chouaib, A. A., Chowdhury, R., Mihaylov, D., Zhang, C., Imani, V., Georgiev, S. V., Mougios, N., Monga, M., Reshetniak, S., Mimoso, T., Chen, H., Fatehbasharzad, P., Crzan, D., Saal, K.‐A., Alawar, N., Eilts, J., Kang, J., Alvarez, L., … Rizzoli, S. O. (2023). Visualizing proteins by expansion microscopy. bioRxiv: 2022.2008.2003.502284.

Shen, A., Nieves‐Cintron, M., Deng, Y., Shi, Q., Chowdhury, D., Qi, J., Hell, J. W., Navedo, M. F., & Xiang, Y. K. (2018). Functionally distinct and selectively phosphorylated GPCR subpopulations co‐exist in a single cell. Nature Communications, 9, 1050. https://doi.org/10.1038/s41467-018-03459-7

Siddig, S., Aufmkolk, S., Doose, S., Jobin, M. L., Werner, C., Sauer, M., & Calebiro, D. (2020). Super‐resolution imaging reveals the nanoscale organization of metabotropic glutamate receptors at presynaptic active zones. Science Advances, 6, eaay7193. https://doi.org/10.1126/sciadv.aay7193

Sleno, R., Devost, D., Pétrin, D., Zhang, A., Bourque, K., Shinjo, Y., Aoki, J., Inoue, A., & Hébert, T. E. (2017). Conformational biosensors reveal allosteric interactions between heterodimeric AT1 angiotensin and prostaglandin F2alpha receptors. The Journal of Biological Chemistry, 292, 12139–12152. https://doi.org/10.1074/jbc.M117.793877

Sotolongo Bellón, J., Birkholz, O., Richter, C. P., Eull, F., Kenneweg, H., Wilmes, S., Rothbauer, U., You, C., Walter, M. R., Kurre, R., & Piehler, J. (2022). Four‐color single‐molecule imaging with engineered tags resolves the molecular architecture of signaling complexes in the plasma membrane. Cell Rep Methods, 2, 100165. https://doi.org/10.1016/j.crmeth.2022.100165

Sotoma, S., Iimura, J., Igarashi, R., Hirosawa, K. M., Ohnishi, H., Mizukami, S., Kikuchi, K., Fujiwara, T., Shirakawa, M., & Tochio, H. (2016). Selective labeling of proteins on living cell membranes using fluorescent Nanodiamond probes. Nanomaterials (Basel), 6, 56. https://doi.org/10.3390/nano6040056

Stoddart, L. A., Kindon, N. D., Otun, O., Harwood, C. R., Patera, F., Veprintsev, D. B., Woolard, J., Briddon, S. J., Franks, H. A., Hill, S. J., & Kellam, B. (2020). Ligand‐directed covalent labelling of a GPCR with a fluorescent tag in live cells. Commun Biol, 3, 722. https://doi.org/10.1038/s42003-020-01451-w

Sun, F., Zeng, J., Jing, M., Zhou, J., Feng, J., & Owen, S. F. (2018). A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, Fish, and mice. Cell, 174, 481–496.

Sungkaworn, T., Jobin, M. L., Burnecki, K., Weron, A., Lohse, M. J., & Calebiro, D. (2017). Single‐molecule imaging reveals receptor‐G protein interactions at cell surface hot spots. Nature, 550, 543–547. https://doi.org/10.1038/nature24264

Suofu, Y., Li, W., Jean‐Alphonse, F. G., Jia, J., Khattar, N. K., Li, J., Baranov, S. V., Leronni, D., Mihalik, A. C., He, Y., Cecon, E., Wehbi, V. L., Kim, J., Heath, B. E., Baranova, O. V., Wang, X., Gable, M. J., Kretz, E. S., di Benedetto, G., … Friedlander, R. M. (2017). Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proceedings of the National Academy of Sciences of the United States of America, 114, E7997–E8006. https://doi.org/10.1073/pnas.1705768114

Szalai, A. M., Armando, N. G., Barabas, F. M., Stefani, F. D., Giordano, L., Bari, S. E., Cavasotto, C. N., Silberstein, S., & Aramendía, P. F. (2018). A fluorescence nanoscopy marker for corticotropin‐releasing hormone type 1 receptor: Computer design, synthesis, signaling effects, super‐resolved fluorescence imaging, and in situ affinity constant in cells. Physical Chemistry Chemical Physics, 20, 29212–29220. https://doi.org/10.1039/C8CP06196C

Tahk, M. J., Laasfeld, T., Meriste, E., Brea, J., Loza, M. I., Majellaro, M., Contino, M., Sotelo, E., & Rinken, A. (2023). Fluorescence based HTS‐compatible ligand binding assays for dopamine D(3) receptors in baculovirus preparations and live cells. Frontiers in Molecular Biosciences, 10, 1–12. https://doi.org/10.3389/fmolb.2023.1119157

Takakura, H., Hattori, M., Takeuchi, M., & Ozawa, T. (2012). Visualization and quantitative analysis of G protein‐coupled receptor‐beta‐arrestin interaction in single cells and specific organs of living mice using split luciferase complementation. ACS Chemical Biology, 7, 901–910. https://doi.org/10.1021/cb200360z

Tomas Bort, E., Joseph, M. D., Wang, Q., Carter, E. P., Roth, N. J., Gibson, J., Samadi, A., Kocher, H. M., Simoncelli, S., McCormick, P. J., & Grose, R. P. (2023). Purinergic GPCR‐integrin interactions drive pancreatic cancer cell invasion. eLife, 12, e86971. https://doi.org/10.7554/eLife.86971

Tsvetanova, N. G., Irannejad, R., & von Zastrow, M. (2015). G protein‐coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes. The Journal of Biological Chemistry, 290, 6689–6696. https://doi.org/10.1074/jbc.R114.617951

Voie, A. H., Burns, D. H., & Spelman, F. A. (1993). Orthogonal‐plane fluorescence optical sectioning: Three‐dimensional imaging of macroscopic biological specimens. Journal of Microscopy, 170, 229–236. https://doi.org/10.1111/j.1365-2818.1993.tb03346.x

Wan, Q., Okashah, N., Inoue, A., Nehmé, R., Carpenter, B., Tate, C. G., & Lambert, N. A. (2018). Mini G protein probes for active G protein‐coupled receptors (GPCRs) in live cells. The Journal of Biological Chemistry, 293, 7466–7473. https://doi.org/10.1074/jbc.RA118.001975

Wang, T., Li, G., Wang, D., Li, F., Men, D., Hu, T., Xi, Y., & Zhang, X. E. (2019). Quantitative profiling of integrin alphavbeta3 on single cells with quantum dot labeling to reveal the phenotypic heterogeneity of glioblastoma. Nanoscale, 11, 18224–18231. https://doi.org/10.1039/C9NR01105F

Wang, Y., Eddison, M., Fleishman, G., Weigert, M., Xu, S., Wang, T., Rokicki, K., Goina, C., Henry, F. E., Lemire, A. L., Schmidt, U., Yang, H., Svoboda, K., Myers, E. W., Saalfeld, S., Korff, W., Sternson, S. M., & Tillberg, P. W. (2021). EASI‐FISH for thick tissue defines lateral hypothalamus spatio‐molecular organization. Cell, 184, 6361–6377. https://doi.org/10.1016/j.cell.2021.11.024

Weber, M., Leutenegger, M., Stoldt, S., Jakobs, S., Mihaila, T. S., Butkevich, A. N., & Hell, S. W. (2021). MINSTED fluorescence localization and nanoscopy. Nature Photonics, 15, 361–366. https://doi.org/10.1038/s41566-021-00774-2

Wohland, T., Shi, X., Sankaran, J., & Stelzer, E. H. (2010). Single plane illumination fluorescence correlation spectroscopy (SPIM‐FCS) probes inhomogeneous three‐dimensional environments. Optics Express, 18, 10627–10641. https://doi.org/10.1364/OE.18.010627

Yang, D., Zhou, Q., Labroska, V., Qin, S., Darbalaei, S., Wu, Y., Yuliantie, E., Xie, L., Tao, H., Cheng, J., Liu, Q., Zhao, S., Shui, W., Jiang, Y., & Wang, M. W. (2021). G protein‐coupled receptors: Structure‐ and function‐based drug discovery. Signal Transduction and Targeted Therapy, 6, 7. https://doi.org/10.1038/s41392-020-00435-w

Yang, J., Gong, Z., Lu, Y. B., Xu, C. J., Wei, T. F., Yang, M. S., Zhan, T. W., Yang, Y. H., Lin, L., Liu, J., Tang, C., & Zhang, W. P. (2020). FLIM‐FRET‐based structural characterization of a class‐a GPCR dimer in the cell membrane. Journal of Molecular Biology, 432, 4596–4611. https://doi.org/10.1016/j.jmb.2020.06.009

Yasui, M., Hiroshima, M., Kozuka, J., Sako, Y., & Ueda, M. (2018). Automated single‐molecule imaging in living cells. Nature Communications, 9, 3061. https://doi.org/10.1038/s41467-018-05524-7

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...