Survey of Genotype Diversity, Virulence, and Antimicrobial Resistance Genes in Mastitis-Causing Streptococcus uberis in Dairy Herds Using Whole-Genome Sequencing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1910212
Ministry of Agriculture
RO0523
Ministry of Agriculture
PubMed
38133263
PubMed Central
PMC10745719
DOI
10.3390/pathogens12121378
PII: pathogens12121378
Knihovny.cz E-zdroje
- Klíčová slova
- MLST, antimicrobial resistance genes, intramammary infection, mastitis, phylogenetic tree, sequence type, virulence genes,
- Publikační typ
- časopisecké články MeSH
Streptococcus uberis is one of the primary causative agents of mastitis, a clinically and economically significant disease that affects dairy cattle worldwide. In this study, we analyzed 140 S. uberis strains isolated from mastitis milk samples collected from 74 cow herds in the Czech Republic. We employed whole-genome sequencing to screen for the presence of antimicrobial resistance (AMR) genes and genes encoding virulence factors, and to assess their genetic relationships. Our analysis revealed the presence of 88 different sequence types (STs), with 41% of the isolates assigned to global clonal complexes (GCCs), the majority of which were affiliated with GCC5. The STs identified were distributed across the major phylogenetic branches of all currently known STs. We identified fifty-one putative virulence factor genes, and the majority of isolates carried between 27 and 29 of these genes. A tendency of virulence factors and AMR genes to cluster with specific STs was observed, although such clustering was not evident within GCCs. Principal component analysis did not reveal significant diversity among isolates when grouped by GCC or ST prevalence. The substantial genomic diversity and the wide array of virulence factors found in S. uberis strains present a challenge for the implementation of effective anti-mastitis measures.
Zobrazit více v PubMed
Tomita T., Meehan B., Wongkattiya N., Malmo J., Pullinger G., Leigh J., Deighton M. Identification of Streptococcus uberis multilocus sequence types highly associated with mastitis. Appl. Environ. Microbiol. 2008;74:114–124. doi: 10.1128/AEM.01373-07. PubMed DOI PMC
Käppeli N., Morach M., Zurfluh K., Corti S., Nüesch-Inderbinen M., Stephan R. Sequence types and antimicrobial resistance profiles of Streptococcus uberis isolated from bovine mastitis. Front. Vet. Sci. 2019;6:234. doi: 10.3389/fvets.2019.00234. PubMed DOI PMC
Silva N.C.C., Yang Y., Rodrigues M.X., Tomazi T., Bicalho R.C. Whole-genome sequencing reveals high genetic diversity of Streptococcus uberis isolated from cows with mastitis. BMC Vet. Res. 2021;17:321. doi: 10.1186/s12917-021-03031-4. PubMed DOI PMC
Vezina B., Al-harbi H., Ramay H.R., Soust M., Moore R.J., Olchowy T.W.J., Alawneh J.I. Sequence characterisation and novel insights into bovine mastitis-associated Streptococcus uberis in dairy herds. Sci. Rep. 2021;11:3046. doi: 10.1038/s41598-021-82357-3. PubMed DOI PMC
Zhang T., Niu G., Boonyayatra S., Pichpol D. Antimicrobial Resistance Profiles and Genes in Streptococcus uberis Associated with Bovine Mastitis in Thailand. Front. Vet. Sci. 2021;8:705338. doi: 10.3389/fvets.2021.705338. PubMed DOI PMC
Halasa T., Huijps K., Østerås O., Hogeveen H. Economic effects of bovine mastitis and mastitis management: A review. Vet. Q. 2007;29:18–31. doi: 10.1080/01652176.2007.9695224. PubMed DOI
Saini V., McClure J.T., Léger D., Dufour S., Sheldon A.G., Scholl D.T., Barkema H.W. Antimicrobial use on Canadian dairy farms. J. Dairy Sci. 2012;95:1209–1221. doi: 10.3168/jds.2011-4527. PubMed DOI
Martins L., Gonçalves J.L., Leite R.F., Tomazi T., Rall V.L.M., Santos M.V. Association between antimicrobial use and antimicrobial resistance of Streptococcus uberis causing clinical mastitis. J. Dairy Sci. 2021;104:12030–12041. doi: 10.3168/jds.2021-20177. PubMed DOI
Wente N., Klocke D., Paduch J.H., Zhang Y., Seeth M.T., Zoche-Golob V., Reinecke F., Mohr E., Krömker V. Associations between Streptococcus uberis strains from the animal environment and clinical bovine mastitis cases. J. Dairy Sci. 2019;102:9360–9369. doi: 10.3168/jds.2019-16669. PubMed DOI
Pullinger G.D., Coffey T.J., Maiden M.C., Leigh J.A. Multilocus-sequence typing analysis reveals similar populations of Streptococcus uberis are responsible for bovine intramammary infections of short and long duration. Vet. Microbiol. 2007;31:194–204. doi: 10.1016/j.vetmic.2006.08.015. PubMed DOI
Srithanasuwan A., Pangprasit N., Suriyasathaporn W. Comparison of Virulence Patterns Between Streptococcus uberis Causing Transient and Persistent Intramammary Infection. Front. Vet. Sci. 2022;9:806674. doi: 10.3389/fvets.2022.806674. PubMed DOI PMC
Leelahapongsathon K., Schukken Y., Srithanasuwan A., Suriyasathaporn W. Molecular epidemiology of Streptococcus uberis intramamary infections: Persistent and transient patterns of infection in a dairy herd. J. Dairy Sci. 2020;103:3565–3576. doi: 10.3168/jds.2019-17281. PubMed DOI
Pullinger G.D., López-Benavides M., Coffey T.J., Williamson J.H., Cursons R.T., Summers E., Lacy-Hulbert J., Maiden M.C., Leigh J.A. Application of Streptococcus uberis multilocus sequence typing: Analysis of the population structure detected among environmental and bovine isolates from New Zealand and the United Kingdom. Appl. Environ. Microbiol. 2006;72:1429–1436. doi: 10.1128/AEM.72.2.1429-1436.2006. PubMed DOI PMC
Phuektes P., Mansell P.D., Dyson R.S., Hooper N.D., Dick J.S., Browning G.F. Molecular epidemiology of Streptococcus uberis isolates from dairy cows with mastitis. J. Clin. Microbiol. 2001;39:1460–1466. doi: 10.1128/JCM.39.4.1460-1466.2001. PubMed DOI PMC
Zouharova M., Nedbalcova K., Kralova N., Slama P., Matiaskova K., Matiasovic J. Multilocus Sequence Genotype Heterogeneity in Streptococcus uberis Isolated from Bovine Mastitis in the Czech Republic. Animals. 2022;12:2327. doi: 10.3390/ani12182327. PubMed DOI PMC
Coffey T.J., Pullinger G.D., Urwin R., Jolley K.A., Wilson S.M., Maiden M.C., Leigh J.A. First Insights into the Evolution of Streptococcus uberis: A Multilocus Sequence Typing Scheme That Enables Investigation of Its Population Biology. Appl. Environ. Microbiol. 2006;72:1420–1428. doi: 10.1128/AEM.72.2.1420-1428.2006. PubMed DOI PMC
Ward P.N., Holden M.T., Leigh J.A., Lennard N., Bignell A., Barron A., Clark L., Quail M.A., Woodward J., Barrell B.G., et al. Evidence for niche adaptation in the genome of the bovine pathogen Streptococcus uberis. BMC Genom. 2009;10:54. doi: 10.1186/1471-2164-10-54. PubMed DOI PMC
Hassan A.A., Khan I.U., Abdulmawjood A., Lämmler C. Evaluation of PCR methods for rapid identification and differentiation of Streptococcus uberis and Streptococcus parauberis. J. Clin. Microbiol. 2001;39:1618–1621. doi: 10.1128/JCM.39.4.1618-1621.2001. PubMed DOI PMC
Quijada N.M., Rodríguez-L’azaro D., Eiros J.M., Hern´andez M. TORMES: An automated pipeline for whole bacterial genome analysis. Bioinformatics. 2019;35:4207–4212. doi: 10.1093/bioinformatics/btz220. PubMed DOI
Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI
Page A.J., Cummins C.A., Hunt M., Wong V.K., Reuter S., Holden M.T.G., Fookes M., Falush D., Keane J.A., Parkhill J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:3691–3693. doi: 10.1093/bioinformatics/btv421. PubMed DOI PMC
Price M.N., Dehal P.S., Arkin A.P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490. doi: 10.1371/journal.pone.0009490. PubMed DOI PMC
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F.M., Larsen M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012;67:2640–2644. doi: 10.1093/jac/dks261. PubMed DOI PMC
McArthur A.G., Waglechner N., Nizam F., Yan A., Azad M.A., Baylay A.J., Bhullar K., Canova M.J., De Pascale G., Ejim L., et al. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 2013;57:3348–3357. doi: 10.1128/AAC.00419-13. PubMed DOI PMC
Gupta S.K., Padmanabhan B.R., Diene S.M., Lopez-Rojas R., Kempf M., Landraud L., Rolain J.M. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 2014;58:212–220. doi: 10.1128/AAC.01310-13. PubMed DOI PMC
Seemann T. ABRicate Github. [(accessed on 8 June 2021)]. Available online: https://github.com/tseemann/abricate.
Jolley K.A., Bray J.E., Maiden M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124. doi: 10.12688/wellcomeopenres.14826.1. PubMed DOI PMC
Nascimento M., Sousa A., Ramirez M., Francisco A.P., Carriço J.A., Vaz C. PHYLOViZ 2.0: Providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics. 2017;33:128–129. doi: 10.1093/bioinformatics/btw582. PubMed DOI
Douglas V.L., Fenwick S.G., Pfeiffer D.U., Williamson N.B., Holmes C.W. Genomic typing of Streptococcus uberis isolates from cases of mastitis, in New Zealand dairy cows, using pulsed-field gel electrophoresis. Vet. Microbiol. 2000;75:27–41. doi: 10.1016/S0378-1135(00)00184-X. PubMed DOI
Wieliczko R.J., Williamson J.H., Cursons R.T., Lacy-Hulbert S.J., Woolford M.W. Molecular typing of Streptococcus uberis strains isolated from cases of bovine mastitis. J. Dairy Sci. 2002;85:2149–2154. doi: 10.3168/jds.S0022-0302(02)74293-8. PubMed DOI
Rahman A., Bhattacharjee A., Tabassum T., Islam M.A., Hossain M. Prevalence and population biology of mastitis-causing Streptococcus uberis using an MLST based approach. J. Adv. Biotechnol. Exp. 2021;4:311–321. doi: 10.5455/jabet.2021.d132. DOI
. Šlechtění Holštýnského Skotu. Svaz Chovatelů Holštýnského Skotu ČR; Praha, Czech Republic: 2005. (In Czech)
. Ročenka 2022–1 Část. Svaz Chovatelů Holštýnského Skotu ČR; Praha, Czech Republic: 2023. (In Czech)
Davies P.L., Leigh J.A., Bradley A.J., Archer S.C., Emes R.D., Green M.J. Molecular epidemiology of Streptococcus uberis clinical mastitis in dairy herds: Strain heterogeneity and transmission. J. Clin. Microbiol. 2016;54:68–74. doi: 10.1128/JCM.01583-15. PubMed DOI PMC
Wang L., Chen W., Zhang L., Zhu Y. Genetic diversity of Streptococcus uberis isolates from dairy cows with subclinical mastitis in Southern Xinjiang Province, China. J. Gen. Appl. Microbiol. 2013;9:287–293. doi: 10.2323/jgam.59.287. PubMed DOI
Field T.R., Ward P.N., Pedersen L.H., Leigh J.A. The hyaluronic acid capsule of Streptococcus uberis is not required for the development of infection and clinical mastitis. Infect. Immun. 2003;71:132–139. doi: 10.1128/IAI.71.1.132-139.2003. PubMed DOI PMC
Vélez J.R., Cameron M., Rodríguez-Lecompte J.C., Xia F., Heider L.C., Saab M., McClure J.T., Sánchez J. Whole-Genome Sequence Analysis of Antimicrobial Resistance Genes in Streptococcus uberis and Streptococcus dysgalactiae Isolates from Canadian Dairy Herds. Front. Vet. Sci. 2017;4:63. doi: 10.3389/fvets.2017.00063. PubMed DOI PMC
Stasiak M., Maćkiw E., Kowalska J., Kucharek K., Postupolski J. Silent Genes: Antimicrobial Resistance and Antibiotic Production. Pol. J. Microbiol. 2021;70:421–429. doi: 10.33073/pjm-2021-040. PubMed DOI PMC
Vezina B., Rosa M.N., Canu A., Tola S. Genomic surveillance reveals antibiotic resistance gene transmission via phage recombinases within sheep mastitis-associated Streptococcus uberis. BMC Vet. Res. 2022;18:264. doi: 10.1186/s12917-022-03341-1. PubMed DOI PMC
Tram G., Jennings M.P., Blackall P.J., Atack J.M. Streptococcus suis pathogenesis-A diverse array of virulence factors for a zoonotic lifestyle. Adv. Microb. Physiol. 2021;78:217–257. doi: 10.1016/bs.ampbs.2020.12.002. PubMed DOI
Lynch M. Mutation pressure, drift, and the pace of molecular coevolution. Proc. Natl. Acad. Sci. USA. 2023;120:e2306741120. doi: 10.1073/pnas.2306741120. PubMed DOI PMC
Lefébure T., Stanhope M.J. Evolution of the core and pan-genome of Streptococcus: Positive selection, recombination, and genome composition. Genome Biol. 2007;8:R71. doi: 10.1186/gb-2007-8-5-r71. PubMed DOI PMC