• This record comes from PubMed

Liposomes Affect Protein Release and Stability of ITA-Modified PLGA-PEG-PLGA Hydrogel Carriers for Controlled Drug Delivery

. 2024 Jan 08 ; 25 (1) : 67-76. [epub] 20231222

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Fat grafting, a key regenerative medicine technique, often requires repeat procedures due to high-fat reabsorption and volume loss. Addressing this, a novel drug delivery system uniquely combines a thermosensitive, FDA-approved hydrogel (itaconic acid-modified PLGA-PEG-PLGA copolymer) with FGF2-STAB, a stable fibroblast growth factor 2 with a 21-day stability, far exceeding a few hours of wild-type FGF2's stability. Additionally, the growth factor was encapsulated in "green" liposomes prepared via the Mozafari method, ensuring pH protection. The system, characterized by first-order FGF2-STAB release, employs green chemistry for biocompatibility, bioactivity, and eco-friendliness. The liposomes, with diameters of 85.73 ± 3.85 nm and 68.6 ± 2.2% encapsulation efficiency, allowed controlled FGF2-STAB release from the hydrogel compared to the unencapsulated FGF2-STAB. Yet, the protein compromised the carrier's hydrolytic stability. Prior tests were conducted on model proteins human albumin (efficiency 80.8 ± 3.2%) and lysozyme (efficiency 81.0 ± 2.7%). This injectable thermosensitive system could advance reconstructive medicine and cosmetic procedures.

See more in PubMed

Illouz Y. G.; Sterodimas A. Autologous Fat Transplantation to the Breast: A Personal Technique with 25 Years of Experience. Aesthetic Plast. Surg. 2009, 33 (5), 706–715. 10.1007/s00266-009-9377-1. PubMed DOI

Granoff M. D.; Guo L.; Singhal D. Lipofilling after Breast Conserving Surgery: A Plastic Surgery Perspective. Gland Surg. AME Publishing Company 2020, 9 (3), 617–619. 10.21037/gs.2020.04.02. PubMed DOI PMC

Hörl H. W.; Feller A.-M.; Biemer E. Technique for Liposuction Fat Reimplantation and Long-Term Volume Evaluation by Magnetic Resonance Imaging. Ann. Plast. Surg. 1991, 26 (3), 248–258. 10.1097/00000637-199103000-00007. PubMed DOI

Niechajev I.; Śevćuk O. Long-Term Results of Fat Transplantation. Plast. Reconstr. Surg. 1994, 94 (3), 496–506. 10.1097/00006534-199409000-00012. PubMed DOI

Doornaert M.; Colle J.; De Maere E.; Declercq H.; Blondeel P. Autologous Fat Grafting: Latest Insights. Ann. med. surg. 2019, 37, 47–53. 10.1016/j.amsu.2018.10.016. PubMed DOI PMC

Herly M.; Ørholt M.; Larsen A.; Pipper C. B.; Bredgaard R.; Gramkow C. S.; Katz A. J.; Drzewiecki K. T.; Vester-Glowinski P. V. Efficacy of Breast Reconstruction with Fat Grafting: A Systematic Review and Meta-Analysis. Br. J. Plast. Surg. 2018, 71 (12), 1740–1750. 10.1016/j.bjps.2018.08.024. PubMed DOI

Lui Y. F.; Ip W. Y. Application of Hydrogel in Reconstruction Surgery: Hydrogel/Fat Graft Complex Filler for Volume Reconstruction in Critical Sized Muscle Defects. BioMed Res. Int. 2016, 2016, 3459431.10.1155/2016/3459431. PubMed DOI PMC

Alghoul M.; Mendiola A.; Seth R.; Rubin B. P.; Zins J. E.; Calabro A.; Siemionow M.; Kusuma S. The Effect of Hyaluronan Hydrogel on Fat Graft Survival. Aesthet Surg J. 2012, 32 (5), 622–633. 10.1177/1090820X12448794. PubMed DOI

Kayabolen A.; Keskin D.; Aykan A.; Karslıoglu Y.; Zor F.; Tezcaner A. Native Extracellular Matrix/Fibroin Hydrogels for Adipose Tissue Engineering with Enhanced Vascularization. Biomed Mater. 2017, 12 (3), 035007.10.1088/1748-605X/aa6a63. PubMed DOI

Chamradová I.; Vojtová L.; Michlovská L.; Poláček P.; Jančář J. Rheological Properties of Functionalised Thermosensitive Copolymers for Injectable Applications in Medicine. Chem. Pap. 2012, 66 (10), 977–980. 10.2478/s11696-012-0210-y. DOI

Furtado M.; Chen L.; Chen Z.; Chen A.; Cui W. Development of Fish Collagen in Tissue Regeneration and Drug Delivery. Eng. Regen 2022, 3 (3), 217–231. 10.1016/j.engreg.2022.05.002. DOI

Li K.; Yu L.; Liu X.; Chen C.; Chen Q.; Ding J. A Long-Acting Formulation of a Polypeptide Drug Exenatide in Treatment of Diabetes Using an Injectable Block Copolymer Hydrogel. Biomaterials 2013, 34 (11), 2834–2842. 10.1016/j.biomaterials.2013.01.013. PubMed DOI

Choi S.; Baudys M.; Kim S. W. Control of Blood Glucose by Novel GLP-1 Delivery Using Biodegradable Triblock Copolymer of PLGA-PEG-PLGA in Type 2 Diabetic Rats. Pharm. Res. 2004, 21 (5), 827–831. 10.1023/B:PHAM.0000026435.27086.94. PubMed DOI

Kim B. S.; Cho C. S. Injectable Hydrogels for Regenerative Medicine. Tissue Eng. Regener. Med. 2018, 15 (5), 511–512. 10.1007/s13770-018-0161-7. PubMed DOI PMC

Hines D. J.; Kaplan D. L. Poly(Lactic-Co-Glycolic) Acid-Controlled-Release Systems: Experimental and Modeling Insights. Crit. Rev. Ther. Drug Carrier Syst. 2013, 30 (3), 257–276. 10.1615/CritRevTherDrugCarrierSyst.2013006475. PubMed DOI PMC

Cohen S.; Yoshioka T.; Lucarelli M.; Hwang L. H.; Langer R. Controlled Delivery Systems for Proteins Based on Poly(Lactic/Glycolic Acid) Microspheres. Pharm. Res. 1991, 08 (6), 713–720. 10.1023/A:1015841715384. PubMed DOI

Jain A.; Kunduru K. R.; Basu A.; Mizrahi B.; Domb A. J.; Khan W. Injectable Formulations of Poly(Lactic Acid) and Its Copolymers in Clinical Use. Adv. Drug Delivery Rev. 2016, 107, 213–227. 10.1016/j.addr.2016.07.002. PubMed DOI

Aaron DuVall G.; Tarabar D.; Seidel R. H.; Elstad N. L.; Fowers K. D. Phase 2: A Dose-Escalation Study of OncoGel (ReGel/Paclitaxel), a Controlled-Release Formulation of Paclitaxel, as Adjunctive Local Therapy to External-Beam Radiation in Patients with Inoperable Esophageal Cancer. Anticancer Drugs 2009, 20 (2), 89–95. 10.1097/cad.0b013e3283222c12. PubMed DOI

Elstad N. L.; Fowers K. D. OncoGel (ReGel/Paclitaxel) - Clinical Applications for a Novel Paclitaxel Delivery System. Adv. Drug Delivery Rev. 2009, 61 (10), 785–794. 10.1016/j.addr.2009.04.010. PubMed DOI

Michlovská L.; Vojtová L.; Mravcová L.; Hermanová S.; Kučerík J.; Jančář J. Functionalization Conditions of PLGA-PEG-PLGA Copolymer with Itaconic Anhydride. Macromol. Symp. 2010, 295, 119–124. 10.1002/masy.200900071. DOI

Okabe M.; Lies D.; Kanamasa S.; Park E. Y. Biotechnological Production of Itaconic Acid and Its Biosynthesis in Aspergillus Terreus. Appl. Microbiol. Biotechnol. 2009, 84 (4), 597–606. 10.1007/s00253-009-2132-3. PubMed DOI

Willke T.; Vorlop K. D. Biotechnological Production of Itaconic Acid. Appl. Microbiol. Biotechnol. 2001, 56 (3–4), 289–295. 10.1007/s002530100685. PubMed DOI

Karaffa L.; Kubicek C. P. Citric Acid and Itaconic Acid Accumulation: Variations of the Same Story?. Appl. Microbiol. Biotechnol. 2019, 103 (7), 2889–2902. 10.1007/s00253-018-09607-9. PubMed DOI PMC

Perioli L.; Ambrogi V.; Angelici F.; Ricci M.; Giovagnoli S.; Capuccella M.; Rossi C. Development of Mucoadhesive Patches for Buccal Administration of Ibuprofen. J. Controlled Release 2004, 99 (1), 73–82. 10.1016/j.jconrel.2004.06.005. PubMed DOI

Carvalho F. C.; Bruschi M. L.; Evangelista R. C.; Gremião M. P. D. Mucoadhesive Drug Delivery Systems. Braz. J. Pharm. Sci. 2010, 46 (1), 1–17. 10.1590/S1984-82502010000100002. DOI

Maeda T. Structures and Applications of Thermoresponsive Hydrogels and Nanocomposite-Hydrogels Based on Copolymers with Poly (Ethylene Glycol) and Poly (Lactide-Co-Glycolide) Blocks. Bioeng 2019, 6 (4), 107.10.3390/bioengineering6040107. PubMed DOI PMC

Makadia H. K.; Siegel S. J. Poly Lactic-Co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers 2011, 3 (3), 1377–1397. 10.3390/polym3031377. PubMed DOI PMC

Oborna J.; Mravcova L.; Michlovska L.; Vojtova L.; Vavrova M. The Effect of PLGA-PEG-PLGA Modification on the Sol-Gel Transition and Degradation Properties. eXPRESS Polym. Lett. 2016, 10 (5), 361–372. 10.3144/expresspolymlett.2016.34. DOI

Qiao M.; Chen D.; Hao T.; Zhao X.; Hu H.; Ma X. Injectable Thermosensitive PLGA-PEG-PLGA Triblock Copolymers-Based Hydrogels as Carriers for Interleukin-2. Pharmazie 2008, 63 (1), 27–30. PubMed

Chen Y.; Shi J.; Zhang Y.; Miao J.; Zhao Z.; Jin X.; Liu L.; Yu L.; Shen C.; Ding J. An Injectable Thermosensitive Hydrogel Loaded with an Ancient Natural Drug Colchicine for Myocardial Repair after Infarction. J. Mater. Chem. B 2020, 8 (5), 980–992. 10.1039/C9TB02523E. PubMed DOI

Akasaka Y.; Ono I.; Kamiya T.; Ishikawa Y.; Kinoshita T.; Ishiguro S.; Yokoo T.; Imaizumi R.; Inomata N.; Fujita K.; Akishima-Fukasawa Y.; Uzuki M.; Ito K.; Ishii T. The Mechanisms Underlying Fibroblast Apoptosis Regulated by Growth Factors during Wound Healing. J. Pathol. 2010, 221 (3), 285–299. 10.1002/path.2710. PubMed DOI

Nugent M. A.; Iozzo R. V. Fibroblast Growth Factor-2. Int. J. Biochem. Cell Biol. 2000, 32, 115–120. 10.1016/S1357-2725(99)00123-5. PubMed DOI

Dvorak P.; Bednar D.; Vanacek P.; Balek L.; Eiselleova L.; Stepankova V.; Sebestova E.; Kunova Bosakova M.; Konecna Z.; Mazurenko S.; Kunka A.; Vanova T.; Zoufalova K.; Chaloupkova R.; Brezovsky J.; Krejci P.; Prokop Z.; Dvorak P.; Damborsky J. Computer-Assisted Engineering of Hyperstable Fibroblast Growth Factor 2. Biotechnol. Bioeng. 2018, 115 (4), 850–862. 10.1002/bit.26531. PubMed DOI

Buchtova M.; Chaloupkova R.; Zakrzewska M.; Vesela I.; Cela P.; Barathova J.; Gudernova I.; Zajickova R.; Trantirek L.; Martin J.; Kostas M.; Otlewski J.; Damborsky J.; Kozubik A.; Wiedlocha A.; Krejci P. Instability Restricts Signaling of Multiple Fibroblast Growth Factors. Cell. Mol. Life Sci. 2015, 72, 2445–2459. 10.1007/s00018-015-1856-8. PubMed DOI PMC

Lysakova K.; Hlinakova K.; Kutalkova K.; Chaloupkova R.; Zidek J.; Brtnikova J.; Vojtova L. Novel approach in control release monitoring of protein-based bioactive substances from injectable PLGA-PEG-PLGA hydrogel. eXPRESS Polym. Lett. 2022, 16 (8), 798–811. 10.3144/expresspolymlett.2022.59. DOI

Tanford C. Protein Denaturation. Adv. Protein Chem. Struct. Biol. 1968, 23, 121–282. 10.1016/S0065-3233(08)60401-5. PubMed DOI

M., Reza Mozafari. Method for the Preparation of Micro- and Nano-Sized Carrier Systems for the Encapsulation of Bioactive Substances, 2010, U.S. Patent 20,100,239,521 A1.

Maleki G.; Bahrami Z.; Woltering E. J.; Khorasani S.; Mozafari M. R. A Review of Patents on “Mozafari Method” as a Green Technology for Manufacturing Bioactive Carriers. Biointerface Res. Appl. Chem. 2023, 13 (1), 34–49.

Mortazavi S. M.; Mohammadabadi M. R.; Khosravi-Darani K.; Mozafari M. R. Preparation of Liposomal Gene Therapy Vectors by a Scalable Method without Using Volatile Solvents or Detergents. J. Biotechnol. 2007, 129 (4), 604–613. 10.1016/j.jbiotec.2007.02.005. PubMed DOI

Mosharraf M.; Taylor K. M. G.; Craig D. Q. M. Effect of Calcium Ions on the Surface Charge and Aggregation of Phosphatidylcholine Liposomes. J. Drug Targeting 1995, 2 (6), 541–545. 10.3109/10611869509015925. PubMed DOI

Cavalcanti I. M. F.; Mendonça E. A.; Lira M. C. B.; Honrato S. B.; Camara C. A.; Amorim R. V. S.; Filho J. M.; Rabello M. M.; Hernandes M. Z.; Ayala A. P.; Santos-Magalhães N. S. The Encapsulation of β-Lapachone in 2-Hydroxypropyl-β-Cyclodextrin Inclusion Complex into Liposomes: A Physicochemical Evaluation and Molecular Modeling Approach. Eur. J. Pharm. Sci. 2011, 44 (3), 332–340. 10.1016/j.ejps.2011.08.011. PubMed DOI

Xu H. L.; Chen P. P.; Wang L. f.; Xue W.; Fu T. L. Hair Regenerative Effect of Silk Fibroin Hydrogel with Incorporation of FGF-2-Liposome and Its Potential Mechanism in Mice with Testosterone-Induced Alopecia Areata. J. Drug Delivery Sci. Technol. 2018, 48, 128–136. 10.1016/j.jddst.2018.09.006. DOI

Jahadi M.; Khosravi-Darani K.; Ehsani M. R.; Mozafari M. R.; Saboury A. A.; Pourhosseini P. S. The Encapsulation of Flavourzyme in Nanoliposome by Heating Method. J. Food Sci. Technol. 2015, 52 (4), 2063–2072. 10.1007/s13197-013-1243-0. PubMed DOI PMC

Jahanfar S.; Gahavami M.; Khosravi-Darani K.; Jahadi M.; Mozafari M. R. Entrapment of Rosemary Extract by Liposomes Formulated by Mozafari Method: Physicochemical Characterization and Optimization. Heliyon 2021, 7 (12), e0863210.1016/j.heliyon.2021.e08632. PubMed DOI PMC

Mozafari M. R. R.; Reed C. J.; Rostron C. Development of Non-Toxic Liposomal Formulations for Gene and Drug Delivery to the Lung. Technol. Health Care 2002, 10 (3–4), 342–344.

Awad R. S.; Abdelwahed W.; Bitar Y. Evaluating the Impact of Preparation Conditions and Formulation on the Accelerated Stability of Tretinoin Loaded Liposomes Prepared by Heating Method. Int. J. Pharm. Sci. 2015, 7 (5), 171–178.

Manca M. L.; Peris J. E.; Melis V.; Valenti D.; Cardia M. C.; Lattuada D.; Escribano-Ferrer E.; Fadda A. M.; Manconi M. Nanoincorporation of Curcumin in Polymer-Glycerosomes and Evaluation of Their in Vitro-in Vivo Suitability as Pulmonary Delivery Systems. RSC Adv. 2015, 5 (127), 105149–105159. 10.1039/C5RA24032H. DOI

Zhang K.; Zhang Y.; Li Z.; Li N.; Feng N. Essential Oil-Mediated Glycerosomes Increase Transdermal Paeoniflorin Delivery: Optimization, Characterization, and Evaluation in Vitro and in Vivo. Int. J. Nanomed. 2017, 12, 3521–3532. 10.2147/IJN.S135749. PubMed DOI PMC

Poudel A.; Gachumi G.; Wasan K. M.; Dallal Bashi Z.; El Aneed A.; Badea I. Development and Characterization of Liposomal Formulations Containing Phytosterols Extracted from Canola Oil Deodorizer Distillate along with Tocopherols as Food Additives. Pharmaceutics 2019, 11 (4), 185.10.3390/pharmaceutics11040185. PubMed DOI PMC

Wu H.; Cao D.; Liu T.; Zhao J.; Hu X.; Li N. Purification and Characterization of Recombinant Human Lysozyme from Eggs of Transgenic Chickens. PLoS One 2015, 10 (12), e014603210.1371/journal.pone.0146032. PubMed DOI PMC

Refetoff S.Thyroid Hormone Transport Proteins: Thyroxine-Binding Globulin, Transthyretin, and Albumin. In Encyclopedia of Hormones, 1st ed., Henry H. L., Norman A. W., Eds.; Elsevier Academic Press: San Diego, CA, 2003; pp 483–490.

Castellanos M. M.; Colina C. M. Molecular Dynamics Simulations of Human Serum Albumin and Role of Disulfide Bonds. J. Phys. Chem. B 2013, 117 (40), 11895–11905. 10.1021/jp402994r. PubMed DOI

Bernsdorff C.; Reszka R.; Winter R. Interaction of the Anticancer Agent TaxolTM (Paclitaxel) with Phospholipid Bilayers. J. Biomed. Mater. Res. 1999, 46 (2), 141–149. 10.1002/(SICI)1097-4636(199908)46:2<141::AID-JBM2>3.0.CO;2-U. PubMed DOI

Al-Ayed M. S. Biophysical Studies on the Liposome-Albumin System. Indian J. Biochem. Biphys. 2006, 43 (3), 186–189. PubMed

Jafari M.; Mehrnejad F. Molecular Insight into Human Lysozyme and Its Ability to Form Amyloid Fibrils in High Concentrations of Sodium Dodecyl Sulfate: A View from Molecular Dynamics Simulations. PLoS One 2016, 11 (10), e016521310.1371/journal.pone.0165213. PubMed DOI PMC

Lopes N. A.; Barreto Pinilla C. M.; Brandelli A. Antimicrobial Activity of Lysozyme-Nisin Co-Encapsulated in Liposomes Coated with Polysaccharides. Food Hydrocolloids 2019, 93, 1–9. 10.1016/j.foodhyd.2019.02.009. DOI

Xu H.-L.; Chen P.-P.; ZhuGe D.-L.; Zhu Q.-Y.; Jin B.-H.; Shen B.-X.; Xiao J.; Zhao Y.-Z. Liposomes with Silk Fibroin Hydrogel Core to Stabilize BFGF and Promote the Wound Healing of Mice with Deep Second-Degree Scald. Adv. Healthcare Mater. 2017, 6 (19), 1700344.10.1002/adhm.201700344. PubMed DOI

Michlovská L.; Vojtová L.; Humpa O.; Kučerík J.; Žídek J.; Jančář J. Hydrolytic Stability of End-Linked Hydrogels from PLGA-PEG-PLGA Macromonomers Terminated by α,ω-Itaconyl Groups. RSC Adv. 2016, 6 (20), 16808–16816. 10.1039/C5RA26222D. DOI

Larkin P. J.Illustrated IR and Raman Spectra Demonstrating Important Functional Groups. In Infrared and Raman Spectroscopy, 2nd ed.; Larkin P. J., Ed.; Elsevier Academic Press: San Diego, CA, 2018; pp 153–210.

Macdonald M. L.; Rodriguez N. M.; Shah N. J.; Hammond P. T. Characterization of Tunable FGF-2 Releasing Polyelectrolyte Multilayers. Biomacromolecules 2010, 11 (8), 2053–2059. 10.1021/bm100413w. PubMed DOI PMC

Wiig H.; Kolmannskog O.; Tenstad O.; Bert J. L. Effect of Charge on Interstitial Distribution of Albumin in Rat Dermis in Vitro. J. Physiol. 2003, 550 (2), 505–514. 10.1113/jphysiol.2003.042713. PubMed DOI PMC

Paarakh M.; Jose P.; Setty C.; Christoper G. RELEASE KINETICS - CONCEPTS AND APPLICATIONS. Int. J. Pharm. Technol. 2019, 8 (1), 220279629.10.31838/ijprt/08.01.02. DOI

Cao D.; Zhang X.; Akabar M. D.; Luo Y.; Wu H.; Ke X.; Ci T. Liposomal Doxorubicin Loaded PLGA-PEG-PLGA Based Thermogel for Sustained Local Drug Delivery for the Treatment of Breast Cancer. Artif. Cells, Nanomed., Biotechnol. 2019, 47 (1), 181–191. 10.1080/21691401.2018.1548470. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...