Effect of freeze-thaw manipulation on phytostabilization of industrially contaminated soil with halloysite nanotubes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2019/03/X/NZ9/01276
Polish National Science Centre
PubMed
38092858
PubMed Central
PMC10719333
DOI
10.1038/s41598-023-49698-7
PII: 10.1038/s41598-023-49698-7
Knihovny.cz E-zdroje
- MeSH
- jíl MeSH
- kadmium MeSH
- látky znečišťující půdu * analýza MeSH
- monitorování životního prostředí MeSH
- olovo MeSH
- půda MeSH
- těžké kovy * analýza MeSH
- zmrazování MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- jíl MeSH
- kadmium MeSH
- látky znečišťující půdu * MeSH
- olovo MeSH
- půda MeSH
- těžké kovy * MeSH
The latest trends in improving the performance properties of soils contaminated with potentially toxic elements (PTEs) relate to the possibility of using raw additives, including halloysite nanotubes (HNTs) due to eco-friendliness, and inexpensiveness. Lolium perenne L. was cultivated for 52 days in a greenhouse and then moved to a freezing-thawing chamber for 64 days. HNT addition into PTE-contaminated soil cultivated with grass under freezing-thawing conditions (FTC) was tested to demonstrate PTE immobilization during phytostabilization. The relative yields increased by 47% in HNT-enriched soil in a greenhouse, while under FTC decreased by 17% compared to the adequate greenhouse series. The higher PTE accumulation in roots in HNT presence was evident both in greenhouse and chamber conditions. (Cr/Cd and Cu)-relative contents were reduced in soil HNT-enriched-not-FTC-exposed, while (Cr and Cu) in HNT-enriched-FTC-exposed. PTE-immobilization was discernible by (Cd/Cr/Pb and Zn)-redistribution into the reducible fraction and (Cu/Ni and Zn) into the residual fraction in soil HNT-enriched-not-FTC-exposed. FTC and HNT facilitated transformation to the residual fraction mainly for Pb. Based on PTE-distribution patterns and redistribution indexes, HNT's role in increasing PTE stability in soils not-FTC-exposed is more pronounced than in FTC-exposed compared to the adequate series. Sphingomonas, Acidobacterium, and Mycobacterium appeared in all soils. HNTs mitigated FTC's negative effect on microbial diversity and increased Planctomycetia abundance.
Faculty of Geoengineering University of Warmia and Mazury in Olsztyn 10 719 Olsztyn Poland
Institute of Civil Engineering Warsaw University of Life Sciences 02 776 Warsaw Poland
Institute of Environmental Engineering Warsaw University of Life Sciences 02 776 Warsaw Poland
Zobrazit více v PubMed
Rodrigo-Comino J, et al. Soil science challenges in a new era: A transdisciplinary overview of relevant topics. Air Soil Water Res. 2020;13:1–17. doi: 10.1177/1178622120977491. DOI
Radziemska M, Gusiatin ZM, Kumar V, Brtnicky M. Co-application of nanosized halloysite and biochar as soil amendments in aided phytostabilization of metal(-oid)s-contaminated soil under different temperature conditions. Chemosphere. 2022;288:132452. doi: 10.1016/j.chemosphere.2021.132452. PubMed DOI
Taghavi M, et al. Ecological risk assessment of trace elements (TEs) pollution and human health risk exposure in agricultural soils used for saffron cultivation. Sci. Rep. 2023;13:4556. doi: 10.1038/s41598-023-31681-x. PubMed DOI PMC
Taeprayoon P, Homyog K, Meeinkuirt W. Organic amendment additions to cadmium-contaminated soils for phytostabilization of three bioenergy crops. Sci. Rep. 2022;12:13070. doi: 10.1038/s41598-022-17385-8. PubMed DOI PMC
Dąbrowski P, et al. Photosynthetic efficiency of perennial ryegrass (Lolium perenne L.) seedlings in response to Ni and Cd stress. Sci. Rep. 2023;13:5357. doi: 10.1038/s41598-023-32324-x. PubMed DOI PMC
Pebdani MH. Molecular insight into structural and mechanical properties of Halloysite structure. Comput. Mater. Sci. 2023;218:111948. doi: 10.1016/j.commatsci.2022.111948. DOI
Hemmatpour H, et al. Mussel-inspired grafting pH-responsive brushes onto halloysite nanotubes for controlled release of doxorubicin. Eur. Polym. J. 2022;180:111583. doi: 10.1016/j.eurpolymj.2022.111583. DOI
Zhang T, et al. Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nanocomposites. Chem. Eng. J. 2021;420:127574. doi: 10.1016/j.cej.2020.127574. DOI
Chou YL, Wang LJ. Seasonal freezing-thawing process and hydrothermal characteristics of soil on the Loess Plateau, China. J. Mountain Sci. 2021;18(11):3082–3098. doi: 10.1007/s11629-020-6599-9. DOI
Radziemska M, et al. Does biochar in combination with compost effectively promote phytostabilization of heavy metals in soil under different temperature regimes? Sci. Total. Environ. 2023;882:163634. doi: 10.1016/j.scitotenv.2023.163634. PubMed DOI
Xie S-B, et al. Effects of freeze-thaw cycles on soil mechanical and physical properties in the Qinghai-Tibet Plateau. J. Mountain Sci. 2015;12:999–1009. doi: 10.1007/s11629-014-3384-7. DOI
Hayashi M. The cold vadose zone: Hydrological and ecological significance of frozen-soil processes. Vadose Zone J. 2013;12(4):vzj2013.03.0064. doi: 10.2136/vzj2013.03.0064. DOI
Trippe KM, et al. Phytostabilization of acidic mine tailings with biochar, biosolids, lime, and locally-sourced microbial inoculum: Do amendment mixtures influence plant growth, tailing chemistry, and microbial composition? Appl. Soil Ecol. 2021;165:103962. doi: 10.1016/j.apsoil.2021.103962. PubMed DOI PMC
Lacalle RG, Bernal MP, Álvarez-Robles MJ, Clemente R. Phytostabilization of soils contaminated with As, Cd, Cu, Pb and Zn: Physicochemical, toxicological and biological evaluations. Soil Environ. Health. 2023;1:100014. doi: 10.1016/j.seh.2023.100014. DOI
Radziemska M, et al. Assisted phytostabilization of soil from a former military area with mineral amendments. Ecotox. Environ. Saf. 2020;188:109934. doi: 10.1016/j.ecoenv.2019.109934. PubMed DOI
Molassiotis A, Fotopoulos V. Oxidative and nitrosative signaling in plants: Two branches in the same tree? Plant Signal. Behav. 2011;6(2):210–214. doi: 10.4161/psb.6.2.14878. PubMed DOI PMC
Mandal M, et al. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plants – Maintenance of structural individuality and functional blend. Adv. Redox Res. 2022;5:100039. doi: 10.1016/j.arres.2022.100039. DOI
Baek K-H, Skinner DZ. Production of reactive oxygen species by freezing stress and the protective roles of antioxidant enzymes in plants. J. Agric. Chem. Environ. 2012;1:1.
Adhikari L, et al. Cold stress in plants: Strategies to improve cold tolerance in forage species. Plant Stress. 2022;4:100081. doi: 10.1016/j.stress.2022.100081. DOI
Eagles CF. Temperature induced changes in cold tolerance of Lolium perenne. J. Agric. Sci. 1989;113:339–347. doi: 10.1017/S0021859600070027. DOI
Hannaway D, et al. Perennial ryegrass (Lolium perenne L.) PNW. 1999;503:1–20.
Volaire F, Norton M. Summer dormancy in perennial temperate grasses. Ann. Bot. 2006;98:927–933. doi: 10.1093/aob/mcl195. PubMed DOI PMC
Fitzhugh RD, Driscoll CT, Groman PM, Tierney GL, Hardy FJP. Effects of soil freezing disturbance on soil solution nitrogen, phosphorus, and carbon chemistry in a northern hardwood ecosystem. Biogeochemistry. 2001;56:215–238. doi: 10.1023/A:1013076609950. DOI
DalCorso G, Fasani E, Manara A, Visioli G, Furini A. Heavy metal pollutions: State of the art and innovation in phytoremediation. Int. J. Mol. Sci. 2019;20:3412. doi: 10.3390/ijms20143412. PubMed DOI PMC
Nolan AL, Mclaughlin MJ, Mason SD. Chemical speciation of Zn, Cd, Cu, and Pb in pore waters of agricultural and contaminated soils using donnan dialysis. Environ. Sci. Technol. 2003;37:90–98. doi: 10.1021/es025966k. PubMed DOI
Hartnett HE. Dissolved organic matter (DOM) In: White WM, editor. Encyclopedia of Geochemistry. Springer; 2018.
Zsolnay Á. Dissolved organic matter: Artifacts, definitions, and functions. Geoderma. 2003;113(1–4):187–209. doi: 10.1016/S0016-7061(02)00361-0. DOI
Yuan P, Tan D, Annabi-Bergaya F. Properties and applications of halloysite nanotubes: Recent research advances and future prospects. Appl. Clay Sci. 2015;112–113:75–93. doi: 10.1016/j.clay.2015.05.001. DOI
Lazzara G, et al. An assembly of organic-inorganic composites using halloysite clay nanotubes. Curr. Opin. Colloid Interface. 2018;35:42–50. doi: 10.1016/j.cocis.2018.01.002. DOI
Lvov Y, Wang W, Zhang L, Fakhrullin R. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv. Mater. 2016;28:1227–1250. doi: 10.1002/adma.201502341. PubMed DOI
Guggenheim S, Martin R. Definition of clay and clay mineral: Joint report of the AIPEA and CMS nomenclature committees. Clay Min. 1995;30(3):257–259. doi: 10.1180/claymin.1995.030.3.09. DOI
Utracki LA. Clay-Containing Polymeric Nanocomposites. 1. Rapra Technology Limited; 2004.
Gray N, Lumsdon DG, Hillier S. Effect of pH on the cation exchange capacity of some halloysite nanotubes. Clay Min. 2016;51:373–383. doi: 10.1180/claymin.2016.051.3.04. DOI
Bel J, et al. Conventional analysis methods underestimate the plant-available pools of calcium, magnesium and potassium in forest soils. Sci. Rep. 2020;10:15703. doi: 10.1038/s41598-020-72741-w. PubMed DOI PMC
Zgorelec Z, Maurović N, et al. Comparison of two different CEC determination methods regarding the soil properties. Agric. Conspec. Sci. 2019;84(2):151–158.
Ciesielski H, Sterckeman T, Santerne M, Willery JP. Determination of cation exchange capacity and exchangeable cations in soils by means of cobalt hexamine trichloride. Effects of experimental conditions. Agronomie. 1997;17:1–7. doi: 10.1051/agro:19970101. DOI
Ciesielski H, Sterckeman T, Santerne M, Willery JP. A comparison between three methods for the determination of cation exchange capacity and exchangeable cations in soils. Agronomie. 1997;17:9–16. doi: 10.1051/agro:19970102. DOI
Vapaavuori EM, Rikala R, Ryyppo A. Effects of root temperature on growth and photosynthesis in conifer seedlings during shoot elongation. Tree Physiol. 1992;10:217–230. doi: 10.1093/treephys/10.3.217. PubMed DOI
Neina D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019;2019:5794869. doi: 10.1155/2019/5794869. DOI
Bradl HB. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004;277(1):1–18. doi: 10.1016/j.jcis.2004.04.005. PubMed DOI
Otunola BO, Ololade OO. A review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environ. Technol. Innov. 2020;18:100692. doi: 10.1016/j.eti.2020.100692. DOI
Gusiatin ZM, Kulikowska D. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts. Environ. Technol. 2016;37(18):2337–2347. doi: 10.1080/09593330.2016.1150348. PubMed DOI
DuLaing G. Redox metal processes and controls in estuaries. In: Wolanski E, McLusky DS, editors. Treatise on Estuarine and Coastal Science. Ed. Waltham: Academic Press, Elsevier; 2011. pp. 115–141.
Stor M, Czelej K, Krasiński A, Gradoń L. Exceptional sorption of heavy metals from natural water by halloysite particles: A new prospect of highly efficient water remediation. Nanomaterials. 2023;13:1162. doi: 10.3390/nano13071162. PubMed DOI PMC
Hamid Y, et al. An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Sci. Tot. Environ. 2019;660:80–96. doi: 10.1016/j.scitotenv.2018.12.419. PubMed DOI
Kurczewska J, Grzesiak P, Łukaszyk J, Gabała E, Schroeder G. High decrease in soil metal bioavailability by metal immobilization with halloysite clay. Environ. Chem. Lett. 2015;13:319–325. doi: 10.1007/s10311-015-0504-8. DOI
Amin AEEAZ. Carbon sequestration, kinetics of ammonia volatilization and nutrient availability in alkaline sandy soil as a function on applying calotropis biochar produced at different pyrolysis temperatures. Sci. Tot. Environ. 2020;726:138489. doi: 10.1016/j.scitotenv.2020.138489. PubMed DOI
Li L, Wu J, Lu J, Min X. Effect of freeze–thaw cycles on soil physicochemical properties and fractions of Pb and Cr in the northeastern Qinghai-Tibet Plateau. Geochem. Explor. Environ. Analys. 2021;21(3):2021–2029.
Wang Z, et al. Research on the adsorption mechanism of Cu and Zn by biochar under freeze-thaw conditions. Sci. Tot. Environ. 2021;774:145194. doi: 10.1016/j.scitotenv.2021.145194. PubMed DOI
Shivlata L, Satyanarayana T. Thermophilic and alkaliphilic Actinobacteria: Biology and potential applications. Front. Microbiol. 2015;6:1014. doi: 10.3389/fmicb.2015.01014. PubMed DOI PMC
Chin K, Liesack W, Janssen PH. Opitutus terrae gen. nov., sp. Nov., to accommodate novel strains of the division ‘Verrucomicrobia’ isolated from rice paddy soil. Int. J. Syst. Evol. Microbiol. 2001;51(6):1965–1968. doi: 10.1099/00207713-51-6-1965. PubMed DOI
Mhete M, Eze PN, Rahube TO, Akinyemi FO. Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. Sci. Afr. 2020;7:e00246.
Makhalanyane TP, Van Goethem MW, Cowan DA. Microbial diversity and functional capacity in polar soils. Curr. Opin. Biotechnol. 2016;38:159–166. doi: 10.1016/j.copbio.2016.01.011. PubMed DOI
Navas M, Pérez-Esteban J, Torres MA, Hontoria C, Moliner A. Taxonomic and functional analysis of soil microbial communities in a mining site across a metal(loid) contamination gradient. Eur. J. Soil. Sci. 2021;72:1190–1205. doi: 10.1111/ejss.12979. DOI
Li D, Chen J, Zhang X, Shi W, Li J. Structural and functional characteristics of soil microbial communities in response to different ecological risk levels of heavy metals. Front. Microbiol. 2022;13:1072389. doi: 10.3389/fmicb.2022.1072389. PubMed DOI PMC
Rocca JD, Simonin M, Bernhardt ES, Washburne AD, Wright JP. Rare microbial taxa emerge when communities collide: Freshwater and marine microbiome responses to experimental mixing. Ecology. 2020;101:e02956. doi: 10.1002/ecy.2956. PubMed DOI
Zuo Y, Zeng R, Tian C, Wang J, Qu W. The importance of conditionally rare taxa for the assembly and interaction of fungal communities in mangrove sediments. Appl. Microbiol. Biotechnol. 2022;106:3787–3798. doi: 10.1007/s00253-022-11949-4. PubMed DOI
Zhang M, et al. Soil microbial community assembly model in response to heavy metal pollution. Environ. Res. 2022;213:113576. doi: 10.1016/j.envres.2022.113576. PubMed DOI
Boros-Lajszner E, Wyszkowska J, Borowik A, Kucharski J. Energetic value of Elymus elongatus L. and Zea mays L. grown on soil polluted with Ni2+, Co2+, Cd2+, and sensitivity of rhizospheric bacteria to heavy metals. Energies. 2021;14:4903. doi: 10.3390/en14164903. DOI
Castro-Silva C, et al. The bacterial community structure in an alkaline saline soil spiked with anthracene. Electron. J. Biotechnol. 2013;16:5.
Altimira F, et al. Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile. BMC Microbiol. 2012;12:e193. doi: 10.1186/1471-2180-12-193. PubMed DOI PMC
Thomas JC, et al. Co-occurrence of antibiotic, biocide, and heavy metal resistance genes in bacteria from metal and radionuclide contaminated soils at the Savannah River Site. Microb. Biotechnol. 2020;13:1179–1200. doi: 10.1111/1751-7915.13578. PubMed DOI PMC
Sharma M, Khurana H, Singh DN, Negi RK. The genus Sphingopyxis: Systematics, ecology, and bioremediation potential - A review. J Environ. Manag. 2021;280:111744. doi: 10.1016/j.jenvman.2020.111744. PubMed DOI
González Henao S, Ghneim-Herrera T. Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Front. Environ. Sci. 2021;9:15. doi: 10.3389/fenvs.2021.604216. DOI
Ministry of Environment . Regulation of the Minister of Environment on the Standards of the Soil Quality and Ground Quality of 1.09.2016; Dziennik Ustaw No 165, Pos. 1359. Ministry of Environment; 2016.
Soil Survey Manual, Agriculture Handbook No.18, Soil Science Division Staff (United States Department of Agriculture, 2017).
Grim RE. Clay mineralogy: The clay mineral composition of soils and clays is providing an understanding of their properties. Science. 1962;135(3507):890–898. doi: 10.1126/science.135.3507.890. PubMed DOI
Radziemska M, et al. Immobilization of potentially toxic elements (PTE) by mineral-based amendments: Remediation of contaminated soils in post-industrial sites. Minerals. 2020;10:87. doi: 10.3390/min10020087. DOI
Hou R, et al. Effect of immobilizing reagents on soil Cd and Pb lability under freeze-thaw cycles: Implications for sustainable agricultural management in seasonally frozen land. Environ. Int. 2020;144:106040. doi: 10.1016/j.envint.2020.106040. PubMed DOI
Pueyo M, et al. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environ. Pollut. 2008;152:330–341. doi: 10.1016/j.envpol.2007.06.020. PubMed DOI
Nel T, Bruneel Y, Smolders E. Comparison of five methods to determine the cation exchange capacity of soil. J. Plant Nutr. Soil Sci. 2023;186:311–320. doi: 10.1002/jpln.202200378. DOI
Caporaso JG, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. 2011;108:4516–4522. doi: 10.1073/pnas.1000080107. PubMed DOI PMC
Radziemska M, et al. Insight into metal immobilization and microbial community structure in soil from a steel disposal dump that was phytostabilized with composted, pyrolyzed or gasified wastes. Chemosphere. 2021;272:129576. doi: 10.1016/j.chemosphere.2021.129576. PubMed DOI
Dhariwal A, et al. MicrobiomeAnalyst - A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017;45(1):180–188. doi: 10.1093/nar/gkx295. PubMed DOI PMC
Chong J, Liu P, Zhou G, Xia J. Using microbiome analyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Prot. 2020;15:799–821. doi: 10.1038/s41596-019-0264-1. PubMed DOI
McMurdie PJ, Holmes S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 2014;10:e1003531. doi: 10.1371/journal.pcbi.1003531. PubMed DOI PMC