Altered Transcriptome Response in PBMCs of Czech Adults Linked to Multiple PFAS Exposure: B Cell Development as a Target of PFAS Immunotoxicity
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38112183
PubMed Central
PMC10785749
DOI
10.1021/acs.est.3c05109
Knihovny.cz E-zdroje
- Klíčová slova
- B cell, Perfluoroalkyl substances, adult cohort, gene expression, immunotoxicity, peripheral blood mononuclear cells, plasma cell, transcriptomics,
- MeSH
- fluorokarbony * toxicita MeSH
- kyseliny alkansulfonové * MeSH
- látky znečišťující životní prostředí * MeSH
- leukocyty mononukleární MeSH
- lidé MeSH
- mladý dospělý MeSH
- průřezové studie MeSH
- transkriptom MeSH
- Check Tag
- lidé MeSH
- mladý dospělý MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- fluorokarbony * MeSH
- kyseliny alkansulfonové * MeSH
- látky znečišťující životní prostředí * MeSH
While the immunomodulation effects of per- and polyfluoroalkyl substances (PFASs) are described on the level of clinical signs in epidemiological studies (e.g., suppressed antibody response after vaccination), the underlying mechanism has still not been fully elucidated. To reveal mechanisms of PFAS exposure on immunity, we investigated the genome-wide transcriptomic changes of peripheral blood mononuclear cells (PBMCs) responding to PFAS exposure (specifically, exposure to PFPA, PFOA, PFNA, PFDA, PFUnDA, PFHxS, and PFOS). Blood samples and the chemical load in the blood were analyzed under the cross-sectional CELSPAC: Young Adults study. The overall aim of the study was to identify sensitive gene sets and cellular pathways conserved for multiple PFAS chemicals. Transcriptome networks related to adaptive immunity were perturbed by multiple PFAS exposure (i.e., blood levels of at least four PFASs). Specifically, processes tightly connected with late B cell development, such as B cell receptor signaling, germinal center reactions, and plasma cell development, were shown to be affected. Our comprehensive transcriptome analysis identified the disruption of B cell development, specifically the impact on the maturation of antibody-secreting cells, as a potential mechanism underlying PFAS immunotoxicity.
Zobrazit více v PubMed
Dean W. S.; Adejumo H. A.; Caiati A.; Garay P. M.; Harmata A. S.; Li L.; Rodriguez E. E.; Sundar S. A Framework for Regulation of New and Existing PFAS by EPA. Journal of Science Policy & Governance 2020, 16 (1), 14.
De Silva A. O.; Armitage J. M.; Bruton T. A.; Dassuncao C.; Heiger-Bernays W.; Hu X. C.; Kärrman A.; Kelly B.; Ng C.; Robuck A.; Sun M.; Webster T. F.; Sunderland E. M. PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. Environ. Toxicol. Chem. 2021, 40 (3), 631–657. 10.1002/etc.4935. PubMed DOI PMC
Calafat A. M.; Wong L.-Y.; Kuklenyik Z.; Reidy J. A.; Needham L. L. Polyfluoroalkyl Chemicals in the U.S. Population: Data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and Comparisons with NHANES 1999–2000. Environ. Health Perspect. 2007, 115 (11), 1596–1602. 10.1289/ehp.10598. PubMed DOI PMC
EU HBM Dashboard. HBM4EU. https://www.hbm4eu.eu/what-we-do/european-hbm-platform/eu-hbm-dashboard/ (accessed 2023-01-09).
Fenton S. E.; Ducatman A.; Boobis A.; DeWitt J. C.; Lau C.; Ng C.; Smith J. S.; Roberts S. M. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ. Toxicol. Chem. 2021, 40 (3), 606–630. 10.1002/etc.4890. PubMed DOI PMC
Zhang X.; Xue L.; Deji Z.; Wang X.; Liu P.; Lu J.; Zhou R.; Huang Z. Effects of Exposure to Per- and Polyfluoroalkyl Substances on Vaccine Antibodies: A Systematic Review and Meta-Analysis Based on Epidemiological Studies. Environ. Pollut. 2022, 306, 119442.10.1016/j.envpol.2022.119442. PubMed DOI
von Holst H.; Nayak P.; Dembek Z.; Buehler S.; Echeverria D.; Fallacara D.; John L. Perfluoroalkyl Substances Exposure and Immunity, Allergic Response, Infection, and Asthma in Children: Review of Epidemiologic Studies. Heliyon 2021, 7 (10), e0816010.1016/j.heliyon.2021.e08160. PubMed DOI PMC
Ehrlich V.; Bil W.; Vandebriel R.; Granum B.; Luijten M.; Lindeman B.; Grandjean P.; Kaiser A.-M.; Hauzenberger I.; Hartmann C.; Gundacker C.; Uhl M. Consideration of Pathways for Immunotoxicity of Per- and Polyfluoroalkyl Substances (PFAS). Environ. Health 2023, 22 (1), 19.10.1186/s12940-022-00958-5. PubMed DOI PMC
Rodríguez-Carrillo A.; Mustieles V.; Salamanca-Fernández E.; Olivas-Martínez A.; Suárez B.; Bajard L.; Baken K.; Blaha L.; Bonefeld-Jørgensen E. C.; Couderq S.; D’Cruz S. C.; Fini J.-B.; Govarts E.; Gundacker C.; Hernández A. F.; Lacasaña M.; Laguzzi F.; Linderman B.; Long M.; Louro H.; Neophytou C.; Oberemn A.; Remy S.; Rosenmai A. K.; Saber A. T.; Schoeters G.; Silva M. J.; Smagulova F.; Uhl M.; Vinggaard A. M.; Vogel U.; Wielsøe M.; Olea N.; Fernández M. F. Implementation of Effect Biomarkers in Human Biomonitoring Studies: A Systematic Approach Synergizing Toxicological and Epidemiological Knowledge. Int. J. Hyg. Environ. Health 2023, 249, 114140.10.1016/j.ijheh.2023.114140. PubMed DOI
Yao X.; Cao D.; Wang F.; Zhang W.; Ma C.; Song M. An Overview of Omics Approaches to Characterize the Effect of Perfluoroalkyl Substances in Environmental Health. TrAC Trends Anal. Chem. 2019, 121, 115367.10.1016/j.trac.2018.12.021. DOI
Beale D. J.; Sinclair G. M.; Shah R.; Paten A. M.; Kumar A.; Long S. M.; Vardy S.; Jones O. A. H. A Review of Omics-Based PFAS Exposure Studies Reveals Common Biochemical Response Pathways. Sci. Total Environ. 2022, 845, 157255.10.1016/j.scitotenv.2022.157255. PubMed DOI
Chaussabel D. Assessment of Immune Status Using Blood Transcriptomics and Potential Implications for Global Health. Semin. Immunol. 2015, 27 (1), 58–66. 10.1016/j.smim.2015.03.002. PubMed DOI
Piler P.; Kandrnal V.; Kukla L.; Andrýsková L.; Švancara J.; Jarkovský J.; Dušek L.; Pikhart H.; Bobák M.; Klánová J. Cohort Profile: The European Longitudinal Study of Pregnancy and Childhood (ELSPAC) in the Czech Republic. Int. J. Epidemiol. 2017, 46 (5), 1379.10.1093/ije/dyw091. PubMed DOI PMC
Rudzanova B.; Vlaanderen J.; Kalina J.; Piler P.; Zvonar M.; Klanova J.; Blaha L.; Adamovsky O. Impact of PFAS Exposure on Prevalence of Immune-Mediated Diseases in Adults in the Czech Republic. Environ. Res. 2023, 229, 115969.10.1016/j.envres.2023.115969. PubMed DOI
Moll P.; Ante M.; Seitz A.; Reda T. QuantSeq 3′ mRNA Sequencing for RNA Quantification. Nat. Methods 2014, 11 (12), i–iii. 10.1038/nmeth.f.376. DOI
R Core Team . R: A Language and Environment for Statistical Computing. 2022. https://www.r-project.org/ (accessed 2022-11-11).
Smyth G. K.limma: Linear Models for Microarray Data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor; Gentleman R., Carey V. J., Huber W., Irizarry R. A., Dudoit S., Eds.; Springer, New York, New York, U.S., 2005; p 397–420. 10.1007/0-387-29362-0_23. DOI
Law C. W.; Chen Y.; Shi W.; Smyth G. K. Voom: Precision Weights Unlock Linear Model Analysis Tools for RNA-Seq Read Counts. Genome Biol. 2014, 15 (2), R29.10.1186/gb-2014-15-2-r29. PubMed DOI PMC
Leek J. T.; Storey J. D. Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis. PLoS Genet. 2007, 3 (9), e161.10.1371/journal.pgen.0030161. PubMed DOI PMC
Teschendorff A. E.Isva: Independent Surrogate Variable Analysis. 2017. https://cran.r-project.org/web/packages/isva/index.html (accessed 2023-06-15).
Chen J.; Behnam E.. SmartSVA: Fast and Robust Surrogate Variable Analysis. 2017. https://cran.r-project.org/web/packages/SmartSVA/index.html (accessed 2023-06-15).
Benjamini Y.; Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57 (1), 289–300. 10.1111/j.2517-6161.1995.tb02031.x. DOI
Stelzer G.; Rosen N.; Plaschkes I.; Zimmerman S.; Twik M.; Fishilevich S.; Stein T. I.; Nudel R.; Lieder I.; Mazor Y.; Kaplan S.; Dahary D.; Warshawsky D.; Guan-Golan Y.; Kohn A.; Rappaport N.; Safran M.; Lancet D. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinforma. 2016, 54 (1), 1.10.1002/cpbi.5. PubMed DOI
Langlois V. S.; Martyniuk C. J. Genome Wide Analysis of Silurana (Xenopus) Tropicalis Development Reveals Dynamic Expression Using Network Enrichment Analysis. Mech. Dev. 2013, 130 (4), 304–322. 10.1016/j.mod.2012.12.002. PubMed DOI
Dhore R.; Murthy G. S. Per/Polyfluoroalkyl Substances Production, Applications and Environmental Impacts. Bioresour. Technol. 2021, 341, 125808.10.1016/j.biortech.2021.125808. PubMed DOI
Lee J.-K.; Kim S.-H. Correlation between Mast Cell-Mediated Allergic Inflammation and Length of Perfluorinated Compounds. J. Toxicol. Environ. Health A 2018, 81 (9), 302–313. 10.1080/15287394.2018.1440188. PubMed DOI
Stevenson C. N.; MacManus-Spencer L. A.; Luckenbach T.; Luthy R. G.; Epel D. New Perspectives on Perfluorochemical Ecotoxicology: Inhibition and Induction of an Efflux Transporter in the Marine Mussel, Mytilus Californianus. Environ. Sci. Technol. 2006, 40 (17), 5580–5585. 10.1021/es0602593. PubMed DOI
Ohmori K.; Kudo N.; Katayama K.; Kawashima Y. Comparison of the Toxicokinetics between Perfluorocarboxylic Acids with Different Carbon Chain Length. Toxicology 2003, 184 (2), 135–140. 10.1016/S0300-483X(02)00573-5. PubMed DOI
Wöhner M.; Tagoh H.; Bilic I.; Jaritz M.; Poliakova D. K.; Fischer M.; Busslinger M. Molecular Functions of the Transcription Factors E2A and E2–2 in Controlling Germinal Center B Cell and Plasma Cell Development. J. Exp. Med. 2016, 213 (7), 1201–1221. 10.1084/jem.20152002. PubMed DOI PMC
Györy I.; Boller S.; Nechanitzky R.; Mandel E.; Pott S.; Liu E.; Grosschedl R. Transcription Factor Ebf1 Regulates Differentiation Stage-Specific Signaling, Proliferation, and Survival of B Cells. Genes Dev. 2012, 26 (7), 668–682. 10.1101/gad.187328.112. PubMed DOI PMC
Vilagos B.; Hoffmann M.; Souabni A.; Sun Q.; Werner B.; Medvedovic J.; Bilic I.; Minnich M.; Axelsson E.; Jaritz M.; Busslinger M. Essential Role of EBF1 in the Generation and Function of Distinct Mature B Cell Types. J. Exp. Med. 2012, 209 (4), 775–792. 10.1084/jem.20112422. PubMed DOI PMC
Bullerwell C. E.; Robichaud P. P.; Deprez P. M. L.; Joy A. P.; Wajnberg G.; D’Souza D.; Chacko S.; Fournier S.; Crapoulet N.; Barnett D. A.; Lewis S. M.; Ouellette R. J. EBF1 Drives Hallmark B Cell Gene Expression by Enabling the Interaction of PAX5 with the MLL H3K4Methyltransferase Complex. Sci. Rep. 2021, 11 (1), 1537.10.1038/s41598-021-81000-5. PubMed DOI PMC
Wang K.; Wei G.; Liu D. CD19: A Biomarker for B Cell Development, Lymphoma Diagnosis and Therapy. Exp. Hematol. Oncol. 2012, 1 (1), 36.10.1186/2162-3619-1-36. PubMed DOI PMC
van der Burg M.; van Zelm M. C.; Driessen G. J. A.; van Dongen J. J. M. New Frontiers of Primary Antibody Deficiencies. Cell. Mol. Life Sci. 2012, 69 (1), 59–73. 10.1007/s00018-011-0836-x. PubMed DOI PMC
Mills D. M.; Stolpa J. C.; Cambier J. C.. Modulation of MHC Class II Signal Transduction by CD19. In Mechanisms of Lymphocyte Activation and Immune Regulation XI; Gupta S., Alt F., Cooper M., Melchers F., Rajewsky K., Eds.; Springer, Boston, Massachusetts, U.S., 2007; p 139–148. 10.1007/0-387-46530-8_12. PubMed DOI
Song S.; Cao C.; Choukrallah M.-A.; Tang F.; Christofori G.; Kohler H.; Wu F.; Fodor B. D.; Frederiksen M.; Willis S. N.; Jackson J. T.; Nutt S. L.; Dirnhofer S.; Stadler M. B.; Matthias P. OBF1 and Oct Factors Control the Germinal Center Transcriptional Program. Blood 2021, 137 (21), 2920–2934. 10.1182/blood.2020010175. PubMed DOI
Küppers R. OBF1 and OCT1/2 Regulate the Germinal Center B-Cell Program. Blood 2021, 137 (21), 2862–2863. 10.1182/blood.2021010689. PubMed DOI
Hodson D. J.; Shaffer A. L.; Xiao W.; Wright G. W.; Schmitz R.; Phelan J. D.; Yang Y.; Webster D. E.; Rui L.; Kohlhammer H.; Nakagawa M.; Waldmann T. A.; Staudt L. M. Regulation of Normal B-Cell Differentiation and Malignant B-Cell Survival by OCT2. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (14), E2039–E2046. 10.1073/pnas.1600557113. PubMed DOI PMC
Schmidlin H.; Diehl S. A.; Nagasawa M.; Scheeren F. A.; Schotte R.; Uittenbogaart C. H.; Spits H.; Blom B. Spi-B Inhibits Human Plasma Cell Differentiation by Repressing BLIMP1 and XBP-1 Expression. Blood 2008, 112 (5), 1804–1812. 10.1182/blood-2008-01-136440. PubMed DOI PMC
Willis S. N.; Tellier J.; Liao Y.; Trezise S.; Light A.; O’Donnell K.; Garrett-Sinha L. A.; Shi W.; Tarlinton D. M.; Nutt S. L. Environmental Sensing by Mature B Cells Is Controlled by the Transcription Factors PU.1 and SpiB. Nat. Commun. 2017, 8 (1), 1426.10.1038/s41467-017-01605-1. PubMed DOI PMC
Haines R. R.; Barwick B. G.; Scharer C. D.; Majumder P.; Randall T. D.; Boss J. M. The Histone Demethylase LSD1 Regulates B Cell Proliferation and Plasmablast Differentiation. J. Immunol. 2018, 201 (9), 2799–2811. 10.4049/jimmunol.1800952. PubMed DOI PMC
Pieper K.; Grimbacher B.; Eibel H. B-Cell Biology and Development. J. Allergy Clin. Immunol. 2013, 131 (4), 959–971. 10.1016/j.jaci.2013.01.046. PubMed DOI
de Gorter D. J. J.; Vos J. C. M.; Pals S. T.; Spaargaren M. The B Cell Antigen Receptor Controls AP-1 and NFAT Activity through Ras-Mediated Activation of Ral1. J. Immunol. 2007, 178 (3), 1405–1414. 10.4049/jimmunol.178.3.1405. PubMed DOI
Peng S. L.; Gerth A. J.; Ranger A. M.; Glimcher L. H. NFATc1 and NFATc2 Together Control Both T and B Cell Activation and Differentiation. Immunity 2001, 14 (1), 13–20. 10.1016/S1074-7613(01)00085-1. PubMed DOI
Weil R.; Israël A. T-Cell-Receptor- and B-Cell-Receptor-Mediated Activation of NF-κB in Lymphocytes. Curr. Opin. Immunol. 2004, 16 (3), 374–381. 10.1016/j.coi.2004.03.003. PubMed DOI
Wu H.-J.; Bondada S. Positive and Negative Roles of CD72 in B Cell Function. Immunol. Res. 2002, 25 (2), 155–166. 10.1385/IR:25:2:155. PubMed DOI
Hua Z.; Hou B. TLR Signaling in B-Cell Development and Activation. Cell. Mol. Immunol. 2013, 10 (2), 103–106. 10.1038/cmi.2012.61. PubMed DOI PMC
Thon V.; Wolf H. M.; Sasgary M.; Litzman J.; Samstag A.; Hauber I.; Lokaj J.; Eibl M. M. Defective Integration of Activating Signals Derived from the T Cell Receptor (TCR) and Costimulatory Molecules in Both CD4+ and CD8+ T Lymphocytes of Common Variable Immunodeficiency (CVID) Patients. Clin. Exp. Immunol. 2007, 110 (2), 174–181. 10.1111/j.1365-2249.1997.tb08314.x. PubMed DOI PMC
Thon V.; Eggenbauer H.; Wolf H. M.; Fischer M. B.; Litzman J.; Lokaj J.; Eibl M. M. Antigen Presentation by Common Variable Immunodeficiency (CVID) B Cells and Monocytes Is Unimpaired. Clin. Exp. Immunol. 2003, 108 (1), 1–8. 10.1046/j.1365-2249.1997.d01-989.x. PubMed DOI PMC
Chovancova Z.; Vlkova M.; Litzman J.; Lokaj J.; Thon V. Antibody Forming Cells and Plasmablasts in Peripheral Blood in CVID Patients after Vaccination. Vaccine 2011, 29 (24), 4142–4150. 10.1016/j.vaccine.2011.03.087. PubMed DOI
Nie L.; Xu M.; Vladimirova A.; Sun X.-H. Notch-Induced E2A Ubiquitination and Degradation Are Controlled by MAP Kinase Activities. EMBO J. 2003, 22 (21), 5780–5792. 10.1093/emboj/cdg567. PubMed DOI PMC
Garis M.; Garrett-Sinha L. A. Notch Signaling in B Cell Immune Responses. Front. Immunol. 2021, 11, 609324.10.3389/fimmu.2020.609324. PubMed DOI PMC
Cozen W.; Timofeeva M. N.; Li D.; Diepstra A.; Hazelett D.; Delahaye-Sourdeix M.; Edlund C. K.; Franke L.; Rostgaard K.; Van Den Berg D. J.; Cortessis V. K.; Smedby K. E.; Glaser S. L.; Westra H.-J.; Robison L. L.; Mack T. M.; Ghesquieres H.; Hwang A. E.; Nieters A.; de Sanjose S.; Lightfoot T.; Becker N.; Maynadie M.; Foretova L.; Roman E.; Benavente Y.; Rand K. A.; Nathwani B. N.; Glimelius B.; Staines A.; Boffetta P.; Link B. K.; Kiemeney L.; Ansell S. M.; Bhatia S.; Strong L. C.; Galan P.; Vatten L.; Habermann T. M.; Duell E. J.; Lake A.; Veenstra R. N.; Visser L.; Liu Y.; Urayama K. Y.; Montgomery D.; Gaborieau V.; Weiss L. M.; Byrnes G.; Lathrop M.; Cocco P.; Best T.; Skol A. D.; Adami H.-O.; Melbye M.; Cerhan J. R.; Gallagher A.; Taylor G. M.; Slager S. L.; Brennan P.; Coetzee G. A.; Conti D. V.; Onel K.; Jarrett R. F.; Hjalgrim H.; van den Berg A.; McKay J. D. A Meta-Analysis of Hodgkin Lymphoma Reveals 19p13.3 TCF3 as a Novel Susceptibility Locus. Nat. Commun. 2014, 5 (1), 3856.10.1038/ncomms4856. PubMed DOI PMC
Guan H.; Xie L.; Wirth T.; Ushmorov A. Repression of TCF3/E2A Contributes to Hodgkin Lymphomagenesis. Oncotarget 2016, 7 (24), 36854–36864. 10.18632/oncotarget.9210. PubMed DOI PMC
Weniger M. A.; Küppers R. Molecular Biology of Hodgkin Lymphoma. Leukemia 2021, 35 (4), 968–981. 10.1038/s41375-021-01204-6. PubMed DOI PMC
Abraham K.; Mielke H.; Fromme H.; Völkel W.; Menzel J.; Peiser M.; Zepp F.; Willich S. N.; Weikert C. Internal Exposure to Perfluoroalkyl Substances (PFASs) and Biological Markers in 101 Healthy 1-Year-Old Children: Associations between Levels of Perfluorooctanoic Acid (PFOA) and Vaccine Response. Arch. Toxicol. 2020, 94 (6), 2131–2147. 10.1007/s00204-020-02715-4. PubMed DOI PMC
Grandjean P.; Heilmann C.; Weihe P.; Nielsen F.; Mogensen U. B.; Budtz-Jørgensen E. Serum Vaccine Antibody Concentrations in Adolescents Exposed to Perfluorinated Compounds. Environ. Health Perspect. 2017, 125 (7), 077018.10.1289/EHP275. PubMed DOI PMC
Kielsen K.; Shamim Z.; Ryder L. P.; Nielsen F.; Grandjean P.; Budtz-Jørgensen E.; Heilmann C. Antibody Response to Booster Vaccination with Tetanus and Diphtheria in Adults Exposed to Perfluorinated Alkylates. J. Immunotoxicol. 2016, 13 (2), 270–273. 10.3109/1547691X.2015.1067259. PubMed DOI PMC
Looker C.; Luster M. I.; Calafat A. M.; Johnson V. J.; Burleson G. R.; Burleson F. G.; Fletcher T. Influenza Vaccine Response in Adults Exposed to Perfluorooctanoate and Perfluorooctanesulfonate. Toxicol. Sci. Off. J. Soc. Toxicol. 2014, 138 (1), 76–88. 10.1093/toxsci/kft269. PubMed DOI PMC
Timmermann C. A. G.; Jensen K. J.; Nielsen F.; Budtz-Jørgensen E.; van der Klis F.; Benn C. S.; Grandjean P.; Fisker A. B. Serum Perfluoroalkyl Substances, Vaccine Responses, and Morbidity in a Cohort of Guinea-Bissau Children. Environ. Health Perspect. 2020, 128 (8), 87002.10.1289/EHP6517. PubMed DOI PMC
Taylor K. D.; Woodlief T. L.; Ahmed A.; Hu Q.; Duncker P. C.; DeWitt J. C. Quantifying the Impact of PFOA Exposure on B-Cell Development and Antibody Production. Toxicol. Sci. 2023, 194 (1), 101–108. 10.1093/toxsci/kfad043. PubMed DOI PMC
Averbeck M.; Gebhardt C.; Emmrich F.; Treudler R.; Simon J. C. Immunologic Principles of Allergic Disease. JDDG J. Dtsch. Dermatol. Ges. 2007, 5 (11), 1015–1027. 10.1111/j.1610-0387.2007.06538.x. PubMed DOI
Buser M. C.; Scinicariello F. Perfluoroalkyl Substances and Food Allergies in Adolescents. Environ. Int. 2016, 88, 74–79. 10.1016/j.envint.2015.12.020. PubMed DOI PMC
Wang I.-J.; Hsieh W.-S.; Chen C.-Y.; Fletcher T.; Lien G.-W.; Chiang H.-L.; Chiang C.-F.; Wu T.-N.; Chen P.-C. The Effect of Prenatal Perfluorinated Chemicals Exposures on Pediatric Atopy. Environ. Res. 2011, 111 (6), 785–791. 10.1016/j.envres.2011.04.006. PubMed DOI
Lowe A. J.; Dharmage S. C.; Abramson M. J.; Vijayasarathy S.; Erbas B.; Mueller J. F.; Lodge C. J. Cord-Serum per- and Poly-Fluoroalkyl Substances and Atopy and Eczema at 12-Months. Allergy 2019, 74 (4), 812–815. 10.1111/all.13669. PubMed DOI
Pennings J. L. A.; Jennen D. G. J.; Nygaard U. C.; Namork E.; Haug L. S.; van Loveren H.; Granum B. Cord Blood Gene Expression Supports That Prenatal Exposure to Perfluoroalkyl Substances Causes Depressed Immune Functionality in Early Childhood. J. Immunotoxicol. 2016, 13 (2), 173–180. 10.3109/1547691X.2015.1029147. PubMed DOI
Reynés B.; Priego T.; Cifre M.; Oliver P.; Palou A. Peripheral Blood Cells, a Transcriptomic Tool in Nutrigenomic and Obesity Studies: Current State of the Art. Compr. Rev. Food Sci. Food Saf. 2018, 17 (4), 1006–1020. 10.1111/1541-4337.12363. PubMed DOI