Effect of hyperbaric oxygen on the growth and susceptibility of facultatively anaerobic bacteria and bacteria with oxidative metabolism to selected antibiotics

. 2024 Feb ; 69 (1) : 101-108. [epub] 20231215

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38100018
Odkazy

PubMed 38100018
PubMed Central PMC10876729
DOI 10.1007/s12223-023-01120-5
PII: 10.1007/s12223-023-01120-5
Knihovny.cz E-zdroje

Wild strains of Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis were tested in an experimental hyperbaric chamber to determine the possible effect of hyperbaric oxygen on the susceptibility of these strains to the antibiotics ampicillin, ampicillin + sulbactam, cefazolin, cefuroxime, cefoxitin, gentamicin, sulfamethoxazole + trimethoprim, colistin, oxolinic acid, ofloxacin, tetracycline, and aztreonam during their cultivation at 23 °C and 36.5 °C. Ninety-six-well inoculated microplates with tested antibiotics in Mueller-Hinton broth were cultured under standard incubator conditions (normobaric normoxia) for 24 h or in an experimental hyperbaric chamber (HAUX, Germany) for 24 h at 2.8 ATA of 100% oxygen (hyperbaric hyperoxia). The hyperbaric chamber was pressurised with pure oxygen (100%). Both cultures (normoxic and hyperoxic) were carried out at 23 °C and 36.5 °C to study the possible effect of the cultivation temperature. No significant differences were observed between 23 and 36.5 °C cultivation with or without the 2-h lag phase in Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Cultivation in a hyperbaric chamber at 23 °C and 36.5 °C with or without a 2-h lag phase did not produce significant changes in the minimum inhibitory concentration (MIC) of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. For the tested strains of Pseudomonas aeruginosa, the possible effect of hyperbaric oxygen on their antibiotic sensitivity could not be detected because the growth of these bacteria was completely inhibited by 100% hyperbaric oxygen at 2.8 ATA under all hyperbaric conditions tested at 23 °C and 36.5 °C. Subsequent tests with wild strains of pseudomonads, burkholderias, and stenotrophomonads not only confirmed the fact that these bacteria stop growing under hyperbaric conditions at a pressure of 2.8 ATA of 100% oxygen but also indicated that inhibition of growth of these bacteria under hyperbaric conditions is reversible.

Zobrazit více v PubMed

Akhova AV, Tkachenko AG (2014) ATP/ADP alteration as a sign of the oxidative stress development in Escherichia coli cells under antibiotic treatment. FEMS Microbiol Lett 353(1):69–76. https://pubmed.ncbi.nlm.nih.gov/24612220/ PubMed

Brackman GT, Coeney T. Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des. 2015;21(1):5–11. doi: 10.2174/1381612820666140905114627. PubMed DOI

Chung P, Khanum R. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J Microbiol Immunol Infect. 2017;50(4):405–410. doi: 10.1016/j.jmii.2016.12.005. PubMed DOI

Domalon R, Idowu T, Zhanel GS, Schweizer F. Antibiotic hybrids: the next generation of agents and adjuvants against Gram-negative pathogens? Clin Microbiol. 2018;31(2):00077–117. doi: 10.1128/CMR.00077-17. PubMed DOI PMC

Dwyer DJ, Camacho DM, Kohanski, MA, Callura JM, Collins JJ (2012) Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell 46(5):561–572. https://pubmed.ncbi.nlm.nih.gov/22633370/ PubMed PMC

Gupta, et al. Evaluating the effect of oxygen concentrations on antibiotic sensitivity, growth, and biofilm formation of human pathogens. Microbiol Insights. 2016;9:37–46. doi: 10.4137/MBI.S40767. PubMed DOI PMC

Hájek M et al (2017) Hyperbarická medicína. Praha: Mladá fronta. Aeskulap. ISBN 978-80-204-4235

Hemeg HA. Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine. 2017;12:8211–8225. doi: 10.2147/IJN.S132163. PubMed DOI PMC

Keren I et al (2013) Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339(6124):1213–1216. https://pubmed.ncbi.nlm.nih.gov/23471410/ PubMed

Lerche CJ, Schwartz F, Pries-Heje MM, Fosbøl EL, Iversen K, Jensen PØ, Høiby N, Hyldegaard O, Bundgaard H, Moser C. Potential advances of adjunctive hyperbaric oxygen therapy in infective endocarditis. Front Cell Infect Microbiol. 2022;12:805964. doi: 10.3389/fcimb.2022.805964. PubMed DOI PMC

Lu Z, Imlay JA (2021) When anaerobes encounter oxygen: mechanisms of oxygen toxicity, tolerance and defence. Nat Rev Microbiol 19(12):774–785. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9191689/ PubMed PMC

Martelli G, Giacomini D. Antibacterial and antioxidant activities for natural and synthetic dual-active compounds. Eur J Med Chem. 2018;158(5):91–105. doi: 10.1016/j.ejmech.2018.09.009. PubMed DOI

Memar MY, Yekani M, Alizadeh N, Baghi HB. Hyperbaric oxygen therapy: antimicrobial mechanisms and clinical application for infections. Biomed Pharmacother. 2019;109:440–447. doi: 10.1016/j.biopha.2018.10.142. PubMed DOI

Muhwich KH, Park MK, Myers RAM, Marzella L. Hyperoxia and the antimicrobial susceptibility of Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1989;33(9):1526–1530. doi: 10.1128/AAC.33.9.1526. PubMed DOI PMC

Rozložník M, Lochmanová A, Chmelař D, Hájek M, Korytková K, Cisáriková M (2020) Experimental use of flow cytometry to detect bacterial viability after hyperbaric oxygen exposure: work in progress report. Diving Hyperb Med 50(2):152–156. https://pubmed.ncbi.nlm.nih.gov/32557417/ PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...