CpX Hunter web tool allows high-throughput identification of CpG, CpA, CpT, and CpC islands: A case study in Drosophila genome
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40286849
PubMed Central
PMC12148476
DOI
10.1016/j.jbc.2025.108537
PII: S0021-9258(25)00386-2
Knihovny.cz E-zdroje
- Klíčová slova
- CpA islands, CpG islands, CpT islands, Drosophila, dinucleotide, genome analyses, web server,
- MeSH
- CpG ostrůvky * MeSH
- Drosophila melanogaster * genetika MeSH
- genom hmyzu * MeSH
- internet MeSH
- metylace DNA MeSH
- software * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
With continuous advances in DNA sequencing methods, accessibility to high-quality genomic information for all living organisms is ever-increasing. However, to interpret this information effectively and formulate hypotheses, users often require higher level programming skills. Therefore, the generation of web-based tools is becoming increasingly popular. CpG island regions in genomes are often found in gene promoters and are prone to DNA methylation, with their methylation status determining if a gene is expressed. Notably, understanding the biological impact of CpX modifications on genomic regulation is becoming increasingly important as these modifications have been associated with diseases such as cancer and neurodegeneration. However, there is currently no easy-to-use, scalable tool to detect and quantify CpX islands in full genomes. We have developed a Java-based web server for CpX island analyses that benefits from the DNA Analyzer Web server environment and overcomes several limitations. For a pilot demonstration study, we selected a well-described model organism Drosophila melanogaster. Subsequent analysis of the obtained CpX islands revealed several interesting and previously undescribed phenomena. One of them is the fact, that nearly half of long CpG islands were located on chromosome X, and that long CpA and CpT islands were significantly overrepresented at the subcentromeric regions of autosomes (chr2 and chr3) and also on chromosome Y. Wide genome overlays of predicted CpX islands revealed their co-occurrence with various (epi)genomics features comprising cytosine methylations, accessible chromatin, transposable elements, or binding of transcription factors and other proteins. CpX Hunter is freely available as a web tool at: https://bioinformatics.ibp.cz/#/analyse/cpg.
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
Department of Informatics Mendel University in Brno Brno Czech Republic
Zobrazit více v PubMed
Deaton A.M., Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011;25:1010–1022. PubMed PMC
Sae-Lee C., Barrow T.M., Colicino E., Choi S.H., Rabanal-Ruiz Y., Green D., et al. Genomic targets and selective inhibition of DNA methyltransferase isoforms. Clin. Epigenetics. 2022;14:103. PubMed PMC
Zhang X., Blumenthal R.M., Cheng X. DNA-binding proteins from MBD through ZF to BEN: recognition of cytosine methylation status by one arginine with two conformations. Nucleic Acids Res. 2024;52:11442–11454. PubMed PMC
Héberlé É., Bardet A.F. Sensitivity of transcription factors to DNA methylation. Essays Biochem. 2019;63:727–741. PubMed PMC
Wong E.M., Southey M.C., Fox S.B., Brown M.A., Dowty J.G., Jenkins M.A., et al. Constitutional methylation of the BRCA1 promoter is specifically associated with BRCA1 mutation-associated pathology in early-onset breast cancer. Cancer Prev. Res. 2011;4:23–33. PubMed PMC
Pineda M., Mur P., Iniesta M.D., Borràs E., Campos O., Vargas G., et al. MLH1 methylation screening is effective in identifying epimutation carriers. Eur. J. Hum. Genet. 2012;20:1256–1264. PubMed PMC
Edwards J.R., Yarychkivska O., Boulard M., Bestor T.H. DNA methylation and DNA methyltransferases. Epigenetics Chromatin. 2017;10:23. PubMed PMC
Du Q., Luu P.-L., Stirzaker C., Clark S.J. Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics. 2015;7:1051–1073. PubMed
Du J., Johnson L.M., Jacobsen S.E., Patel D.J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell Biol. 2015;16:519–532. PubMed PMC
Hughes A.L., Kelley J.R., Klose R.J. Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation. Biochim. Biophys. Acta Gene Regul. Mech. 2020;1863 PubMed PMC
Bird A., Taggart M., Frommer M., Miller O.J., Macleod D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell. 1985;40:91–99. PubMed
Bird A.P. CpG-rich islands and the function of DNA methylation. Nature. 1986;321:209–213. PubMed
Götz M., Jarriault S. Programming and reprogramming the brain: a meeting of minds in neural fate. Development. 2017;144:2714–2718. PubMed
Yates J., Boeva V. Deciphering the etiology and role in oncogenic transformation of the CpG island methylator phenotype: a pan-cancer analysis. Brief Bioinform. 2022;23 PubMed PMC
Morgan A.E., Davies T.J., Mc Auley M.T. The role of DNA methylation in ageing and cancer. Proc. Nutr. Soc. 2018;77:412–422. PubMed
Cotton A.M., Price E.M., Jones M.J., Balaton B.P., Kobor M.S., Brown C.J. Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation. Hum. Mol. Genet. 2015;24:1528–1539. PubMed PMC
Geissler F., Nesic K., Kondrashova O., Dobrovic A., Swisher E.M., Scott C.L., et al. The role of aberrant DNA methylation in cancer initiation and clinical impacts. Ther. Adv. Med. Oncol. 2024;16 PubMed PMC
Sidler C., Kovalchuk O., Kovalchuk I. Epigenetic regulation of cellular senescence and aging. Front. Genet. 2017;8:138. PubMed PMC
Jang H.S., Shin W.J., Lee J.E., Do J.T. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes (Basel) 2017;8:148. PubMed PMC
Gowher H., Jeltsch A. Mammalian DNA methyltransferases: new discoveries and open questions. Biochem. Soc. Trans. 2018;46:1191–1202. PubMed PMC
Ramasamy D., Deva Magendhra Rao A.K., Rajkumar T., Mani S. Non-CpG methylation—a key epigenetic modification in cancer. Brief. Funct. Genomics. 2021;20:304–311. PubMed
Fuso A., Lucarelli M. CpG and non-CpG methylation in the diet-epigenetics-neurodegeneration connection. Curr. Nutr. Rep. 2019;8:74–82. PubMed
Kim S.H., Lim S.-H., Lee A.-R., Kwon D.H., Song H.K., Lee J.-H., et al. Unveiling the pathway to Z-DNA in the protein-induced B–Z transition. Nucleic Acids Res. 2018;46:4129–4137. PubMed PMC
Santos A.S., Ramos E.S., Valente-Gaiesky V.L.S., de Melo Sene F., Manfrin M.H. Evidences of differential methylation in the genome during development in the cactophilic Drosophila species. Genesis. 2024;62 PubMed
Owen B.M., Davidovich C. DNA binding by polycomb-group proteins: searching for the link to CpG islands. Nucleic Acids Res. 2022;50:4813–4839. PubMed PMC
Weber L.M., Jia Y., Stielow B., Gisselbrecht S.S., Cao Y., Ren Y., et al. The histone acetyltransferase KAT6A is recruited to unmethylated CpG islands via a DNA binding winged helix domain. Nucleic Acids Res. 2023;51:574–594. PubMed PMC
Saravanan K.A., Kumar H., Chhotaray S., Preethi A.L., Talokar A.J., Natarajan A., et al. Drosophila melanogaster: a promising model system for epigenetic research. Biol. Rhythm Res. 2022;53:382–400.
Takai D., Jones P.A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl. Acad. Sci. 2002;99:3740–3745. PubMed PMC
Kuhn R.M., Haussler D., Kent W.J. The UCSC genome browser and associated tools. Brief. Bioinformatics. 2013;14:144–161. PubMed PMC
Kuhn G.C.S., Küttler H., Moreira-Filho O., Heslop-Harrison J.S. The 1.688 repetitive DNA of Drosophila: concerted evolution at different genomic scales and association with genes. Mol. Biol. Evol. 2012;29:7–11. PubMed
Bassal M.A. The interplay between dysregulated metabolism and epigenetics in cancer. Biomolecules. 2023;13:944. PubMed PMC
Öztürk-Çolak A., Marygold S.J., Antonazzo G., Attrill H., Goutte-Gattat D., Jenkins V.K., et al. FlyBase: updates to the Drosophila genes and genomes database. Genetics. 2024;227 PubMed PMC
Wutz A., Gribnau J. X inactivation Xplained. Curr. Opin. Genet. Dev. 2007;17:387–393. PubMed
Sharp A.J., Stathaki E., Migliavacca E., Brahmachary M., Montgomery S.B., Dupre Y., et al. DNA methylation profiles of human active and inactive X chromosomes. Genome Res. 2011;21:1592–1600. PubMed PMC
Conrad T., Akhtar A. Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription. Nat. Rev. Genet. 2012;13:123–134. PubMed
Sokolov V., Kyrchanova O., Klimenko N., Fedotova A., Ibragimov A., Maksimenko O., et al. New Drosophila promoter-associated architectural protein Mzfp1 interacts with CP190 and is required for housekeeping gene expression and insulator activity. Nucleic Acids Res. 2024;52:6886–6905. PubMed PMC
Kaushal A., Mohana G., Dorier J., Özdemir I., Omer A., Cousin P., et al. CTCF loss has limited effects on global genome architecture in Drosophila despite critical regulatory functions. Nat. Commun. 2021;12:1011. PubMed PMC
Cavalheiro G.R., Girardot C., Viales R.R., Pollex T., Cao T.B.N., Lacour P., et al. CTCF, BEAF-32, and CP190 are not required for the establishment of TADs in early Drosophila embryos but have locus-specific roles. Sci. Adv. 2023;9 PubMed PMC
Duan J., Rieder L., Colonnetta M.M., Huang A., Mckenney M., Watters S., et al. CLAMP and Zelda function together to promote Drosophila zygotic genome activation. eLife. 2021;10 PubMed PMC
Yao B., Li Y., Wang Z., Chen L., Poidevin M., Zhang C., et al. Active N6-methyladenine demethylation by DMAD regulates gene expression by coordinating with polycomb protein in neurons. Mol. Cell. 2018;71:848–857.e6. PubMed PMC
McKowen J.K., Avva S.V.S.P., Maharjan M., Duarte F.M., Tome J.M., Judd J., et al. The Drosophila BEAF insulator protein interacts with the polybromo subunit of the PBAP chromatin remodeling complex. G3 (Bethesda) 2022;12 PubMed PMC
Lloyd J.P.B., Lister R. Epigenome plasticity in plants. Nat. Rev. Genet. 2022;23:55–68. PubMed
Lemmens B., van Schendel R., Tijsterman M. Mutagenic consequences of a single G-quadruplex demonstrate mitotic inheritance of DNA replication fork barriers. Nat. Commun. 2015;6:8909. PubMed PMC
Belotserkovskii B.P., Neil A.J., Saleh S.S., Shin J.H.S., Mirkin S.M., Hanawalt P.C. Transcription blockage by homopurine DNA sequences: role of sequence composition and single-strand breaks. Nucleic Acids Res. 2013;41:1817–1828. PubMed PMC
Mérel V., Boulesteix M., Fablet M., Vieira C. Transposable elements in Drosophila. Mobile DNA. 2020;11:23. PubMed PMC
Haney R.A., Feder M.E. Contrasting patterns of transposable element insertions in Drosophila heat-shock promoters. PLoS One. 2009;4 PubMed PMC
Brázda V., Kolomazník J., Lýsek J., Bartas M., Fojta M., Šťastný J., et al. G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics. 2019;35:3493–3495. PubMed PMC
Brázda V., Kolomazník J., Lỳsek J., Hároníková L., Coufal J., Št’astnỳ J. Palindrome analyser–A new web-based server for predicting and evaluating inverted repeats in nucleotide sequences. Biochem. Biophysical Res. Commun. 2016;478:1739–1745. PubMed
Tang D., Chen M., Huang X., Zhang G., Zeng L., Zhang G., et al. SRplot: a free online platform for data visualization and graphing. PLoS One. 2023;18 PubMed PMC
Zou Z., Ohta T., Oki S. ChIP-Atlas 3.0: a data-mining suite to explore chromosome architecture together with large-scale regulome data. Nucleic Acids Res. 2024;52:W45–W53. PubMed PMC
Szklarczyk D., Kirsch R., Koutrouli M., Nastou K., Mehryary F., Hachilif R., et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51:D638–D646. PubMed PMC