The Promiscuity of Disulfiram in Medicinal Research
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38116411
PubMed Central
PMC10726457
DOI
10.1021/acsmedchemlett.3c00450
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Recent efforts to repurpose disulfiram, a drug used in alcohol-aversion therapy for decades, for other diseases suggest the molecule is almost an in vitro panacea: it seems to be effective against various cancers (by multiple mechanisms of action), Alzheimer's disease, obesity and metabolic syndrome, pythiosis, lyme borreliosis, COVID-19, and sepsis. The problem is that the molecule almost does not exist in the body after ingestion and, most importantly, is not the pharmacologically active entity in alcoholic patients, being rather a prodrug. This prodrug is widely and misleadingly used in many in vitro and in vivo experiments regardless of its physiologically reachable concentration or its metabolism in vivo.
Zobrazit více v PubMed
Thorn G. D.; Ludwig R. A.. The dithiocarbamates and related compounds; Elsevier, 1962.
Kragh H. From disulfiram to Antabuse: the invention of a drug. Bull. Hist. Chem. 2008, 33, 82–88.
Mason B. J.; Heyser C. J. Alcohol use disorder: the role of medication in recovery. Alcohol Res. 2021, 41, 07.10.35946/arcr.v41.1.07. PubMed DOI PMC
Eneanya D. I.; Bianchine J. R.; Duran D. O.; Andresen B. D. The actions and metabolic fate of disulfiram. Annu. Rev. Pharmacol. Toxicol. 1981, 21, 575–596. 10.1146/annurev.pa.21.040181.003043. PubMed DOI
Suh J. J.; Pettinati H. M.; Kampman K. M.; O’Brien C. P. The status of disulfiram: a half of a century later. J. Clin. Psychopharmacol. 2006, 26, 290–302. 10.1097/01.jcp.0000222512.25649.08. PubMed DOI
Cvek B. Targeting malignancies with disulfiram (Antabuse): multidrug resistance, angiogenesis, and proteasome. Curr. Cancer Drug Targets 2011, 11, 332–337. 10.2174/156800911794519806. PubMed DOI
Dufour P.; Lang J. M.; Giron C.; Duclos B.; Haehnel P.; Jaeck D.; Jung J.-M.; Oberling F. Sodium ditiocarb as adjuvant immunotherapy for high risk breast cancer: a randomized study. Biotherapy 1993, 6, 9–12. 10.1007/BF01877380. PubMed DOI
Nechushtan H.; Hamamreh Y.; Nidal S.; Gotfried M.; Baron A.; Shalev Y. I.; Nisman B.; Peretz T.; Peylan-Ramu N. A phase IIb trial assessing the addition of disulfiram to chemotherapy for treatment of metastatic non-small cell lung cancer. Oncologist 2015, 20, 366–367. 10.1634/theoncologist.2014-0424. PubMed DOI PMC
Vallari R. C.; Pietruszko R. Human aldehyde dehydrogenase: mechanism of inhibition of disulfiram. Science 1982, 216, 637–639. 10.1126/science.7071604. PubMed DOI
Hogarth G. Transition metals dithiocarbamates: 1978–2003. Prog. Inorg. Chem. 2005, 53, 71–561. 10.1002/0471725587.ch2. DOI
Skrott Z.; Mistrik M.; Andersen K. K.; Friis S.; Majera D.; Gursky J.; Ozdian T.; Bartkova J.; Turi Z.; Moudry P.; Kraus M.; Michalova M.; Vaclavkova J.; Dzubak P.; Vrobel I.; Pouckova P.; Sedlacek J.; Miklovicova A.; Kutt A.; Li J.; Mattova J.; Driessen C.; Dou Q. P.; Olsen J.; Hajduch M.; Cvek B.; Deshaies R. J.; Bartek J. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature 2017, 552, 194–199. 10.1038/nature25016. PubMed DOI PMC
Skrott Z.; Majera D.; Gursky J.; Buchtova T.; Hajduch M.; Mistrik M.; Bartek J. Disulfiram’s anti-cancer activity reflects targeting NPL4, not inhibition of aldehyde dehydrogenase. Oncogene 2019, 38, 6711–6722. 10.1038/s41388-019-0915-2. PubMed DOI
Cobby J.; Mayersohn M.; Selliah S. The rapid reduction of disulfiram in blood and plasma. J. Pharmacol. Exp. Ther. 1977, 202, 724–731. PubMed
Faiman M. D.; Jensen J. C.; Lacoursiere R. B. Elimination kinetics of disulfiram in alcoholics after single and repeated doses. Clin. Pharmacol. Ther. 1984, 36, 520–526. 10.1038/clpt.1984.213. PubMed DOI
Lee S. A.; Elliott J. H.; McMahon J.; Hartogenesis W.; Bumpus N. N.; Lifson J. D.; Gorelick R. J.; Bacchetti P.; Deeks S. G.; Lewin S. R.; Savic R. M. Population pharmacokinetics and pharmacodynamics of disulfiram on inducing latent HIV-1 transcription in a phase IIb trial. Clin. Pharmacol. Ther. 2019, 105, 692–702. 10.1002/cpt.1220. PubMed DOI PMC
Johansson B. Stabilization and quantitative determination of disulfiram in human plasma samples. Clin. Chim. Acta 1988, 177, 55–63. 10.1016/0009-8981(88)90307-5. PubMed DOI
Yourick J. J.; Faiman M. D. Disulfiram metabolism as a requirement for the inhibition of rat liver mitochondrial low Km aldehyde dehydrogenase. Biochem. Pharmacol. 1991, 42, 1361–1366. 10.1016/0006-2952(91)90446-C. PubMed DOI
Hart B. W.; Faiman M. D. Bioactivation of S-methyl-N,N-diethylthiocarbamate to S-methyl-N,N-deithylthiocarbamate sulfoxide. Implications of the role of cytochrome P450. Biochem. Pharmacol. 1993, 46, 2285–2290. 10.1016/0006-2952(93)90619-8. PubMed DOI
Madan A.; Faiman M. D. Characterization of diethyldithiocarbamate methyl ester sulfine as an intermediate in the bioactivation of disulfiram. J. Pharmacol. Exp. Ther. 1995, 272, 775–780. PubMed
Mays D. C.; Nelson A. N.; Fauq A. H.; Shriver Z. H.; Veverka K. A.; Naylor S.; Lipsky J. J. S-methyl-N,N-diethylthiocarbamate sulfone, a potential metabolite of disulfiram and potent inhibitor of low Km mitochondrial aldehyde dehydrogenase. Biochem. Pharmacol. 1995, 49, 693–700. 10.1016/0006-2952(94)00504-F. PubMed DOI
Lam J. P.; Mays D. C.; Lipsky J. J. Inhibition of recombinant human mitochondrial and cytosolic aldehyde dehydrogenase by two candidates for the active metabolites of disulfiram. Biochemistry 1997, 36, 13748–13754. 10.1021/bi970948e. PubMed DOI
Shen M. L.; Johnson K. L.; Mays D. C.; Lipsky J. J.; Naylor S. Determination of in vivo adducts of disulfiram with mitochondrial aldehyde dehydrogenase. Biochem. Pharmacol. 2001, 61, 537–545. 10.1016/S0006-2952(00)00586-4. PubMed DOI
Reinhardt S.; Stoye N.; Luderer M.; Kiefer F.; Schmitt U.; Lieb K.; Endres K. Identification of disulfiram as a secretase-modulating compound with beneficial effects on Alzheimer’s disease hallmarks. Sci. Rep. 2018, 8, 1329.10.1038/s41598-018-19577-7. PubMed DOI PMC
Bernier M.; Harney D.; Koay Y. C.; Diaz A.; Singh A.; Wahl D.; Pulpitel T.; Ali A.; Guiterrez V.; Mitchell S. J.; Kim E.-Y.; Mach J.; Price N. L.; Aon M. A.; LeCouteur D. G.; Cogger V. C.; Fernandez-Hernando C.; O’Sullivan J.; Larance M.; Cuervo A. M.; De Cabo R. Elucidating the mechanisms by which disulfiram protects against obesity and metabolic syndrome. NPJ Aging Mech. Dis. 2020, 6, 8.10.1038/s41514-020-0046-6. PubMed DOI PMC
Krajaejun T.; Lohnoo T.; Yingyong W.; Rujirawat T.; Kumsang Y.; Jongkhajornpong P.; Theerawatanasirikul S.; Kittichotirat W.; Reamtong O.; Yolanda H. The repurposed drug disulfiram inhibits urease and aldehyde dehydrogenase and prevents in vitro growth of the oomycete Pythium Insidiosum. Antimicrob. Agents Chemother. 2019, 63, e00609–e00619. 10.1128/AAC.00609-19. PubMed DOI PMC
Potula H.-H. S. K.; Shahryari J.; Inayathullah M.; Malkovskiy A. V.; Kim K.-M.; Rajadas J. Repurposing disulfiram (tetraethylthiuram disulfide) as a potential drug candidate against Borrelia burgdorferi in vitro and in vivo. Antibiotics (Basel) 2020, 9, 633.10.3390/antibiotics9090633. PubMed DOI PMC
Jin Z.; Du X.; Xu Y.; Deng Y.; Liu M.; Zhao Y.; Zhang B.; Li X.; Zhang L.; Peng C.; Duan Y.; Yu J.; Wang L.; Yang K.; Liu F.; Jiang R.; Yang X.; You T.; Liu X.; Yang X.; Bai F.; Liu H.; Liu X.; Guddat L. W.; Xu W.; Xiao G.; Qin C.; Shi Z.; Jiang H.; Rao Z.; Yang H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 289–293. 10.1038/s41586-020-2223-y. PubMed DOI
Ma C.; Hu Y.; Townsend J. A.; Lagarias P. I.; Marty M. T.; Kolocouris A.; Wang J. Ebselen, disulfiram, carmofur, PX-12, tideglusib, and shikonin are nonspecific promiscuous SARS-CoV-2 main protease inhibitors. ACS Pharmacol. Transl. Sci. 2020, 3, 1265–1277. 10.1021/acsptsci.0c00130. PubMed DOI PMC
Hu J. J.; Liu X.; Xia S.; Zhang Z.; Zhang Y.; Zhao J.; Ruan J.; Luo X.; Lou X.; Bai Y.; Wang J.; Hollingsworth L. R.; Magupalli V. G.; Zhao L.; Luo H. R.; Kim J.; Lieberman J.; Wu H. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat. Immunol. 2020, 21, 736–745. 10.1038/s41590-020-0669-6. PubMed DOI PMC
Nelson K. M.; Dahlin J. L.; Bisson J.; Graham J.; Pauli G. F.; Walters M. A. The Essential medicinal chemistry of curcumin. J. Med. Chem. 2017, 60, 1620–1637. 10.1021/acs.jmedchem.6b00975. PubMed DOI PMC