Human-derived air-liquid interface cultures decipher Alzheimer's disease-SARS-CoV-2 crosstalk in the olfactory mucosa
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018124
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_013/0001821
European Union - European Structural and Investments Funds in the frame of Operational Programme Research Development and Education
335524
Academy of Finland
PubMed
38098019
PubMed Central
PMC10722731
DOI
10.1186/s12974-023-02979-4
PII: 10.1186/s12974-023-02979-4
Knihovny.cz E-zdroje
- Klíčová slova
- Air–liquid interface, Alzheimer’s disease, Anosmia, COVID-19, Immune responses, Inflammation, Neurological manifestations, Olfactory, SARS-CoV-2,
- MeSH
- Alzheimerova nemoc * metabolismus MeSH
- anosmie metabolismus MeSH
- čichová sliznice metabolismus MeSH
- COVID-19 * MeSH
- lidé MeSH
- neurozánětlivé nemoci MeSH
- SARS-CoV-2 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The neurological effects of the coronavirus disease of 2019 (COVID-19) raise concerns about potential long-term consequences, such as an increased risk of Alzheimer's disease (AD). Neuroinflammation and other AD-associated pathologies are also suggested to increase the risk of serious SARS-CoV-2 infection. Anosmia is a common neurological symptom reported in COVID-19 and in early AD. The olfactory mucosa (OM) is important for the perception of smell and a proposed site of viral entry to the brain. However, little is known about SARS-CoV-2 infection at the OM of individuals with AD. METHODS: To address this gap, we established a 3D in vitro model of the OM from primary cells derived from cognitively healthy and AD individuals. We cultured the cells at the air-liquid interface (ALI) to study SARS-CoV-2 infection under controlled experimental conditions. Primary OM cells in ALI expressed angiotensin-converting enzyme 2 (ACE-2), neuropilin-1 (NRP-1), and several other known SARS-CoV-2 receptor and were highly vulnerable to infection. Infection was determined by secreted viral RNA content and confirmed with SARS-CoV-2 nucleocapsid protein (NP) in the infected cells by immunocytochemistry. Differential responses of healthy and AD individuals-derived OM cells to SARS-CoV-2 were determined by RNA sequencing. RESULTS: Results indicate that cells derived from cognitively healthy donors and individuals with AD do not differ in susceptibility to infection with the wild-type SARS-CoV-2 virus. However, transcriptomic signatures in cells from individuals with AD are highly distinct. Specifically, the cells from AD patients that were infected with the virus showed increased levels of oxidative stress, desensitized inflammation and immune responses, and alterations to genes associated with olfaction. These results imply that individuals with AD may be at a greater risk of experiencing severe outcomes from the infection, potentially driven by pre-existing neuroinflammation. CONCLUSIONS: The study sheds light on the interplay between AD pathology and SARS-CoV-2 infection. Altered transcriptomic signatures in AD cells may contribute to unique symptoms and a more severe disease course, with a notable involvement of neuroinflammation. Furthermore, the research emphasizes the need for targeted interventions to enhance outcomes for AD patients with viral infection. The study is crucial to better comprehend the relationship between AD, COVID-19, and anosmia. It highlights the importance of ongoing research to develop more effective treatments for those at high risk of severe SARS-CoV-2 infection.
A 1 Virtanen Institute for Molecular Sciences University of Eastern Finland 70210 Kuopio Finland
Department of Neurology Neuro Centre Kuopio University Hospital 70210 Kuopio Finland
Department of Virology Faculty of Medicine University of Helsinki 00290 Helsinki Finland
Finnadvance 90220 Oulu Finland
Institute of Molecular Genetics Czech Academy of Sciences 142 20 Prague Czech Republic
The Queensland Brain Institute University of Queensland Brisbane Queensland 4072 Australia
Zobrazit více v PubMed
Luërs JC, Klumann JP, Guntinas-Lichius O. The COVID-19 pandemic and otolaryngology: what it comes down to? Laryngorhinootologie. 2020;99(5):287–291. PubMed
Eliezer M, Hautefort C, Hamel AL, Verillaud B, Herman P, Houdart E, et al. Sudden and complete olfactory loss of function as a possible symptom of COVID-19. JAMA Otolaryngol Head Neck Surg. 2020;146(7):674–675. doi: 10.1001/jamaoto.2020.0832. PubMed DOI
Vaira LA, Salzano G, Deiana G, de Riu G. Anosmia and ageusia: common findings in COVID-19 patients. Laryngoscope. 2020;130(7):1787. doi: 10.1002/lary.28692. PubMed DOI PMC
Doty RL. Olfactory dysfunction in COVID-19: pathology and long-term implications for brain health. Trends Mol Med. 2022;28(9):781–794. doi: 10.1016/j.molmed.2022.06.005. PubMed DOI PMC
Lee Y, Min P, Lee S, Kim SW. Prevalence and duration of acute loss of smell or taste in COVID-19 patients. J Korean Med Sci. 2020;35(18):e174. doi: 10.3346/jkms.2020.35.e174. PubMed DOI PMC
Tan BKJ, Han R, Zhao JJ, Tan NKW, Quah ESH, Tan CJW, et al. Prognosis and persistence of smell and taste dysfunction in patients with covid-19: meta-analysis with parametric cure modelling of recovery curves. BMJ. 2022;378:e069503. doi: 10.1136/bmj-2021-069503. PubMed DOI PMC
Stefanou MI, Palaiodimou L, Bakola E, Smyrnis N, Papadopoulou M, Paraskevas GP, et al. Neurological manifestations of long-COVID syndrome: a narrative review. Ther Adv Chronic Dis. 2022;13:204062232210768. doi: 10.1177/20406223221076890. PubMed DOI PMC
Bauer L, Laksono BM, de Vrij FMS, Kushner SA, Harschnitz O, van Riel D. The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2. Trends Neurosci. 2022;45(5):358–368. doi: 10.1016/j.tins.2022.02.006. PubMed DOI PMC
Chen Y, Yang W, Chen F, Cui L. COVID-19 and cognitive impairment: neuroinvasive and blood–brain barrier dysfunction. J Neuroinflammation. 2022;19(1):1–14. doi: 10.1186/s12974-022-02579-8. PubMed DOI PMC
Klingenstein M, Klingenstein S, Neckel PH, Mack AF, Wagner AP, Kleger A, et al. Evidence of SARS-CoV2 entry protein ACE2 in the human nose and olfactory bulb. Cells Tissues Organs. 2020;209(4–6):155–164. doi: 10.1159/000513040. PubMed DOI PMC
Bilinska K, Jakubowska P, von Bartheld CS, Butowt R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci. 2020;11(11):1555–1562. doi: 10.1021/acschemneuro.0c00210. PubMed DOI PMC
Fodoulian L, Tuberosa J, Rossier D, Boillat M, Kan C, Pauli V, et al. SARS-CoV-2 receptors and entry genes are expressed in the human olfactory neuroepithelium and brain. iScience. 2020;23(12):101839. doi: 10.1016/j.isci.2020.101839. PubMed DOI PMC
Chen M, Shen W, Rowan NR, Kulaga H, Hillel A, Ramanathan M, et al. Elevated ACE-2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Eur Respir J. 2020;56(3):2001948. doi: 10.1183/13993003.01948-2020. PubMed DOI PMC
Shahbaz MA, de Bernardi F, Alatalo A, Sachana M, Clerbaux LA, Muñoz A, et al. Mechanistic understanding of the olfactory neuroepithelium involvement leading to short-term anosmia in COVID-19 using the adverse outcome pathway framework. Cells. 2022;11(19):3027. doi: 10.3390/cells11193027. PubMed DOI PMC
de Melo GD, Lazarini F, Levallois S, Hautefort C, Michel V, Larrous F, et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci Transl Med. 2021;13(596):e8396. doi: 10.1126/scitranslmed.abf8396. PubMed DOI PMC
Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24(2):168–175. doi: 10.1038/s41593-020-00758-5. PubMed DOI
Alipoor SD, Mirsaeidi M. SARS -CoV-2 cell entry beyond the ACE2 receptor. Mol Biol Rep. 2022;49:10715–10727. doi: 10.1007/s11033-022-07700-x. PubMed DOI PMC
Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science (1979). 2020;370(6518):856. doi: 10.1126/science.abd2985. PubMed DOI PMC
Daly JL, Simonetti B, Klein K, Chen KE, Williamson MK, Antón-Plágaro C, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020;370(6518):861–865. doi: 10.1126/science.abd3072. PubMed DOI PMC
Fotuhi M, Mian A, Meysami S, Raji CA. Neurobiology of COVID-19. J Alzheimer’s Dis. 2020;76(1):3–19. doi: 10.3233/JAD-200581. PubMed DOI PMC
Xia X, Wang Y, Zheng J. COVID-19 and Alzheimer’s disease: how one crisis worsens the other. Transl Neurodegener. 2021;10:15. doi: 10.1186/s40035-021-00237-2. PubMed DOI PMC
Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, et al. Alzheimer disease. Nature Rev Dis Primers. 2021;7(1):1–21. PubMed PMC
Deture MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14(1):1–18. doi: 10.1186/s13024-019-0333-5. PubMed DOI PMC
Marin C, Vilas D, Langdon C, Alobid I, López-Chacón M, Haehner A, et al. Olfactory dysfunction in neurodegenerative diseases. Curr Allergy Asthma Rep. 2018;18(8):1–19. doi: 10.1007/s11882-018-0796-4. PubMed DOI
Jung HJ, Shin IS, Lee JE. Olfactory function in mild cognitive impairment and Alzheimer’s disease: a meta-analysis. Laryngoscope. 2019;129(2):362–369. doi: 10.1002/lary.27399. PubMed DOI
Roberts RO, Christianson TJH, Kremers WK, Mielke MM, Machulda MM, Vassilaki M, et al. Association between olfactory dysfunction and amnestic mild cognitive impairment and Alzheimer disease dementia. JAMA Neurol. 2016;73(1):93–101. doi: 10.1001/jamaneurol.2015.2952. PubMed DOI PMC
Woodward MR, Amrutkar CV, Shah HC, Benedict RHB, Rajakrishnan S, Doody RS, et al. Validation of olfactory deficit as a biomarker of Alzheimer disease. Neurol Clin Pract. 2017;7(1):5–14. doi: 10.1212/CPJ.0000000000000293. PubMed DOI PMC
Lafaille-Magnan ME, Poirier J, Etienne P, Tremblay-Mercier J, Frenette J, Rosa-Neto P, et al. Odor identification as a biomarker of preclinical AD in older adults at risk. Neurology. 2017;89(4):327–335. doi: 10.1212/WNL.0000000000004159. PubMed DOI PMC
Lampinen R, Górová V, Avesani S, Liddell JR, Penttilä E, Závodná T, et al. Biometal dyshomeostasis in olfactory mucosa of Alzheimer’s disease patients. Int J Mol Sci. 2022;23(8):4123. doi: 10.3390/ijms23084123. PubMed DOI PMC
Lampinen R, FerozeFazaludeen M, Avesani S, Örd T, Penttilä E, Lehtola JM, et al. Single-cell RNA-Seq analysis of olfactory mucosal cells of Alzheimer’s disease patients. Cells. 2022;11:676. doi: 10.3390/cells11040676. PubMed DOI PMC
Sochocka M, Zwolińska K, Leszek J. The infectious etiology of Alzheimer’s disease. Curr Neuropharmacol. 2017;15(7):996. doi: 10.2174/1570159X15666170313122937. PubMed DOI PMC
Itzhaki RF, Golde TE, Heneka MT, Readhead B. Do infections have a role in the pathogenesis of Alzheimer disease? Nat Rev Neurol. 2020;16(4):193–197. doi: 10.1038/s41582-020-0323-9. PubMed DOI
Ciaccio M, lo Sasso B, Scazzone C, Gambino CM, Ciaccio AM, Bivona G, et al. COVID-19 and Alzheimer’s disease. Brain Sci. 2021;11(3):305. doi: 10.3390/brainsci11030305. PubMed DOI PMC
Chen F, Chen Y, Wang Y, Ke Q, Cui L. The COVID-19 pandemic and Alzheimer’s disease: mutual risks and mechanisms. Transl Neurodegener. 2022;11(1):1–18. doi: 10.1186/s40035-022-00316-y. PubMed DOI PMC
Villa C, Rivellini E, Lavitrano M, Combi R. Can SARS-CoV-2 infection exacerbate Alzheimer’s disease? An overview of shared risk factors and pathogenetic mechanisms. J Pers Med. 2022;12(1):29. doi: 10.3390/jpm12010029. PubMed DOI PMC
Wang QQ, Xu R, Volkow ND. Increased risk of COVID-19 infection and mortality in people with mental disorders: analysis from electronic health records in the United States. World Psychiatry. 2021;20(1):124–130. doi: 10.1002/wps.20806. PubMed DOI PMC
Mavrikaki M, Lee JD, Solomon IH, Slack FJ. Severe COVID-19 is associated with molecular signatures of aging in the human brain. Nat Aging. 2022;2(12):1130–1137. doi: 10.1038/s43587-022-00321-w. PubMed DOI
Reiken S, Sittenfeld L, Dridi H, Liu Y, Liu X, Marks AR. Alzheimer’s-like signaling in brains of COVID-19 patients. Alzheimer’s Dementia. 2022;18(5):955–965. doi: 10.1002/alz.12558. PubMed DOI PMC
Vavougios GD, Nday C, Pelidou SH, Gourgoulianis KI, Stamoulis G, Doskas T, et al. Outside-in induction of the IFITM3 trafficking system by infections, including SARS-CoV-2, in the pathobiology of Alzheimer’s disease. Brain Behav Immun Health. 2021;14:100243. doi: 10.1016/j.bbih.2021.100243. PubMed DOI PMC
Naughton SX, Raval U, Pasinetti GM. Potential novel role of COVID-19 in Alzheimer’s disease and preventative mitigation strategies. J Alzheimers Dis. 2020;76(1):21. doi: 10.3233/JAD-200537. PubMed DOI PMC
Li W, Sun L, Yue L, Xiao S. Alzheimer’s disease and COVID-19: interactions, intrinsic linkages, and the role of immunoinflammatory responses in this process. Front Immunol. 2023;14:1120495. doi: 10.3389/fimmu.2023.1120495. PubMed DOI PMC
Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. 2018 National Institute on Aging-Alzheimer’s Association (NIA-AA) Research Framework NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimer Dementia. 2018;14:535. doi: 10.1016/j.jalz.2018.02.018. PubMed DOI PMC
Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G, et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology. 1989;39(9):1159–1159. doi: 10.1212/WNL.39.9.1159. PubMed DOI
Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, et al. The Consortium to establish a registry for Alzheimer’s disease (CERAD) Neurology. 1991;41(4):479–479. doi: 10.1212/WNL.41.4.479. PubMed DOI
Murrell W, Féron F, Wetzig A, Cameron N, Splatt K, Bellette B, et al. Multipotent stem cells from adult olfactory mucosa. Dev Dyn. 2005;233(2):496–515. doi: 10.1002/dvdy.20360. PubMed DOI
Benson K, Cramer S, Galla HJ. Impedance-based cell monitoring: barrier properties and beyond. Fluids Barriers CNS. 2013;10(1):1–11. doi: 10.1186/2045-8118-10-5. PubMed DOI PMC
Wen LJ, Tang C, Cheng WH, Du B, Chen C, Wang M, et al. Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response. Cell Host Microbe. 2021;29(3):489–502.e8. doi: 10.1016/j.chom.2021.01.015. PubMed DOI PMC
Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25(3):1. doi: 10.2807/1560-7917.ES.2020.25.3.2000045. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. Sequence analysis STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8. doi: 10.1016/j.cell.2020.02.052. PubMed DOI PMC
Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA. 2005;102(33):11876–11881. doi: 10.1073/pnas.0505577102. PubMed DOI PMC
Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020;1:176. PubMed PMC
Kalejaiye TD, Bhattacharya R, Burt MA, Travieso T, Okafor AE, Mou X, et al. SARS-CoV-2 employ BSG/CD147 and ACE2 receptors to directly infect human induced pluripotent stem cell-derived kidney podocytes. Front Cell Dev Biol. 2022;20(10):737. PubMed PMC
Essalmani R, Jain J, Susan-Resiga D, Andréo U, Evagelidis A, Derbali RM, et al. Distinctive roles of furin and TMPRSS2 in SARS-CoV-2 infectivity. J Virol. 2022;96(8):e0012822. doi: 10.1128/jvi.00128-22. PubMed DOI PMC
Butowt R, Bilińska K, von Bartheld C. Why does the omicron variant largely spare olfactory function? Implications for the pathogenesis of anosmia in coronavirus disease 2019. J Infect Dis. 2022;226:1304. doi: 10.1093/infdis/jiac113. PubMed DOI PMC
Koch J, Uckeley ZM, Doldan P, Stanifer M, Boulant S, Lozach PY. TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells. EMBO J. 2021;40(16):e107821. doi: 10.15252/embj.2021107821. PubMed DOI PMC
Shelton JF, Shastri AJ, Fletez-Brant K, Auton A, Chubb A, Fitch A, et al. The UGT2A1/UGT2A2 locus is associated with COVID-19-related loss of smell or taste. Nat Genet. 2022;54(2):121–124. doi: 10.1038/s41588-021-00986-w. PubMed DOI
Miller B, Silverstein A, Flores M, Cao K, Kumagai H, Mehta HH, et al. Host mitochondrial transcriptome response to SARS-CoV-2 in multiple cell models and clinical samples. Sci Rep. 2021;11(1):1–10. doi: 10.1038/s41598-020-79552-z. PubMed DOI PMC
Budhraja A, Basu A, Gheware A, Abhilash D, Rajagopala S, Pakala S, et al. Molecular signature of postmortem lung tissue from COVID-19 patients suggests distinct trajectories driving mortality. DMM Dis Models Mech. 2022;15(5):dmm049572. doi: 10.1242/dmm.049572. PubMed DOI PMC
Wyler E, Mösbauer K, Franke V, Diag A, Gottula LT, Arsiè R, et al. Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. iScience. 2021;24(3):102151. doi: 10.1016/j.isci.2021.102151. PubMed DOI PMC
Liu L, Zhang Y, Chen Y, Zhao Y, Shen J, Wu X, et al. Therapeutic prospects of ceRNAs in COVID-19. Front Cell Infect Microbiol. 2022;20(12):1379. PubMed PMC
Chakraborty C, Sharma AR, Bhattacharya M, Zayed H, Lee SS. Understanding gene expression and transcriptome profiling of COVID-19: an initiative towards the mapping of protective immunity genes against SARS-CoV-2 infection. Front Immunol. 2021;15(12):5284. PubMed PMC
Meydan C, Madrer N, Soreq H. The neat dance of COVID-19: NEAT1, DANCR, and co-modulated cholinergic RNAs link to inflammation. Front Immunol. 2020;9(11):2638. PubMed PMC
Fung TS, Liao Y, Liu DX. Regulation of stress responses and translational control by coronavirus. Viruses. 2016;8(7):184. doi: 10.3390/v8070184. PubMed DOI PMC
Policard M, Jain S, Rego S, Dakshanamurthy S. Immune characterization and profiles of SARS-CoV-2 infected patients reveals potential host therapeutic targets and SARS-CoV-2 oncogenesis mechanism. Virus Res. 2021;1(301):198464. doi: 10.1016/j.virusres.2021.198464. PubMed DOI PMC
Khan M, Yoo SJ, Clijsters M, Backaert W, Vanstapel A, Speleman K, et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell. 2021;184(24):5932–5949.e15. doi: 10.1016/j.cell.2021.10.027. PubMed DOI PMC
Zazhytska M, Kodra A, Hoagland DA, Frere J, Fullard JF, Shayya H, et al. Non-cell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced anosmia. Cell. 2022;185(6):1052–1064.e12. doi: 10.1016/j.cell.2022.01.024. PubMed DOI PMC
Ren C, Gu X, Li H, Lei S, Wang Z, Wang J, et al. The role of DKK1 in Alzheimer’s disease: a potential intervention point of brain damage prevention? Pharmacol Res. 2019;1(144):331–335. doi: 10.1016/j.phrs.2019.04.033. PubMed DOI
Palomer E, Martin-Flores N, Jolly S, Pascual-Vargas P, Benvegnù S, Podpolny M, et al. Epigenetic repression of Wnt receptors in AD: a role for Sirtuin2-induced H4K16ac deacetylation of Frizzled1 and Frizzled7 promoters. Mol Psychiatry. 2022 doi: 10.1101/2021.05.19.444683. PubMed DOI PMC
Zhuang J, Cai P, Chen Z, Yang Q, Chen X, Wang X, et al. Long noncoding RNA MALAT1 and its target microRNA-125b are potential biomarkers for Alzheimer’s disease management via interactions with FOXQ1, PTGS2 and CDK5. Am J Transl Res. 2020;12(9):5940. PubMed PMC
Husain MA, Laurent B, Plourde M. APOE and Alzheimer’s disease: from lipid transport to physiopathology and therapeutics. Front Neurosci. 2021;17(15):85. PubMed PMC
Brann DH, Tsukahara T, Weinreb C, Lipovsek M, van den Berge K, Gong B, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020;6(31):eabc5801. doi: 10.1126/sciadv.abc5801. PubMed DOI PMC
Ye Q, Zhou J, He Q, Li RT, Yang G, Zhang Y, et al. SARS-CoV-2 infection in the mouse olfactory system. Cell Discov. 2021;7:1–13. doi: 10.1038/s41421-021-00290-1. PubMed DOI PMC
Heydel JM, Coelho A, Thiebaud N, Legendre A, le Bon AM, Faure P, et al. Odorant-binding proteins and xenobiotic metabolizing enzymes: Implications in olfactory perireceptor events. Anat Rec. 2013;296(9):1333–1345. doi: 10.1002/ar.22735. PubMed DOI
Cooper KW, Brann DH, Farruggia MC, Bhutani S, Pellegrino R, Tsukahara T, et al. COVID-19 and the chemical senses: supporting players take center stage. Neuron. 2020;107(2):219–233. doi: 10.1016/j.neuron.2020.06.032. PubMed DOI PMC
Bryche B, St Albin A, Murri S, Lacôte S, Pulido C, ArGouilh M, et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav Immun. 2020;1(89):579–586. doi: 10.1016/j.bbi.2020.06.032. PubMed DOI PMC
Finlay JB, Brann DH, Abi Hachem R, Jang DW, Oliva AD, Ko T, et al. Persistent post-COVID-19 smell loss is associated with immune cell infiltration and altered gene expression in olfactory epithelium. Sci Transl Med. 2022;14(676):eadd0484. doi: 10.1126/scitranslmed.add0484. PubMed DOI PMC
de Melo GD, Lazarini F, Levallois S, Hautefort C, Michel V, Larrous F, et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci Transl Med. 2021;13(596):8396. doi: 10.1126/scitranslmed.abf8396. PubMed DOI PMC
Pliss A, Kuzmin AN, Prasad PN, Mahajan SD. Mitochondrial dysfunction: a prelude to neuropathogenesis of SARS-CoV-2. ACS Chem Neurosci. 2022;13(3):308–312. doi: 10.1021/acschemneuro.1c00675. PubMed DOI PMC
Rodriguez-Sevilla JJ, Güerri-Fernádez R, Bertran RB. Is there less alteration of smell sensation in patients with omicron SARS-CoV-2 variant infection? Front Med (Lausanne). 2022;9:1044. doi: 10.3389/fmed.2022.852998/full. PubMed DOI PMC
Chen M, Pekosz A, Villano JS, Shen W, Zhou R, Kulaga H, et al. Evolution of nasal and olfactory infection characteristics of SARS-CoV-2 variants. bioRxiv. 2022. PubMed PMC
Rudnicka-Drożak E, Drożak P, Mizerski G, Zaborowski T, Ślusarska B, Nowicki G, et al. Links between COVID-19 and Alzheimer’s disease—what do we already know? Int J Environ Res Public Health. 2023;20(3):2146. doi: 10.3390/ijerph20032146. PubMed DOI PMC
Evans CE, Miners JS, Piva G, Willis CL, Heard DM, Kidd EJ, et al. ACE2 activation protects against cognitive decline and reduces amyloid pathology in the Tg2576 mouse model of Alzheimer’s disease. Acta Neuropathol. 2020;139(3):485. doi: 10.1007/s00401-019-02098-6. PubMed DOI PMC
Masood KI, Yameen M, Ashraf J, Shahid S, Faisal Mahmood S, Nasir A, et al. Upregulated type I interferon responses in asymptomatic COVID-19 infection are associated with improved clinical outcome. Sci Rep. 2021;11:22958. doi: 10.1038/s41598-021-02489-4. PubMed DOI PMC
Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718–724. doi: 10.1126/science.abc6027. PubMed DOI PMC
Chiricosta L, Gugliandolo A, Mazzon E. SARS-CoV-2 exacerbates beta-amyloid neurotoxicity, inflammation and oxidative stress in Alzheimer’s disease patients. Int J Mol Sci. 2021;22(24):13603. doi: 10.3390/ijms222413603. PubMed DOI PMC
Taylor JM, Moore Z, Minter MR, Crack PJ. Type-I interferon pathway in neuroinflammation and neurodegeneration: focus on Alzheimer’s disease. J Neural Transm. 2018;125(5):797–807. doi: 10.1007/s00702-017-1745-4. PubMed DOI
Vavougios GD, Mavridis T, Artemiadis A, Krogfelt KA, Hadjigeorgiou G. Trained immunity in viral infections, Alzheimer’s disease and multiple sclerosis: a convergence in type I interferon signalling and IFNβ-1a. Biochim Biophys Acta (BBA) Mol Basis Dis. 2022;1868(9):166430. doi: 10.1016/j.bbadis.2022.166430. PubMed DOI
Song L, Chen J, Lo CYZ, Guo Q, Feng J, Zhao XM. Impaired type I interferon signaling activity implicated in the peripheral blood transcriptome of preclinical Alzheimer’s disease. EBioMedicine. 2022;82:104175. doi: 10.1016/j.ebiom.2022.104175. PubMed DOI PMC
Roy ER, Wang B, Wooi WY, Chiu G, Cole A, Yin Z, et al. Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. J Clin Investig. 2020;130(4):1912–1930. doi: 10.1172/JCI133737. PubMed DOI PMC
Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036–1045e9. doi: 10.1016/j.cell.2020.04.026. PubMed DOI PMC
Opsteen S, Files JK, Fram T, Erdmann N. The role of immune activation and antigen persistence in acute and long COVID. J Investig Med. 2023; 108155892311580. PubMed PMC
Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses. 2020;1(143):110102. doi: 10.1016/j.mehy.2020.110102. PubMed DOI PMC
Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep. 2016;4(5):519. doi: 10.3892/br.2016.630. PubMed DOI PMC
Zhu N, Wang W, Liu Z, Liang C, Wang W, Ye F, et al. Morphogenesis and cytopathic effect of SARS-CoV-2 infection in human airway epithelial cells. Nat Commun. 2020;11(1):1–8. doi: 10.1038/s41467-020-17796-z. PubMed DOI PMC
Ahn JH, Kim JM, Hong SP, Choi SY, Yang MJ, Ju YS, et al. Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19. J Clin Invest. 2021;131(13):e148517. doi: 10.1172/JCI148517. PubMed DOI PMC
Maßberg D, Hatt H. Human olfactory receptors: novel cellular functions outside of the nose. Physiol Rev. 2018;98(3):1739–1763. doi: 10.1152/physrev.00013.2017. PubMed DOI
Flegel C, Manteniotis S, Osthold S, Hatt H, Gisselmann G. Expression profile of ectopic olfactory receptors determined by deep sequencing. PLoS ONE. 2013;8(2):e55368. doi: 10.1371/journal.pone.0055368. PubMed DOI PMC
Ansoleaga B, Garcia-Esparcia P, Llorens F, Moreno J, Aso E, Ferrer I. Dysregulation of brain olfactory and taste receptors in AD, PSP and CJD, and AD-related model. Neuroscience. 2013;248:369–382. doi: 10.1016/j.neuroscience.2013.06.034. PubMed DOI
Zhao W, Ho L, Varghese M, Yemul S, Dams-Oconnor K, Gordon W, et al. Decreased level of olfactory receptors in blood cells following traumatic brain injury and potential association with tauopathy. J Alzheimer’s Dis. 2013;34(2):417–429. doi: 10.3233/JAD-121894. PubMed DOI PMC
von Bartheld CS, Butowt R, Hagen MM. Prevalence of chemosensory dysfunction in COVID-19 patients: a systematic review and meta-analysis reveals significant ethnic differences. ACS Chem Neurosci. 2020;11(19):2944. doi: 10.1021/acschemneuro.0c00460. PubMed DOI PMC
Butowt R, von Bartheld CS. Anosmia in COVID-19: underlying mechanisms and assessment of an olfactory route to brain infection. Neuroscientist. 2021;27(6):582–603. doi: 10.1177/1073858420956905. PubMed DOI PMC
Niemi MEK, Karjalainen J, Liao RG, Neale BM, Daly M, Ganna A, et al. Mapping the human genetic architecture of COVID-19. Nature. 2021;600(7889):472–477. doi: 10.1038/s41586-021-03767-x. PubMed DOI PMC