• This record comes from PubMed

Environmental and Genetic Traffic in the Journey from Sperm to Offspring

. 2023 Dec 07 ; 13 (12) : . [epub] 20231207

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Recent advancements in the understanding of how sperm develop into offspring have shown complex interactions between environmental influences and genetic factors. The past decade, marked by a research surge, has not only highlighted the profound impact of paternal contributions on fertility and reproductive outcomes but also revolutionized our comprehension by unveiling how parental factors sculpt traits in successive generations through mechanisms that extend beyond traditional inheritance patterns. Studies have shown that offspring are more susceptible to environmental factors, especially during critical phases of growth. While these factors are broadly detrimental to health, their effects are especially acute during these periods. Moving beyond the immutable nature of the genome, the epigenetic profile of cells emerges as a dynamic architecture. This flexibility renders it susceptible to environmental disruptions. The primary objective of this review is to shed light on the diverse processes through which environmental agents affect male reproductive capacity. Additionally, it explores the consequences of paternal environmental interactions, demonstrating how interactions can reverberate in the offspring. It encompasses direct genetic changes as well as a broad spectrum of epigenetic adaptations. By consolidating current empirically supported research, it offers an exhaustive perspective on the interwoven trajectories of the environment, genetics, and epigenetics in the elaborate transition from sperm to offspring.

See more in PubMed

Hart K., Tadros N.N. The role of environmental factors and lifestyle on male reproductive health, the epigenome, and resulting offspring. Panminerva Med. 2019;61:187–195. doi: 10.23736/S0031-0808.18.03531-0. PubMed DOI

Mima M., Greenwald D., Ohlander S. Environmental Toxins and Male Fertility. Curr. Urol. Rep. 2018;19:50. doi: 10.1007/s11934-018-0804-1. PubMed DOI

Rauh V.A., Margolis A.E. Research Review: Environmental exposures, neurodevelopment, and child mental health—New paradigms for the study of brain and behavioral effects. J. Child. Psychol. Psychiatry. 2016;57:775–793. doi: 10.1111/jcpp.12537. PubMed DOI PMC

Jami E.S., Hammerschlag A.R., Bartels M., Middeldorp C.M. Parental characteristics and offspring mental health and related outcomes: A systematic review of genetically informative literature. Transl. Psychiatry. 2021;11:197. doi: 10.1038/s41398-021-01300-2. PubMed DOI PMC

Ralston A., Shaw K. Environment controls gene expression: Sex determination and the onset of genetic disorders. Nat. Educ. 2008;1:203.

Bline A.P., Le Goff A., Allard P. What Is Lost in the Weismann Barrier? J. Dev. Biol. 2020;8:35. doi: 10.3390/jdb8040035. PubMed DOI PMC

Donkin I., Barrès R. Sperm epigenetics and influence of environmental factors. Mol. Metab. 2018;14:1–11. doi: 10.1016/j.molmet.2018.02.006. PubMed DOI PMC

Finelli R., Mottola F., Agarwal A. Impact of Alcohol Consumption on Male Fertility Potential: A Narrative Review. Int. J. Environ. Res. Public Health. 2021;19:328. doi: 10.3390/ijerph19010328. PubMed DOI PMC

Marić T., Fučić A., Aghayanian A. Environmental and occupational exposures associated with male infertility. Arh. Hig. Rada Toksikol. 2021;72:101–113. doi: 10.2478/aiht-2021-72-3510. PubMed DOI PMC

Xavier M.J., Roman S.D., Aitken R.J., Nixon B. Transgenerational inheritance: How impacts to the epigenetic and genetic information of parents affect offspring health. Hum. Reprod. Update. 2019;25:518–540. doi: 10.1093/humupd/dmz017. PubMed DOI

Burton T., Metcalfe N.B. Can environmental conditions experienced in early life influence future generations? Proc. Biol. Sci. 2014;281:20140311. doi: 10.1098/rspb.2014.0311. PubMed DOI PMC

Day J., Savani S., Krempley B.D., Nguyen M., Kitlinska J.B. Influence of paternal preconception exposures on their offspring: Through epigenetics to phenotype. Am. J. Stem Cells. 2016;5:11–18. PubMed PMC

Knudsen M.T., Rezwan F.I., Jiang Y., Karmaus W., Svanes C., Holloway J.W. Transgenerational and intergenerational epigenetic inheritance in allergic diseases. J. Allergy Clin. Immunol. 2018;142:765–772. doi: 10.1016/j.jaci.2018.07.007. PubMed DOI PMC

Branje S., Geeraerts S., de Zeeuw E.L., Oerlemans A.M., Koopman-Verhoeff M.E., Schulz S., Nelemans S., Meeus W., Hartman C.A., Hillegers M.H.J., et al. Intergenerational transmission: Theoretical and methodological issues and an introduction to four Dutch cohorts. Dev. Cogn. Neurosci. 2020;45:100835. doi: 10.1016/j.dcn.2020.100835. PubMed DOI PMC

Magkos F., Yannakoulia M., Chan J.L., Mantzoros C.S. Management of the metabolic syndrome and type 2 diabetes through lifestyle modification. Annu. Rev. Nutr. 2009;29:223–256. doi: 10.1146/annurev-nutr-080508-141200. PubMed DOI PMC

Roberts C.K., Hevener A.L., Barnard R.J. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr. Physiol. 2013;3:1–58. doi: 10.1002/cphy.c110062. PubMed DOI PMC

Jung U.J., Choi M.S. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2014;15:6184–6223. doi: 10.3390/ijms15046184. PubMed DOI PMC

Rando O.J., Simmons R.A. I’m eating for two: Parental dietary effects on offspring metabolism. Cell. 2015;161:93–105. doi: 10.1016/j.cell.2015.02.021. PubMed DOI PMC

Rosenbusch B. To What Extent Are Cryopreserved Sperm and Testicular Biopsy Samples Used in Assisted Reproduction? J. Reprod. Infertil. 2018;19:115–118. PubMed PMC

Sharma R., Agarwal A., Rohra V.K., Assidi M., Abu-Elmagd M., Turki R.F. Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring. Reprod. Biol. Endocrinol. 2015;13:35. doi: 10.1186/s12958-015-0028-x. PubMed DOI PMC

Kaltsas A., Moustakli E., Zikopoulos A., Georgiou I., Dimitriadis F., Symeonidis E.N., Markou E., Michaelidis T.M., Tien D.M.B., Giannakis I., et al. Impact of Advanced Paternal Age on Fertility and Risks of Genetic Disorders in Offspring. Genes. 2023;14:486. doi: 10.3390/genes14020486. PubMed DOI PMC

Engeland A., Bjørge T., Daltveit A.K., Skurtveit S., Vangen S., Vollset S.E., Furu K. Effects of preconceptional paternal drug exposure on birth outcomes: Cohort study of 340,000 pregnancies using Norwegian population-based databases. Br. J. Clin. Pharmacol. 2013;75:1134–1141. doi: 10.1111/j.1365-2125.2012.04426.x. PubMed DOI PMC

Vallaster M.P., Kukreja S., Bing X.Y., Ngolab J., Zhao-Shea R., Gardner P.D., Tapper A.R., Rando O.J. Paternal nicotine exposure alters hepatic xenobiotic metabolism in offspring. eLife. 2017;6:e24771. doi: 10.7554/eLife.24771. PubMed DOI PMC

Rutkowska J., Lagisz M., Bonduriansky R., Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol. 2020;18:183. doi: 10.1186/s12915-020-00892-3. PubMed DOI PMC

Aitken R.J. Male reproductive ageing: A radical road to ruin. Hum. Reprod. 2023;38:1861–1871. doi: 10.1093/humrep/dead157. PubMed DOI PMC

Fitz-James M.H., Cavalli G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat. Rev. Genet. 2022;23:325–341. doi: 10.1038/s41576-021-00438-5. PubMed DOI

Immler S. The sperm factor: Paternal impact beyond genes. Heredity. 2018;121:239–247. doi: 10.1038/s41437-018-0111-0. PubMed DOI PMC

Maklakov A.A., Immler S. The Expensive Germline and the Evolution of Ageing. Curr. Biol. 2016;26:R577–R586. doi: 10.1016/j.cub.2016.04.012. PubMed DOI

Dhawan V., Kumar M., Dipika D., Malhotra N., Singh N., Dadhwal V., Dada R. Paternal factors and embryonic development: Role in recurrent pregnancy loss. Andrologia. 2019;51:e13171. doi: 10.1111/and.13171. PubMed DOI

Siomi M.C., Sato K., Pezic D., Aravin A.A. Piwi-interacting small RNAs: The vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 2011;12:246–258. doi: 10.1038/nrm3089. PubMed DOI

Ernst C., Odom D.T., Kutter C. The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Nat. Commun. 2017;8:1411. doi: 10.1038/s41467-017-01049-7. PubMed DOI PMC

Sharma U. Paternal Contributions to Offspring Health: Role of Sperm Small RNAs in Intergenerational Transmission of Epigenetic Information. Front. Cell Dev. Biol. 2019;7:215. doi: 10.3389/fcell.2019.00215. PubMed DOI PMC

Donelan S.C., Hellmann J.K., Bell A.M., Luttbeg B., Orrock J.L., Sheriff M.J., Sih A. Transgenerational Plasticity in Human-Altered Environments. Trends Ecol. Evol. 2020;35:115–124. doi: 10.1016/j.tree.2019.09.003. PubMed DOI PMC

Hales C.N., Barker D.J. The thrifty phenotype hypothesis. Br. Med. Bull. 2001;60:5–20. doi: 10.1093/bmb/60.1.5. PubMed DOI

Miska E.A., Ferguson-Smith A.C. Transgenerational inheritance: Models and mechanisms of non-DNA sequence-based inheritance. Science. 2016;354:59–63. doi: 10.1126/science.aaf4945. PubMed DOI

Kishimoto S., Uno M., Okabe E., Nono M., Nishida E. Environmental stresses induce transgenerationally inheritable survival advantages via germline-to-soma communication in Caenorhabditis elegans. Nat. Commun. 2017;8:14031. doi: 10.1038/ncomms14031. PubMed DOI PMC

Burgess S.C., Marshall D.J. Adaptive parental effects: The importance of estimating environmental predictability and offspring fitness appropriately. Oikos. 2014;123:769–776. doi: 10.1111/oik.01235. DOI

Marshall D.J., Uller T. When is a maternal effect adaptive? Oikos. 2007;116:1957–1963. doi: 10.1111/j.2007.0030-1299.16203.x. DOI

Xue B., Leibler S. Evolutionary learning of adaptation to varying environments through a transgenerational feedback. Proc. Natl. Acad. Sci. USA. 2016;113:11266–11271. doi: 10.1073/pnas.1608756113. PubMed DOI PMC

Burgess S.C., Marshall D.J. Temperature-induced maternal effects and environmental predictability. J. Exp. Biol. 2011;214:2329–2336. doi: 10.1242/jeb.054718. PubMed DOI

Crean A.J., Dwyer J.M., Marshall D.J. Adaptive paternal effects? Experimental evidence that the paternal environment affects offspring performance. Ecology. 2013;94:2575–2582. doi: 10.1890/13-0184.1. PubMed DOI

Eisenberg D.T.A. An evolutionary review of human telomere biology: The thrifty telomere hypothesis and notes on potential adaptive paternal effects. Am. J. Hum. Biol. 2011;23:149–167. doi: 10.1002/ajhb.21127. PubMed DOI

Arnqvist G., Rowe L. Sexual Conflict. Princeton University Press; Princeton, NJ, USA: 2005. DOI

Anvar Z., Chakchouk I., Demond H., Sharif M., Kelsey G., Van den Veyver I.B. DNA Methylation Dynamics in the Female Germline and Maternal-Effect Mutations that Disrupt Genomic Imprinting. Genes. 2021;12:1214. doi: 10.3390/genes12081214. PubMed DOI PMC

O’Brien E.K., Wolf J.B. The coadaptation theory for genomic imprinting. Evol. Lett. 2017;1:49–59. doi: 10.1002/evl3.5. PubMed DOI PMC

Haig D. The kinship theory of genomic imprinting. Ann. Rev. Ecol. Syst. 2000;31:9–32. doi: 10.1146/annurev.ecolsys.31.1.9. DOI

Haig D. Genomic imprinting and kinship: How good is the evidence? Ann. Rev. Genet. 2004;38:553–585. doi: 10.1146/annurev.genet.37.110801.142741. PubMed DOI

Day T., Bonduriansky R. Intralocus sexual conflict can drive the evolution of genomic imprinting. Genetics. 2004;167:1537–1546. doi: 10.1534/genetics.103.026211. PubMed DOI PMC

Wolf J.B., Hager R. A maternal-offspring coadaptation theory for the evolution of genomic imprinting. PLoS Biol. 2006;4:2238–2243. doi: 10.1371/journal.pbio.0040380. PubMed DOI PMC

Spencer H.G., Clark A.G. Non-conflict theories for the evolution of genomic imprinting. Heredity. 2014;113:112–118. doi: 10.1038/hdy.2013.129. PubMed DOI PMC

Agren J.A., Clark A.G. Selfish genetic elements. PLoS Genet. 2018;14:e1007700. doi: 10.1371/journal.pgen.1007700. PubMed DOI PMC

Wedell N. Selfish genes and sexual selection: The impact of genomic parasites on host reproduction. J. Zool. 2020;311:1–12. doi: 10.1111/jzo.12780. DOI

Verspoor R.L., Price T.A.R., Wedell N. Selfish genetic elements and male fertility. Phil. Trans. R. Soc. B. 2020;375:20200067. doi: 10.1098/rstb.2020.0067. PubMed DOI PMC

Werren J.H. Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc. Natl. Acad. Sci. USA. 2011;108:10863–10870. doi: 10.1073/pnas.1102343108. PubMed DOI PMC

Wedell N. The effect of non-self genes on the behaviour of hosts. In: Hosken D.J., Hunt J., Wedell N., editors. Genes and Behaviour: Beyond Nature-Nurture. John Wiley & Sons; Chichester, UK: 2019. pp. 157–180.

Zanders S.E., Unckless R.L. Fertility costs of meiotic drivers. Curr. Biol. 2019;29:R512–R520. doi: 10.1016/j.cub.2019.03.046. PubMed DOI PMC

Sutter A., Lindholm A.K. Detrimental effects of an autosomal selfish genetic element on sperm competitiveness in house mice. Proc. Biol. Sci. 2015;282:20150974. doi: 10.1098/rspb.2015.0974. PubMed DOI PMC

Christie J.R., Schaerf T.M., Beekman M. Selection against heteroplasmy explains the evolution of uniparental inheritance of mitochondria. PLoS Genet. 2015;11:e1005112. doi: 10.1371/journal.pgen.1005112. PubMed DOI PMC

Greiner S., Sobanski J., Bock R. Why are most organelle genomes transmitted maternally? Bioessays. 2015;37:80–94. doi: 10.1002/bies.201400110. PubMed DOI PMC

Cordier S. Evidence for a role of paternal exposures in developmental toxicity. Basic Clin. Pharmacol. Toxicol. 2008;102:176–181. doi: 10.1111/j.1742-7843.2007.00162.x. PubMed DOI

Soubry A., Hoyo C., Jirtle R.L., Murphy S.K. A paternal environmental legacy: Evidence for epigenetic inheritance through the male germ line. Bioessays. 2014;36:359–371. doi: 10.1002/bies.201300113. PubMed DOI PMC

Bonde J.P., Tøttenborg S.S., Hougaard K.S. Paternal environmental exposure and offspring health. Curr. Opin. Endocr. Metab. Res. 2019;7:14–20. doi: 10.1016/j.coemr.2019.05.001. DOI

Blay R.M., Pinamang A.D., Sagoe A.E., Owusu E., Koney N.K., Arko-Boham B. Infuence of lifestyle and environmental factors on semen quality in ghanaian men. Int. J. Reprod. Med. 2020;2020:6908458. doi: 10.1155/2020/6908458. PubMed DOI PMC

Nateghian Z., Aliabadi E. Aspects of Environmental Pollutants on Male Fertility and Sperm Parameters. [(accessed on 30 August 2023)];J. Environ. Treat. Tech. 2020 8:299–309. Available online: http://www.jett.dormaj.com.

Selvaraju V., Baskaran S., Agarwal A., Henkel R. Environmental contaminants and male infertility: Effects and mechanisms. Andrologia. 2021;53:e13646. doi: 10.1111/and.13646. PubMed DOI

Wang X., Tian X., Ye B., Zhang Y., Li C., Liao J., Zou Y., Zhang S., Zhu Y., Yang J., et al. Gaseous pollutant exposure affects semen quality in central China: A cross-sectional study. Andrology. 2020;8:117–124. doi: 10.1111/andr.12655. PubMed DOI

Sun S., Zhao J., Cao W., Lu W., Zheng T., Zeng Q. Identifying critical exposure windows for ambient air pollution and semen quality in Chinese men. Environ. Res. 2020;189:109894. doi: 10.1016/j.envres.2020.109894. PubMed DOI

Wdowiak A., Wdowiak E., Bień A., Bojar I., Iwanowicz-Palus G., Raczkiewicz D. Air pollution and semen parameters in men seeking fertility treatment for the first time. Int. J. Occup. Med. Environ. Health. 2019;32:387–399. doi: 10.13075/ijomeh.1896.01355. PubMed DOI

Yang Y., Yang T., Liu S., Cao Z., Zhao Y., Su X., Liao Z., Teng X., Hua J. Concentrated ambient PM2.5 exposure affects mice sperm quality and testosterone biosynthesis. PeerJ. 2019;7:e8109. doi: 10.7717/peerj.8109. PubMed DOI PMC

Dutta S., Sengupta P., Bagchi S., Chhikara B.S., Pavlík A., Sláma P., Roychoudhury S. Reproductive toxicity of combined effects of endocrine disruptors on human reproduction. Front. Cell Dev. Biol. 2023;11:1162015. doi: 10.3389/fcell.2023.1162015. PubMed DOI PMC

Mendiola J., Moreno J.M., Roca M., Vergara-Juárez N., Martínez-García M.J., García-Sánchez A., Elvira-Rendueles B., Moreno-Grau S., LópezEspín J.J., Ten J., et al. Relationships between heavy metal concentrations in three diferent body fuids and male reproductive parameters: A pilot study. Environ. Health. 2011;10:6. doi: 10.1186/1476-069X-10-6. PubMed DOI PMC

Sukhn C., Awwad J., Ghantous A., Zaatari G. Associations of semen quality with non-essential heavy metals in blood and seminal fuid: Data from the Environment and Male Infertility (EMI) study in Lebanon. J. Assist. Reprod. Genet. 2018;35:1691–1701. doi: 10.1007/s10815-018-1236-z. PubMed DOI PMC

Manouchehri A., Shokri S., Pirhadi M., Karimi M., Abbaszadeh S., Mirzaei G., Bahmani M. The Effects of Toxic Heavy Metals Lead, Cadmium and Copper on the Epidemiology of Male and Female Infertility. JBRA Assist. Reprod. 2022;26:627–630. doi: 10.5935/1518-0557.20220013. PubMed DOI PMC

Santonastaso M., Mottola F., Iovine C., Cesaroni F., Colacurci N., Rocco L. In Vitro Effects of Titanium Dioxide Nanoparticles (TiO2NPs) on Cadmium Chloride (CdCl2) Genotoxicity in Human Sperm Cells. Nanomaterials. 2020;10:1118. doi: 10.3390/nano10061118. PubMed DOI PMC

Calogero A.E., Fiore M., Giacone F., Altomare M., Asero P., Ledda C., Romeo G., Mongioì L.M., Copat C., Giuffrida M., et al. Exposure to multiple metals/metalloids and human semen quality: A cross-sectional study. Ecotoxicol. Environ. Saf. 2021;215:112165. doi: 10.1016/j.ecoenv.2021.112165. PubMed DOI

Hardneck F., Israel G., Pool E., Maree L. Quantitative assessment of heavy metal effects on sperm function using computer-aided sperm analysis and cytotoxicity assays. Andrologia. 2018;50:e13141. doi: 10.1111/and.13141. PubMed DOI

Mínguez-Alarcón L., Hauser R., Gaskins A.J. Effects of bisphenol A on male and couple reproductive health: A review. Fertil. Steril. 2016;106:864–870. doi: 10.1016/j.fertnstert.2016.07.1118. PubMed DOI PMC

Cariati F., D’Uonno N., Borrillo F., Iervolino S., Galdiero G., Rb T. Bisphenol a: An emerging threat to male fertility. Reprod. Biol. Endocrinol. 2019;17:6. doi: 10.1186/s12958-018-0447-6. PubMed DOI PMC

Barbonetti A., Castellini C., Di Giammarco N., Santilli G., Francavilla S., Francavilla F. In vitro exposure of human spermatozoa to bisphenol A induces pro-oxidative/apoptotic mitochondrial dysfunction. Reprod. Toxicol. 2016;66:61–67. doi: 10.1016/j.reprotox.2016.09.014. PubMed DOI

Bretveld R., Brouwers M., Ebisch I., Roeleveld N. Infuence of pesticides on male fertility. Scand. J. Work. Environ. Health. 2007;33:13–28. doi: 10.5271/sjweh.1060. PubMed DOI

National Academies of Sciences, Engineering, and Medicine. Division on Earth and Life Studies. Board on Environmental Studies and Toxicology. Committee on Endocrine-Related Low-Dose Toxicity Application of Systematic Review Methods in an Overall Strategy for Evaluating Low-Dose Toxicity from Endocrine Active Chemicals. National Academies Press (US): Washington, DC, USA, 2017; 3, Phthalates and Male Reproductive-Tract Development. [(accessed on 30 August 2023)]; Available online: https://www.ncbi.nlm.nih.gov/books/NBK453249/ PubMed

Hutson J.M. Cryptorchidism and Hypospadias. 14 December 2022. In: Feingold K.R., Anawalt B., Blackman M.R., Boyce A., Chrousos G., Corpas E., de Herder W.W., Dhatariya K., Dungan K., Hofland J., editors. Endotext [Internet] MDText.com, Inc.; South Dartmouth, MA, USA: 2000.

Ding X., Cao L., Zheng Y., Zhou X., He X., Xu S., Ren W. Insights into the Evolution of Spermatogenesis-Related Ubiquitin-Proteasome System Genes in Abdominal Testicular Laurasiatherians. Genes. 2021;12:1780. doi: 10.3390/genes12111780. PubMed DOI PMC

Al-Otaibi S.T. Male infertility among bakers associated with exposure to high environmental temperature at the workplace. J. Taibah Univ. Med. Sci. 2018;13:103–107. doi: 10.1016/j.jtumed.2017.12.003. PubMed DOI PMC

Hamerezaee M., Dehghan S.F., Golbabaei F., Fathi A., Barzegar L., Heidarnejad N. Assessment of semen quality among workers exposed to heat stress: A cross-sectional study in a steel industry. Saf. Health Work. 2018;9:232–235. doi: 10.1016/j.shaw.2017.07.003. PubMed DOI PMC

Kesari K.K., Agarwal A., Henkel R. Radiations and male fertility. Reprod. Biol. Endocrinol. 2018;16:118. doi: 10.1186/s12958-018-0431-1. PubMed DOI PMC

Kim S., Han D., Ryu J., Kim K., Kim Y.H. Effects of mobile phone usage on sperm quality—No time-dependent relationship on usage: A systematic review and updated meta-analysis. Environ. Res. 2021;202:111784. doi: 10.1016/j.envres.2021.111784. PubMed DOI

Aitken R.J. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol. Reprod. Dev. 2017;84:1039–1052. doi: 10.1002/mrd.22871. PubMed DOI

Mottola F., Santonastaso M., Ronga V., Finelli R., Rocco L. Polymorphic Rearrangements of Human Chromosome 9 and Male Infertility: New Evidence and Impact on Spermatogenesis. Biomolecules. 2023;13:729. doi: 10.3390/biom13050729. PubMed DOI PMC

Leisegang K., Roychoudhury S., Slama P., Finelli R. The Mechanisms and Management of Age-Related Oxidative Stress in Male Hypogonadism Associated with Non-communicable Chronic Disease. Antioxidants. 2021;10:1834. doi: 10.3390/antiox10111834. PubMed DOI PMC

Durairajanayagam D. Lifestyle causes of male infertility. Arab. J. Urol. 2018;16:10–20. doi: 10.1016/j.aju.2017.12.004. PubMed DOI PMC

Samarasinghe S.V.A.C., Krishnan K., Naidu R., Megharaj M., Miller K., Fraser B., Aitken R.J. Parabens generate reactive oxygen species in human spermatozoa. Andrology. 2018;6:532–541. doi: 10.1111/andr.12499. PubMed DOI

Santonastaso M., Mottola F., Colacurci N., Iovine C., Pacifico S., Cammarota M., Cesaroni F., Rocco L. In vitro genotoxic effects of titanium dioxide nanoparticles (n-TiO2) in human sperm cells. Mol. Reprod. Dev. 2019;86:1369–1377. doi: 10.1002/mrd.23134. PubMed DOI

Jimenez-Villarreal J., Betancourt-Martinex N.D., Carranza-Rosales P., Valdez E.V., Guzman-Delgado N.E., Lopez-Marquez F.C., Moran-Martinez J. Formaldehyde induces DNA strand breaks on spermatozoa and lymphocytes of Wistar rats. Tsitol. Genet. 2017;51:78–80. doi: 10.3103/S0095452717010078. PubMed DOI

Mukherjee A.G., Valsala Gopalakrishnan A. The interplay of arsenic, silymarin, and NF-ĸB pathway in male reproductive toxicity: A review. Ecotoxicol. Environ. Saf. 2023;252:114614. doi: 10.1016/j.ecoenv.2023.114614. PubMed DOI

Khan F., Niaz K., Hassan F.I., Abdollahi M. An evidence-based review of the genotoxic and reproductive effects of sulfur mustard. Arch. Toxicol. 2017;91:1143–1156. doi: 10.1007/s00204-016-1911-8. PubMed DOI

Perrin J., Tassistro V., Mandon M., Grillo J.M., Botta A., Sari-Minodier I. Tobacco consumption and benzo(a)pyrene-diolepoxide-DNA adducts in spermatozoa: In smokers, swim-up procedure selects spermatozoa with decreased DNA damage. Fertil. Steril. 2011;95:2013–2017. doi: 10.1016/j.fertnstert.2011.02.021. PubMed DOI

McQueen D.B., Zhang J., Robins J.C. Sperm DNA fragmentation and recurrent pregnancy loss: A systematic review and meta-analysis. Fertil. Steril. 2019;112:54–60.e3. doi: 10.1016/j.fertnstert.2019.03.003. PubMed DOI

Waber D.P., Bryce C.P., Fitzmaurice G.M., Zichlin M.L., McGaughy J., Girard J.M., Galler J.R. Neuropsychological outcomes at midlife following moderate to severe malnutrition in infancy. Neuropsychology. 2014;28:530–540. doi: 10.1037/neu0000058. PubMed DOI PMC

Soneji S., Beltrán-Sánchez H. Association of Maternal Cigarette Smoking and Smoking Cessation With Preterm Birth. JAMA Netw. Open. 2019;2:e192514. doi: 10.1001/jamanetworkopen.2019.2514. PubMed DOI PMC

Meeker J.D. Exposure to environmental endocrine disruptors and child development. Arch. Pediatr. Adolesc. Med. 2012;166:E1–E7. doi: 10.1001/archpediatrics.2012.241. PubMed DOI PMC

Basak S., Das M.K., Duttaroy A.K. Plastics derived endocrine-disrupting compounds and their effects on early development. Birth Defects Res. 2020;112:1308–1325. doi: 10.1002/bdr2.1741. PubMed DOI

McCanlies E.C., Ma C.C., Gu J.K., Fekedulegn D., Sanderson W.T., Ludeña-Rodriguez Y.J., Hertz-Picciotto I. The CHARGE study: An assessment of parental occupational exposures and autism spectrum disorder. Occup. Environ. Med. 2019;76:644–651. doi: 10.1136/oemed-2018-105395. PubMed DOI

Zhang Y., Shi J., Rassoulzadegan M., Tuorto F., Chen Q. Sperm RNA code programmes the metabolic health of offspring. Nat. Rev. Endocrinol. 2019;15:489–498. doi: 10.1038/s41574-019-0226-2. PubMed DOI PMC

Gapp K., Jawaid A., Sarkies P., Bohacek J., Pelczar P., Prados J., Farinelli L., Miska E., Mansuy I.M. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 2014;17:667–669. doi: 10.1038/nn.3695. PubMed DOI PMC

Zumbrun E.E., Sido J.M., Nagarkatti P.S., Nagarkatti M. Epigenetic Regulation of Immunological Alterations Following Prenatal Exposure to Marijuana Cannabinoids and its Long Term Consequences in Offspring. J. Neuroimmune Pharmacol. 2015;10:245–254. doi: 10.1007/s11481-015-9586-0. PubMed DOI PMC

McCarthy D.M., Morgan T.J., Jr., Lowe S.E., Williamson M.J., Spencer T.J., Biederman J., Bhide P.G. Nicotine exposure of male mice produces behavioral impairment in multiple generations of descendants. PLoS Biol. 2018;16:e2006497. doi: 10.1371/journal.pbio.2006497. PubMed DOI PMC

Holloway Z.R., Hawkey A.B., Torres A.K., Evans J., Pippen E., White H., Katragadda V., Kenou B., Wells C., Murphy S.K., et al. Paternal cannabis extract exposure in rats: Preconception timing effects on neurodevelopmental behavior in offspring. Neurotoxicology. 2020;81:180–188. doi: 10.1016/j.neuro.2020.10.007. PubMed DOI

Ueker M.E., Silva V.M., Moi G.P., Pignati W.A., Mattos I.E., Silva A.M.C. Parenteral exposure to pesticides and occurence of congenital malformations: Hospital-based case-control study. BMC Pediatr. 2016;16:125. doi: 10.1186/s12887-016-0667-x. PubMed DOI PMC

Rauh V., Arunajadai S., Horton M., Perera F., Hoepner L., Barr D.B., Whyatt R. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ. Health Perspect. 2011;119:1196–1201. doi: 10.1289/ehp.1003160. PubMed DOI PMC

Shelton J.F., Geraghty E.M., Tancredi D.J., Delwiche L.D., Schmidt R.J., Ritz B., Hansen R.L., Hertz-Picciotto I. Neurodevelopmental disorders and prenatal residential proximity to agricultural pesticides: The CHARGE study. Environ. Health Perspect. 2014;122:1103–1109. doi: 10.1289/ehp.1307044. Erratum in: Environ Health Perspect. 2014, 122, A266. PubMed DOI PMC

Yorifuji T., Tsuda T., Kashima S., Doi H. Mercury and autism: Accelerating evidence? Neuroendocrinol. Lett. 2014;35:221–226.

Ng S.-F., Lin RC Y., Laybutt D.R., Barres R., Owens J.A., Morris M.J. Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature. 2010;467:963–966. doi: 10.1038/nature09491. PubMed DOI

Wei Y., Yang C.R., Wei Y.P., Ge Z.J., Zhao Z.A., Zhang X.H. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc. Natl. Acad. Sci. USA. 2015;112:5361–5366. doi: 10.1073/pnas.1321195111. PubMed DOI PMC

Wei Y., Yang C.R., Wei Y.P., Zhao Z.A., Hou Y., Schatten H., Sun Q.Y. Paternally induced transgenerational inheritance of susceptibility to cardiac ischemia-reperfusion injury. Front. Biosci. 2014;19:1074–1087.

Janssen B.G., Godderis L., Pieters N., Poels K., Kiciński M., Cuypers A., Fierens F., Penders J., Plusquin M., Gyselaers W., et al. Placental DNA hypomethylation in association with particulate air pollution in early life. Part. Fibre Toxicol. 2017;14:1–14. PubMed PMC

Dolinoy D.C., Weidman J.R., Waterland R.A., Jirtle R.L. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ. Health Perspect. 2007;115:879–885. PubMed PMC

Guerrero-Bosagna C., Covert T.R., Haque M.M., Settles M., Nilsson E.E., Anway M.D., Skinner M.K. Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers. Reprod. Toxicol. 2012;34:694–707. doi: 10.1016/j.reprotox.2012.09.005. PubMed DOI PMC

Bouchard M.F., Bellinger D.C., Wright R.O., Weisskopf M.G. Attention-deficit/hyperactivity disorder and urinary metabolites of organophosphate pesticides. Pediatrics. 2010;125:e1270–e1277. doi: 10.1542/peds.2009-3058. PubMed DOI PMC

Rossides M., Kampitsi C.E., Talbäck M., Mogensen H., Wiebert P., Feychting M., Tettamanti G. Risk of Cancer in Children of Parents Occupationally Exposed to Hydrocarbon Solvents and Engine Exhaust Fumes: A Register-Based Nested Case-Control Study from Sweden (1960–2015) Environ. Health Perspect. 2022;130:77002. doi: 10.1289/EHP11035. PubMed DOI PMC

Short A.K., Fennell K.A., Perreau V.M., Fox A., O’Bryan M.K., Kim J.H., Bredy T.W., Pang T.Y., Hannan A.J. Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring. Transl. Psychiatry. 2016;6:e837. doi: 10.1038/tp.2016.109. PubMed DOI PMC

Liu Y., Zhi X. Advances in Genetic Diagnosis of Kallmann Syndrome and Genetic Interruption. Reprod. Sci. 2022;29:1697–1709. doi: 10.1007/s43032-021-00638-8. PubMed DOI PMC

Cox C.M., Thoma M.E., Tchangalova N., Mburu G., Bornstein M.J., Johnson C.L., Kiarie J. Infertility prevalence and the methods of estimation from 1990 to 2021: A systematic review and meta-analysis. Hum. Reprod. Open. 2022;2022:hoac051. doi: 10.1093/hropen/hoac051. PubMed DOI PMC

Mazzilli R., Rucci C., Vaiarelli A., Cimadomo D., Ubaldi F.M., Foresta C., Ferlin A. Male factor infertility and assisted reproductive technologies: Indications, minimum access criteria and outcomes. J. Endocrinol. Investig. 2023;46:1079–1085. doi: 10.1007/s40618-022-02000-4. PubMed DOI PMC

Xie C., Chen X., Liu Y., Wu Z., Ping P. Multicenter study of genetic abnormalities associated with severe oligospermia and non-obstructive azoospermia. J. Int. Med. Res. 2018;46:107–114. doi: 10.1177/0300060517718771. PubMed DOI PMC

Colaco S., Modi D. Genetics of the human Y chromosome and its association with male infertility. Reprod. Biol. Endocrinol. 2018;16:14. doi: 10.1186/s12958-018-0330-5. PubMed DOI PMC

Bardoni B., Zuffardi O., Guioli S., Ballabio A., Simi P., Cavalli P., Grimoldi M.G., Fraccaro M., Camerino G. A deletion map of the human Yq11 region: Implications for the evolution of the Y chromosome and tentative mapping of a locus involved in spermatogenesis. Genomics. 1991;11:443–451. doi: 10.1016/0888-7543(91)90153-6. PubMed DOI

Rabinowitz M.J., Huffman P.J., Haney N.M., Kohn T.P. Y-Chromosome Microdeletions: A Review of Prevalence, Screening, and Clinical Considerations. Appl. Clin. Genet. 2021;14:51–59. doi: 10.2147/TACG.S267421. PubMed DOI PMC

Foresta C., Moro E., Ferlin A. Y chromosome microdeletions and alterations of spermatogenesis. Endocr. Rev. 2001;22:226–239. PubMed

Vogt P.H., Edelmann A., Kirsch S., Henegariu O., Hirschmann P., Kiesewetter F., Kohn F.M., Schill W.B., Farah S., Ramos C., et al. Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11. Hum. Mol. Genet. 1996;5:933–943. doi: 10.1093/hmg/5.7.933. PubMed DOI

SAl-Ouqaili M.T., Al-Ani S.K., Alaany R., Al-Qaisi M.N. Detection of partial and/or complete Y chromosome microdeletions of azoospermia factor a (AZFa) sub-region in infertile Iraqi patients with azoospermia and severe oligozoospermia. J. Clin. Lab. Anal. 2022;36:e24272. doi: 10.1002/jcla.24272. PubMed DOI PMC

Repping S., Skaletsky H., Lange J., Silber S., Van Der Veen F., Oates R.D., Page D.C., Rozen S. Recombination between palindromes P5 and P1 on the human Y chromosome causes massive deletions and spermatogenic failure. Am. J. Hum. Genet. 2002;71:906–922. doi: 10.1086/342928. PubMed DOI PMC

Suganthi R., Vijesh V.V., Vandana N., Fathima Ali Benazir J. Y choromosomal microdeletion screening in the workup of male infertility and its current status in India. Int. J. Fertil. Steril. 2014;7:253–266. PubMed PMC

Navarro-Costa P., Plancha C.E., Goncalves J. Genetic dissection of the AZF regions of the human Y chromosome: Thriller or filler for male (in) fertility? J. Biomed. Biotechnol. 2010;2010:936569. doi: 10.1155/2010/936569. PubMed DOI PMC

Yuen W., Golin A.P., Flannigan R., Schlegel P.N. Histology and sperm retrieval among men with Y chromosome microdeletions. Transl. Androl. Urol. 2021;10:1442–1456. doi: 10.21037/tau.2020.03.35. PubMed DOI PMC

Kuroda-Kawaguchi T., Skaletsky H., Brown L.G., Minx P.J., Cordum H.S., Waterston R.H., Wilson R.K., Silber S., Oates R., Rozen S., et al. The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat. Genet. 2001;29:279–286. doi: 10.1038/ng757. PubMed DOI

Vogt P.H., Bender U., Deibel B., Kiesewetter F., Zimmer J., Strowitzki T. Human AZFb deletions cause distinct testicular pathologies depending on their extensions in Yq11 and the Y haplogroup: New cases and review of literature. Cell Biosci. 2021;11:60. doi: 10.1186/s13578-021-00551-2. PubMed DOI PMC

Witherspoon L., Dergham A., Flannigan R. Y-microdeletions: A review of the genetic basis for this common cause of male infertility. Transl. Androl. Urol. 2021;10:1383–1390. doi: 10.21037/tau-19-599. PubMed DOI PMC

Klinefelter H.F., Jr., Reifenstein E.C., Jr., Albright F., Jr. Syndrome characterized by gynecomastia, aspermatogenesis without A-Leydigism, and increased excretion of follicle-stimulating hormone. J. Clin. Endocrinol. 1942;2:615–627. doi: 10.1210/jcem-2-11-615. DOI

Groth K.A., Skakkebæk A., Høst C., Gravholt C.H., Bojesen A. Klinefelter syndrome—A clinical update. J. Clin. Endocrinol. Metab. 2013;98:20–30. doi: 10.1210/jc.2012-2382. PubMed DOI

Rodrigues V.O., Polisseni F., Pannain G.D., Carvalho M.A.G. Genetics in human reproduction. JBRA Assist. Reprod. 2020;24:480–491. doi: 10.5935/1518-0557.20200007. PubMed DOI PMC

Thomas N., Hassold T. Aberrant recombination and the origin of Klinefelter syndrome. Hum. Reprod. Update. 2003;9:309–317. doi: 10.1093/humupd/dmg028. PubMed DOI

Jo D.G., Seo J.T., Lee J.S., Park S.Y., Kim J.W. Klinefelter syndrome diagnosed by prenatal screening tests in high-risk groups. Korean J. Urol. 2013;54:263. doi: 10.4111/kju.2013.54.4.263. PubMed DOI PMC

Bonomi M., Rochira V., Pasquali D., Balercia G., Jannini E., Ferlin A. Klinefelter syndrome (KS): Genetics, clinical phenotype and hypogonadism. J. Endocrinol. Investig. 2017;40:123–134. doi: 10.1007/s40618-016-0541-6. PubMed DOI PMC

Lanfranco F., Kamischke A., Zitzmann M., Nieschlag E. Klinefelter’s syndrome. Lancet. 2004;364:273–283. doi: 10.1016/S0140-6736(04)16678-6. PubMed DOI

Turriff A., Macnamara E., Levy H.P., Biesecker B. The impact of living with Klinefelter syndrome: A qualitative exploration of adolescents and adults. J. Genet. Couns. 2017;26:728–737. doi: 10.1007/s10897-016-0041-z. PubMed DOI PMC

Høst C., Skakkebæk A., Groth K.A., Bojesen A. The role of hypogonadism in Klinefelter syndrome. Asian J. Androl. 2014;16:185–191. doi: 10.4103/1008-682X.122201. PubMed DOI PMC

Liu S., Yuan T., Song S., Chen S., Wang L., Fu Y., Dong Y., Tang Y., Zhao W. Glucose metabolic disorder in Klinefelter syndrome: A retrospective analysis in a single Chinese hospital and literature review. BMC Endocr. Disord. 2021;21:239. doi: 10.1186/s12902-021-00893-5. PubMed DOI PMC

O’Connor M.J., Snyder E.A., Hayes F.J. Klinefelter syndrome and diabetes. Curr. Diabetes Rep. 2019;19:1–6. doi: 10.1007/s11892-019-1197-3. PubMed DOI

Bojesen A., Juul S., Birkebæk N.H., Gravholt C.H. Morbidity in Klinefelter syndrome: A Danish register study based on hospital discharge diagnoses. J. Clin. Endocrinol. Metab. 2006;91:1254–1260. doi: 10.1210/jc.2005-0697. PubMed DOI

Davis S.M., DeKlotz S., Nadeau K.J., Kelsey M.M., Zeitler P.S., Tartaglia N.R. High prevalence of cardiometabolic risk features in adolescents with 47,XXY/Klinefelter syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 2020;184:327–333. doi: 10.1002/ajmg.c.31784. PubMed DOI PMC

Agarwal S., Dekam M. Multiple cardiac anomalies in an elderly man with Klinefelter’s syndrome. Singap. Med. J. 2011;52:e15–e17. PubMed

Jørgensen I.N., Skakkebaek A., Andersen N.H., Pedersen L.N., Hougaard D.M., Bojesen A., Trolle C., Gravholt C.H. Short QTc interval in males with klinefelter syndrome—Influence of CAG repeat length, body composition, and testosterone replacement therapy. Pacing Clin. Electrophysiol. 2015;38:472–482. doi: 10.1111/pace.12580. PubMed DOI

Zitzmann M., Bongers R., Werler S., Bogdanova N., Wistuba J., Kliesch S., Gromoll J., Tüttelmann F. Gene expression patterns in relation to the clinical phenotype in Klinefelter syndrome. J. Clin. Endocrinol. Metab. 2015;100:E518–E523. doi: 10.1210/jc.2014-2780. PubMed DOI

Fricke G., Mattern H., Schweikert H., Schwanitz G. Klinefelter’s syndrome and mitral valve prolapse. An echocardiographic study in twenty-two patients. Biomed. Pharmacother. 1984;38:88–97. PubMed

Pasquali D., Arcopinto M., Renzullo A., Rotondi M., Accardo G., Salzano A., Esposito D., Saldamarco L., Isidori A.M., Marra A.M., et al. Cardiovascular abnormalities in Klinefelter syndrome. Int. J. Cardiol. 2013;168:754–759. doi: 10.1016/j.ijcard.2012.09.215. PubMed DOI

Shiraishi K., Matsuyama H. Klinefelter syndrome: From pediatrics to geriatrics. Reprod. Med. Biol. 2019;18:140–150. doi: 10.1002/rmb2.12261. PubMed DOI PMC

Turriff A., Levy H.P., Biesecker B. Prevalence and psychosocial correlates of depressive symptoms among adolescents and adults with Klinefelter syndrome. Genet. Med. 2011;13:966–972. doi: 10.1097/GIM.0b013e3182227576. PubMed DOI PMC

Sasco A.J., Lowenfels A.B., Jong P.P.D. epidemiology of male breast cancer. A meta-analysis of published case-control studies and discussion of selected aetiological factors. Int. J. Cancer. 1993;53:538–549. doi: 10.1002/ijc.2910530403. PubMed DOI

Völkl T.M., Langer T., Aigner T., Greess H., Beck J.D., Rauch A.M., Dörr H.G. Klinefelter syndrome and mediastinal germ cell tumors. Am. J. Med. Genet. Part A. 2006;140:471–481. doi: 10.1002/ajmg.a.31103. PubMed DOI

Gómez-Raposo C., Tévar F.Z., Moyano M.S., Gómez M.L., Casado E. Male breast cancer. Cancer Treat. Rev. 2010;36:451–457. doi: 10.1016/j.ctrv.2010.02.002. PubMed DOI

Brinton L.A. Breast cancer risk among patients with Klinefelter syndrome. Acta Paediatr. 2011;100:814–818. doi: 10.1111/j.1651-2227.2010.02131.x. PubMed DOI PMC

De Sanctis V., Fiscina B., Soliman A., Giovannini M., Yassin M. Klinefelter syndrome and cancer: From childhood to adulthood. Pediatr. Endocrinol. Rev. 2013;11:44–50. PubMed

Ji J., Zöller B., Sundquist J., Sundquist K. Risk of solid tumors and hematological malignancy in persons with Turner and Klinefelter syndromes: A national cohort study. Int. J. Cancer. 2016;139:754–758. doi: 10.1002/ijc.30126. PubMed DOI

Lazúrová I., Rovenský J., Imrich R., Blažíčková S., Lazúrová Z., Payer J. Autoimmune rheumatic diseases and Klinefelter syndrome Autoimunitné reumatické choroby a Klinefelterov syndróm. Eur. Pharm. J. 2016;63:18–22. doi: 10.1515/afpuc-2016-0017. DOI

Dode C., Hardelin J.P. Kallmann syndrome. Eur. J. Hum. Genet. 2009;17:139–146. doi: 10.1038/ejhg.2008.206. PubMed DOI PMC

Shima H., Tokuhiro E., Okamoto S., Nagamori M., Ogata T., Narumi S., Nakamura A., Izumi Y., Jinno T., Suzuki E., et al. SOX10 Mutation Screening for 117 Patients with Kallmann Syndrome. J. Endocr. Soc. 2021;5:bvab056. doi: 10.1210/jendso/bvab056. PubMed DOI PMC

Marhari H., Chahdi Ouazzani F.Z., Ouahabi H.E., Bouguenouch L. Le syndrome de Kallmann-de Morsier: À propos de trois cas [Kallmann-de Morsier syndrome: About 3 cases] Pan Afr. Med. J. 2019;33:221. doi: 10.11604/pamj.2019.33.221.11678. PubMed DOI PMC

Maestre de San Juan A. Teratolagia: Falta total de los nervios olfactorios con anosmia en un individuo en quien existia una atrofifia congenita de los testiculos y miembro viril. El Siglo Me’dico. 1856;3:211–221.

Kallmann F.J., Schoenfeld W.A., Barrera S.E. The genetic aspects of primary eunuchoidism. Am. J. Ment. Defificiency. 1944;158:203–236.

Stamou M.I., Georgopoulos N.A. Kallmann syndrome: Phenotype and genotype of hypogonadotropic hypogonadism. Metabolism. 2018;86:124–134. doi: 10.1016/j.metabol.2017.10.012. PubMed DOI PMC

Hu Y., Tanriverdi F., MacColl G.S., Bouloux P.M. Kallmann syndrome: Molecular pathogenesis. Int. J. Biochem. Cell. Biol. 2003;35:1157–1162. doi: 10.1016/S1357-2725(02)00395-3. PubMed DOI

Dode C., Teixetra L., Levillers Fouveaut C., Bouchard P., Kottler M.L., Lespinasse J., Lienhardt-Roussie A., Mathieu M., Moerman A., Morgan G. Kallmann syndrome: Mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet. 2006;2:1648–1652. doi: 10.1371/journal.pgen.0020175. PubMed DOI PMC

Ogata T., Fujiwara I., Ogawa E., Sato N., Udaka T., Kosaki K. Kallman syndrome phenotype in a female patient with CHARGE syndrome and CHD7 mutation. Endocr J. 2006;53:741–743. doi: 10.1507/endocrj.K06-099. PubMed DOI

Young J., Xu C., Papadakis G.E., Acierno J.S., Maione L., Hietamäki J., Raivio T., Pitteloud N. Clinical Management of Congenital Hypogonadotropic Hypogonadism. Endocr. Rev. 2019;40:669–710. doi: 10.1210/er.2018-00116. PubMed DOI

Gu W.J., Zhang Q., Wang Y.Q., Yang G.Q., Hong T.P., Zhu D.L., Yang J.K., Ning G., Jin N., Chen K., et al. Mutation analyses in pedigrees and sporadic cases of ethnic Han Chinese Kallmann syndrome patients. Exp. Biol. Med. 2015;240:1480–1489. doi: 10.1177/1535370215587531. PubMed DOI PMC

Soussi-Yanicostas N., Faivre-Sarrailh C., Hardelin J.P., Levilliers J., Rougon G., Petit C. Anosmin-1 underlying the X chromosomelinked Kallmann syndrome is an adhesion molecule that can modulate neurite growth in a cell-type specifific manner. J. Cell Sci. 1998;111:2953–2965. doi: 10.1242/jcs.19.111.2953. PubMed DOI

Soussi-Yanicostas N., de Castro F., Julliard A.K., Perfettini I., Chedotal A., Petit C. Anosmin1, defective in the X-linked form of Kallmann syndrome, promotes axonal branch formation from olfactory bulb output neurons. Cell. 2002;109:217–228. doi: 10.1016/S0092-8674(02)00713-4. PubMed DOI

Gonzalez-Martinez D., Kim S.H., Hu Y., Guimond S., Schofifield J., Winyard P., Vannelli G.B., Turnbull J., Bouloux P.M. Anosmin-1 modulates fifibroblast growth factor receptor 1 signaling in human gonadotropinreleasing hormone olfactory neuroblasts through a heparan sulfatedependent mechanism. J. Neurosci. 2004;24:10384–10392. doi: 10.1523/JNEUROSCI.3400-04.2004. PubMed DOI PMC

Hardelin J.P., Levilliers J., Blanchard S., Carel J.C., Leutenegger M., Pinard-ertelletto J.P., Bouloux P., Petit C. Heterogeneity in the mutations responsible for X chromosome-linked Kallmann syndrome. Hum. Mol. Genet. 1993;2:373–377. doi: 10.1093/hmg/2.4.373. PubMed DOI

Quinton R., Duke V.M., de Zoysa P.A.R., Platts A.D., Valentine A., Kendall B., Pickman S., Kirk J.M., Besser G.M., Jacobs H.S., et al. The neuroradiology of Kallmann’s syndrome: A genotypic and phenotypic analysis. J. Clin. Endocrinol. Metab. 1996;81:3010–3017. doi: 10.1210/jcem.81.8.8768867. PubMed DOI

Albuisson J., Pecheux C., Carel J.C., Lacombe D., Leheup B., Lapuzina P., Bouchard P., Legius E., Matthijs G., Wasniewska M., et al. Kallmann syndrome: 14 novel mutations in KAL1 and FGFR1 (KAL2) Hum. Mutat. 2005;25:98–99. doi: 10.1002/humu.9298. PubMed DOI

Dode C., Levilliers J., Dupont J.M., De Paepe A., Le Du N., SoussiYanicostas N., Coimbra R.S., Delmaghani S., Compain-Nouaille S., Baverel F., et al. Loss of function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat. Genet. 2003;33:463–465. doi: 10.1038/ng1122. PubMed DOI

Sato N., Katsumata N., Kagami M., Hasegawa T., Hori X., Kawakita S., Minowada S., Shimotsuka A., Shishiba Y., Yokozawa M., et al. Clinical assessment and mutation analysis of Kallmann syndrome 1 (KAL1) and fifibroblast growth factor receptor 1 (FGFR1, or KAL2) in five families and 18 sporadic patients. J. Clin. Endocrinol. Metab. 2004;89:1079–1088. doi: 10.1210/jc.2003-030476. PubMed DOI

Stamou M.I., Cox K.H., Crowley W.F., Jr. Discovering genes essential to the hypothalamic regulation of human reproduction using a human disease model: Adjusting to life in the “-omics” era. Endocr. Rev. 2015;36:603–621. doi: 10.1210/er.2015-1045. PubMed DOI PMC

Topaloglu A.K., Kotan L.D. Genetics of hypogonadotropic hypogonadism. Endocr. Dev. 2016;29:36–49. PubMed

Cariboni A., Balasubramanian R. Kallmann syndrome and idiopathic hypogonadotropic hypogonadism: The role of semaphorin signaling on GnRH neurons. Handb. Clin. Neurol. 2021;182:307–315. PubMed PMC

Lacal I., Ventura R. Epigenetic Inheritance: Concepts, Mechanisms and Perspectives. Front. Mol. Neurosci. 2018;11:292. doi: 10.3389/fnmol.2018.00292. PubMed DOI PMC

Nilsson E.E., Ben Maamar M., Skinner M.K. Role of epigenetic transgenerational inheritance in generational toxicology. Environ. Epigenet. 2022;8:dvac001. doi: 10.1093/eep/dvac001. PubMed DOI PMC

Zheng X., Li Z., Wang G., Wang H., Zhou Y., Zhao X., Cheng C.Y., Qiao Y., Sun F. Sperm epigenetic alterations contribute to inter- and transgenerational effects of paternal exposure to long-term psychological stress via evading offspring embryonic reprogramming. Cell Discov. 2021;7:101. doi: 10.1038/s41421-021-00343-5. PubMed DOI PMC

Allegrucci C., Thurston A., Lucas E., Young L. Epigenetics and the germline. Reproduction. 2005;129:137–149. doi: 10.1530/rep.1.00360. PubMed DOI

Kiselev I.S., Kulakova O.G., Boyko A.N., Favorova O.O. DNA Methylation As an Epigenetic Mechanism in the Development of Multiple Sclerosis. Acta Naturae. 2021;13:45–57. doi: 10.32607/actanaturae.11043. PubMed DOI PMC

Shanthikumar S., Neeland M.R., Maksimovic J., Ranganathan S.C., Saffery R. DNA methylation biomarkers of future health outcomes in children. Mol. Cell Pediatr. 2020;7:7. doi: 10.1186/s40348-020-00099-0. PubMed DOI PMC

Luján S., Caroppo E., Niederberger C., Arce J.-C., Sadler-Riggleman I., Beck D., Nilsson E., Skinner M.K. Sperm DNA methylation epimutation biomarkers for male infertility and FSH therapeutic responsiveness. Sci. Rep. 2019;9:16786. doi: 10.1038/s41598-019-52903-1. PubMed DOI PMC

Ichiyanagi T., Ichiyanagi K., Miyake M., Sasaki H. Accumulation and loss of asymmetric non-CpG methylation during male germ-cell development. Nucleic Acids Res. 2013;41:738–745. doi: 10.1093/nar/gks1117. PubMed DOI PMC

Gkountela S., Zhang K.X., Shafiq T.A., Liao W.-W., Hargan-Calvopiña J., Chen P.-Y., Clark A.T. DNA demethylation dynamics in the human prenatal germline. Cell. 2015;161:1425–1436. doi: 10.1016/j.cell.2015.05.012. PubMed DOI PMC

Tang W.W., Dietmann S., Irie N., Leitch H.G., Floros V.I., Bradshaw C.R., Hackett J.A., Chinnery P.F., Surani M.A. A unique gene regulatory network resets the human germline epigenome for development. Cell. 2015;161:1453–1467. doi: 10.1016/j.cell.2015.04.053. PubMed DOI PMC

Rousseaux S., Khochbin S. Histone acylation beyond acetylation: Terra incognita in chromatin biology. Cell J. 2015;17:1. PubMed PMC

Henikoff S., Smith M.M. Histone variants and epigenetics. Cold Spring Harb. Perspect. Biol. 2015;7:a019364. doi: 10.1101/cshperspect.a019364. PubMed DOI PMC

Gaucher J., Reynoird N., Montellier E., Boussouar F., Rousseaux S., Khochbin S. From meiosis to postmeiotic events: The secrets of histone disappearance. FEBS J. 2010;277:599–604. doi: 10.1111/j.1742-4658.2009.07504.x. PubMed DOI

Goudarzi A., Zhang D., Huang H., Barral S., Kwon O.K., Qi S., Tang Z., Buchou T., Vitte A.-L., He T., et al. Dynamic competing histone H4 K5K8 acetylation and butyrylation are hallmarks of highly active gene promoters. Mol. Cell. 2016;62:169–180. doi: 10.1016/j.molcel.2016.03.014. PubMed DOI PMC

Barral S., Morozumi Y., Tanaka H., Montellier E., Govin J., de Dieuleveult M., Charbonnier G., Coute Y., Puthier D., Buchou T., et al. Histone variant H2A. L. 2 guides transition protein-dependent protamine assembly in male germ cells. Mol. Cell. 2017;66:89–101.e8. doi: 10.1016/j.molcel.2017.02.025. PubMed DOI

Skinner M.K., Maamar M.B., Sadler-Riggleman I., Beck D., Nilsson E., McBirney M., Klukovich R., Xie Y., Tang C., Yan W. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin. 2018;11:1–24. doi: 10.1186/s13072-018-0178-0. PubMed DOI PMC

Carrell D.T., Emery B.R., Hammoud S. The aetiology of sperm protamine abnormalities and their potential impact on the sperm epigenome. Int. J. Androl. 2008;31:537–545. doi: 10.1111/j.1365-2605.2008.00872.x. PubMed DOI

Maamar M.B., Beck D., Nilsson E., McCarrey J.R., Skinner M.K. Developmental origins of transgenerational sperm histone retention following ancestral exposures. Dev. Biol. 2020;465:31–45. doi: 10.1016/j.ydbio.2020.06.008. PubMed DOI PMC

Hammoud S.S., Nix D.A., Hammoud A.O., Gibson M., Cairns B.R., Carrell D.T. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum. Reprod. 2011;26:2558–2569. doi: 10.1093/humrep/der192. PubMed DOI PMC

Ihara M., Meyer-Ficca M.L., Leu N.A., Rao S., Li F., Gregory B.D., Zalenskaya I.A., Schultz R.M., Meyer R.G. Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression. PLoS Genet. 2014;10:e1004317. doi: 10.1371/journal.pgen.1004317. PubMed DOI PMC

Luense L.J., Wang X., Schon S.B., Weller A.H., Shiao E.L., Bryant J.M., Bartolomei M.S., Coutifaris C., Garcia B.A., Berger S.L. Comprehensive analysis of histone post-translational modifications in mouse and human male germ cells. Epigenetics Chromatin. 2016;9:24. doi: 10.1186/s13072-016-0072-6. PubMed DOI PMC

Van der Heijden G.W., Ramos L., Baart E.B., van den Berg I.M., Derijck A.A., van der Vlag J., Martini E., de Boer P. Sperm-derived histones contribute to zygotic chromatin in humans. BMC Dev. Biol. 2008;8:34. doi: 10.1186/1471-213X-8-34. PubMed DOI PMC

Carone B.R., Hung J.-H., Hainer S.J., Chou M.-T., Carone D.M., Weng Z., Fazzio T.G., Rando O.J. High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm. Dev. Cell. 2014;30:11–22. doi: 10.1016/j.devcel.2014.05.024. PubMed DOI PMC

Samans B., Yang Y., Krebs S., Sarode G.V., Blum H., Reichenbach M., Wolf E., Steger K., Dansranjavin T., Schagdarsurengin U. Uniformity of nucleosome preservation pattern in Mammalian sperm and its connection to repetitive DNA elements. Dev. Cell. 2014;30:23–35. doi: 10.1016/j.devcel.2014.05.023. PubMed DOI

Kurimoto K., Saitou M., editors. Cold Spring Harbor Symposia on Quantitative Biology. Cold Spring Harbor Laboratory Press; New York, NY, USA: 2015. Mechanism and reconstitution in vitro of germ cell development in mammals. PubMed

Teperek M., Simeone A., Gaggioli V., Miyamoto K., Allen G.E., Erkek S., Kwon T., Marcotte E.M., Zegerman P., Bradshaw C.R., et al. Sperm is epigenetically programmed to regulate gene transcription in embryos. Genome Res. 2016;26:1034–1046. doi: 10.1101/gr.201541.115. PubMed DOI PMC

Bao J., Bedford M.T. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction. 2016;151:R55. doi: 10.1530/REP-15-0562. PubMed DOI PMC

Miller D., Brinkworth M., Iles D. Paternal DNA packaging in spermatozoa: More than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction. 2010;139:287–301. doi: 10.1530/REP-09-0281. PubMed DOI

Rivera C., Gurard-Levin Z.A., Almouzni G., Loyola A. Histone lysine methylation and chromatin replication. Biochim. Biophys. Acta-Gene Regul. Mech. 2014;1839:1433–1439. doi: 10.1016/j.bbagrm.2014.03.009. PubMed DOI

Verma A., Rajput S., Kumar S., De S., Chakravarty A.K., Kumar R., Datta T.K. Differential histone modification status of spermatozoa in relation to fertility of buffalo bulls. J. Cell. Biochem. 2015;116:743–753. doi: 10.1002/jcb.25029. PubMed DOI

Kutchy N., Menezes E., Chiappetta A., Tan W., Wills R.W., Kaya A., Topper E., Moura A.A., Perkins A.D., Memili E. Acetylation and methylation of sperm histone 3 lysine 27 (H3K27ac and H3K27me3) are associated with bull fertility. Andrologia. 2018;50:e12915. doi: 10.1111/and.12915. PubMed DOI

Barratt C.L., Aitken R.J., Björndahl L., Carrell D.T., de Boer P., Kvist U., Lewis S.E., Perreault S.D., Perry M.J., Ramos L., et al. Sperm DNA: Organization, protection and vulnerability: From basic science to clinical applications—A position report. Hum. Reprod. 2010;25:824–838. doi: 10.1093/humrep/dep465. PubMed DOI

Yamauchi Y., Shaman J.A., Boaz S.M., Ward W.S. Paternal pronuclear DNA degradation is functionally linked to DNA replication in mouse oocytes. Biol. Reprod. 2007;77:407–415. doi: 10.1095/biolreprod.107.061473. PubMed DOI

Shaman J.A., Yamauchi Y., Steven Ward W. Function of the sperm nuclear matrix. Arch. Androl. 2007;53:135–140. doi: 10.1080/01485010701329378. PubMed DOI

Barbu M.G., Thompson D.C., Suciu N., Voinea S.C., Cretoiu D., Predescu D.V. The Roles of MicroRNAs in Male Infertility. Int. J. Mol. Sci. 2021;22:2910. doi: 10.3390/ijms22062910. PubMed DOI PMC

Cecere G. Small RNAs in epigenetic inheritance: From mechanisms to trait transmission. FEBS Lett. 2021;595:2953–2977. doi: 10.1002/1873-3468.14210. PubMed DOI PMC

Suh N., Blelloch R. Small RNAs in early mammalian development: From gametes to gastrulation. Development. 2011;138:1653–1661. doi: 10.1242/dev.056234. PubMed DOI PMC

Du W., Yang W., Xuan J., Gupta S., Krylov S.N., Ma X., Yang Q., Yang B.Z. Reciprocal regulation of miRNAs and piRNAs in embryonic development. Cell Death Differ. 2016;23:1458–1470. doi: 10.1038/cdd.2016.27. PubMed DOI PMC

Yuan S., Schuster A., Tang C., Yu T., Ortogero N., Bao J., Zheng H., Yan W. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Dev. Camb. Engl. 2016;143:635e47. doi: 10.1242/dev.131755. PubMed DOI PMC

Champroux A., Cocquet J., Henry-Berger J., Drevet J.R., Kocer A. A decade of exploring the mammalian sperm epigenome: Paternal epigenetic and transgenerational inheritance. Front. Cell Dev. Biol. 2018;6:50. doi: 10.3389/fcell.2018.00050. PubMed DOI PMC

Sharma U., Conine C.C., Shea J.M., Boskovic A., Derr A.G., Bing X.Y., Belleannee C., Kucukural A., Serra R.W., Sun F., et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016;351:391–396. doi: 10.1126/science.aad6780. PubMed DOI PMC

Grandjean V., Fourré S., De Abreu D.A., Derieppe M.A., Remy J.J., Rassoulzadegan M. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci. Rep. 2015;5:18193. doi: 10.1038/srep18193. PubMed DOI PMC

Chen Q., Yan M., Cao Z., Li X., Zhang Y., Shi J., Feng G.H., Peng H., Zhang X., Zhang Y., et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016;351:397–400. doi: 10.1126/science.aad7977. PubMed DOI

Yuan S., Schuster A., Tang C., Yu T., Ortogero N., Bao J., Zheng H., Yan W., Wang Z. Sperm-borne small RNA profiling reveals piRNAs in human seminal plasma. Oncotarget. 2020;11:55–70.

Sendler E., Johnson G.D., Mao S., Goodrich R.D., Diamond M.P., Hauser R., Krawetz S.A. The effect of smoking on the small non-coding RNAome in human sperm. Hum. Reprod. 2016;31:2525–2537.

Rodgers A.B., Morgan C.P., Leu N.A., Bale T.L. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc. Natl. Acad. Sci. USA. 2015;112:13699–13704. doi: 10.1073/pnas.1508347112. PubMed DOI PMC

Fullston T., Ohlsson Teague E.M., Palmer N.O., DeBlasio M.J., Mitchell M., Corbett M., Print C.G., Owens J.A., Lane M. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 2013;27:4226–4243. doi: 10.1096/fj.12-224048. PubMed DOI

Benchaib M., Braun V., Ressnikof D., Lornage J., Durand P., Niveleau A. Influence of global sperm DNA methylation on IVF results. Hum. Reprod. 2010;25:2158–2168. doi: 10.1093/humrep/deh684. PubMed DOI

Skakkebæk A., Viuff M., Nielsen M.M., Gravholt C.H., editors. American Journal of Medical Genetics Part C: Seminars in Medical Genetics. Wiley Online Library; Hoboken, NJ, USA: 2020. Epigenetics and genomics in Klinefelter syndrome. PubMed

Passerini V., Ozeri-Galai E., De Pagter M.S., Donnelly N., Schmalbrock S., Kloosterman W.P., Kerem B., Storchová Z. The presence of extra chromosomes leads to genomic instability. Nat. Commun. 2016;7:10754. doi: 10.1038/ncomms10754. PubMed DOI PMC

Jowhar Z., Shachar S., Gudla P.R., Wangsa D., Torres E., Russ J.L., Pegoraro G., Ried T., Raznahan A., Misteli T. Effects of human sex chromosome dosage on spatial chromosome organization. Mol. Biol. Cell. 2018;29:2458–2469. doi: 10.1091/mbc.E18-06-0359. PubMed DOI PMC

Migicovsky Z., Kovalchuk I. Epigenetic memory in mammals. Front. Genet. 2011;2:28. doi: 10.3389/fgene.2011.00028. PubMed DOI PMC

Tiffon C. The Impact of Nutrition and Environmental Epigenetics on Human Health and Disease. Int. J. Mol. Sci. 2018;19:3425. doi: 10.3390/ijms19113425. PubMed DOI PMC

Castillo J., Estanyol J.M., Ballescá J.L., Oliva R. Human sperm chromatin epigenetic potential: Genomics, proteomics, and male infertility. Asian J. Androl. 2015;17:601–609. doi: 10.4103/1008-682X.153302. PubMed DOI PMC

Barrachina F., Battistone M.A., Castillo J., Mallofré C., Jodar M., Breton S., Oliva R. Sperm acquire epididymis-derived proteins through epididymosomes. Hum. Reprod. 2022;37:651–668. doi: 10.1093/humrep/deac015. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...