Chemical and Thermal Treatment for Drying Cassava Tubers: Optimization, Microstructure, and Dehydration Kinetics

. 2023 Dec 16 ; 13 (12) : . [epub] 20231216

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38137956

Grantová podpora
20233101 Internal Grant Agency of the Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague

Perishable commodities like cassava necessitate effective postharvest preservation for various industrial applications. Hence, optimizing pretreatment processes and modeling drying kinetics hold paramount importance. This study aimed to optimize cassava pretreatment using the central composite design of a response surface methodology while also assessing microstructure and dehydration kinetics. Diverse chemical and thermal pretreatments were explored, encompassing sodium metabisulfite concentrations (0-4% w/w), citric acid concentrations (0-4% w/w), and blanching time (0-4 min). The four investigated responses were moisture content, whiteness index, activation energy (Ea), and effective moisture diffusivity (Deff). Employing five established drying models, suitability was appraised after optimal pretreatment conditions were determined. The findings revealed that moisture content ranged from 5.82 to 9.42% db, whereas the whiteness index ranged from 87.16 to 94.23. Deff and Ea ranged from 5.06 × 10-9 to 6.71 × 10-9 m2/s and 29.65-33.28 kJ/mol, respectively. The optimal pretreatment conditions for dried cassava were identified by optimizing the use of 1.31% citric acid, 1.03% sodium metabisulfite, and blanching time for 1.01 min. The microstructure indicated that particular chemical and thermal pretreatment configurations yielded particles in the shape of circular and elliptical granules. The logarithmic model provided the most accurate description of the dehydration kinetics, with the highest R2 value (0.9859) and the lowest χ2, RSME, and SSE values of 0.0351, 0.0015, and 0.0123, respectively.

Zobrazit více v PubMed

Chimphepo L., Alamu E.O., Monjerezi M., Ntawuruhunga P., Saka J.D.K. Physicochemical parameters and functional properties of flours from advanced genotypes and improved cassava varieties for industrial applications. LWT. 2021;147:111592. doi: 10.1016/j.lwt.2021.111592. PubMed DOI PMC

FAO . Statistics Division Food and Agriculture Organization of the United Nations. FAOSTAT; Rome, Italy: 2021. [(accessed on 3 October 2023)]. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL.

Abass A.B., Mlingi N., Ranaivoson R., Zulu M., Mukuka I., Abele S. Potential for Commercial Production and Marketing of Cassava: Experiences from the Small-Scale Cassava Processing Project in East and Southern Africa. IITA; Ibadan, Nigeria: 2013.

Warji W., Tamrin T. Hybrid Dryer of Cassava Chips. IOP Conf. Ser. Earth Environ. Sci. 2021;757:012027. doi: 10.1088/1755-1315/757/1/012027. DOI

Elisabeth D.A.A., Utomo J.S., Byju G., Ginting E. Cassava flour production by small scale processors, its quality and economic feasibility. Food Sci. Technol. 2022;42:e41522. doi: 10.1590/fst.41522. DOI

Kwaw E., Osae R., Apaliya M.T., Rapheal A.N., Aikins A.S.S., Olivia A., Nancy A., Veronica O. Influence of different osmotic dehydration pretreatment on the physiochemical and sensory characteristics of fried cassava chips (Manihot esculenta) J. Agric. Food Res. 2023;12:100613. doi: 10.1016/j.jafr.2023.100613. DOI

Riley C.K., Adebayo S.A., Wheatley A.O., Asemota H.N. Fundamental and Derived Properties of Yam (Dioscorea spp.) Starch Powders and Implications in Tablet and Capsule Formulation. Starch/Stärke. 2006;58:418–424. doi: 10.1002/star.200600491. DOI

Srikanth N. Emphasis on integrative and inclusive health approaches: An essential current need. J. Res. Ayurvedic Sci. 2021;5:1–3. doi: 10.4103/jras.jras_41_21. DOI

Falade K.O., Olurin T.O., Ike E.A., Aworh O.C. Effect of pretreatment and temperature on air-drying of Dioscorea alata and Dioscorea rotundata slices. J. Food Eng. 2007;80:1002–1010. doi: 10.1016/j.jfoodeng.2006.06.034. DOI

Pham N.D., Khan M.I.H., Karim M.A. A mathematical model for predicting the transport process and quality changes during intermittent microwave convective drying. Food Chem. 2020;325:126932. doi: 10.1016/j.foodchem.2020.126932. PubMed DOI

Trujillo M.E., Kroppenstedt R.M., Fernandez-Molinero C., Schumann P., Martinez-Molina E. Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int. J. Syst. Evol. Microbiol. 2007;57:2799–2804. doi: 10.1099/ijs.0.65192-0. PubMed DOI

Kerkhof P., Coumans W.J. Drying: A fascinating unit operation. Chem. Eng. J. 2002;86:1.e2. doi: 10.1016/S1385-8947(01)00264-9. DOI

Babalis S.J., Belessiotis V.G. Influence of drying conditions on the drying constant and moisture diffusivity during the thin-layer drying of figs. J. Food Eng. 2006;65:449–458. doi: 10.1016/j.jfoodeng.2004.02.005. DOI

Udoro E.O., Anyasi T.A., Jideani A.I.O. Interactive Effects of Chemical Pretreatment and Drying on the Physicochemical Properties of Cassava Flour Using Response Surface Methodology. Int. J. Food Sci. 2020;2020:7234372. doi: 10.1155/2020/7234372. PubMed DOI PMC

Haile S.A.F., Fisseha A. Effects of pretreatments and drying methods on chemical composition, microbial and sensory quality of orange-fleshed sweet potato flour and porridge. Am. J. Food Sci. Technol. 2015;3:82–88.

Nainggolan E.A., Banout J., Urbanova K. Application of Central Composite Design and Superimposition Approach for Optimization of Drying Parameters of Pretreated Cassava Flour. Foods. 2023;12:2101. doi: 10.3390/foods12112101. PubMed DOI PMC

Wahab B.A., Adebowale A.A., Sanni S.A. Effect of species pretreatments and drying methods on the functional and pasting properties of high-quality yam flour. Food Sci. Nutr. 2016;4:50–58. doi: 10.1002/fsn3.260. PubMed DOI PMC

Doymaz I. Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Heat Mass Transf. 2011;47:277–285. doi: 10.1007/s00231-010-0722-3. DOI

Rafiee S., Mirzaee E., Keyhani A.R., Emam Djom–eh Z., Kheuralipour K. Mass modeling of two varieties of apricot (Prunus armenaica L) with some physical characteristics. Plant Omics. 2008;1:37–43.

Perea-Flores M.J., Garibay-Febles V., Chanona-Perez J.J., Calderon-Dominguez G., Mendez-Mendez J.V., Palacios-Gonzalez E., Gutierrez-Lopez G.F. Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Ind. Crop. Prod. 2012;38:64–71. doi: 10.1016/j.indcrop.2012.01.008. DOI

Onwude D.I., Hashim N., Janius R.B., Nawi N.M., Abdan K. Modeling the thinlayer drying of fruits and vegetables: A review. Compr. Rev. Food Sci. Food Saf. 2016;15:599–618. doi: 10.1111/1541-4337.12196. PubMed DOI

Akpinar E.K., Bicer Y., Cetinkaya F. Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun. J. Food Eng. 2006;75:308–315. doi: 10.1016/j.jfoodeng.2005.04.018. DOI

Jimoh K.O., Olurin T.O., Aina J.O. Effect of drying methods on the rheological characteristics and colour of yam flours. Afr. J. Biotechnol. 2009;8:2325–2328.

Cosme-De Vera F.H., Soriano A.N., Dugos N.P., Rubi R.V.C. A comprehensive review on the drying kinetics of common tubers. Appl. Sci. Eng. Prog. 2021;14:146–155. doi: 10.14416/j.asep.2021.03.003. DOI

Al-Hilphy A.R., Al-Asadi M.H., Zhuang H. Effect of Electrical Stimulation on Qualitative Characteristics of Aged Chicken Carcasses: A Comprehensive Review. Basrah J. Agric. Sci. 2020;33:135–158. doi: 10.37077/25200860.2020.33.1.11. DOI

Al-Hilphy A.R., Al-Mtury A.A.A., Al-Iessa S.A., Gavahian M., Al-Shatty S.M., Jassim M.A., Mohusen Z.A.A., Mousavi Khaneghah A. A pilot-scale rotary infrared dryer of shrimp (Metapenaeus affinis): Mathematical modeling and effect on physicochemical attributes. J. Food Process Eng. 2022;45:e13945. doi: 10.1111/jfpe.13945. DOI

Al-Hilphy A.R., Gavahian M., Barba F.J., Lorenzo J.M., Al-Shalah Z.M., Verma D.K. Drying of sliced tomato (Lycopersicon esculentum L.) by a novel halogen dryer: Effects of drying temperature on physical properties, drying kinetics, and energy consumption. J. Food Process Eng. 2021;44:e13624. doi: 10.1111/jfpe.13624. DOI

Duque-Dussán E., Banout J. Improving the drying performance of parchment coffee due to the newly redesigned drying chamber. J. Food Process Eng. 2022;45:e14161. doi: 10.1111/jfpe.14161. DOI

Duque-Dussán E., Villada-Dussán A., Roubík H., Banout J. Modeling of Forced and Natural Convection Drying Process of a Coffee Seed. J. ASABE. 2022;65:1061–1070. doi: 10.13031/ja.15156. DOI

Hatamipour M.S., Kazemi H.H., Nooralivand A., Nozarpoorm A. Drying characteristics of six varieties of sweet potatoes in different dryers. Food Bioprod. Process. 2007;85:171–177. doi: 10.1205/fbp07032. DOI

Ngoma K., Mashau M.E., Silungwe H. Physicochemical and functional properties of chemically pretreated Ndou sweet potato flour. Int. J. Food Sci. 2019;2019:4158213. doi: 10.1155/2019/4158213. PubMed DOI PMC

Ulfa Z., Julianti E., Nurminah M. Effect of pre-treatment in the production of purple-fleshed sweet potato flour on cookies quality. IOP Conf. Ser. Earth Environ. Sci. 2019;260:1. doi: 10.1088/1755-1315/260/1/012095. DOI

Desalegn A., Kibr G. Effect of pretreatment and drying methods on the quality of anchote (Coccinia abyssinica (Lam.)) Flour. J. Food Qual. 2021;2021:3183629. doi: 10.1155/2021/3183629. DOI

Nascimento R.F.D., Canteri M.H.G. Effect of blanching on physicochemical characteristics of potato flour. Hortic. Bras. 2018;36:461–465. doi: 10.1590/s0102-053620180406. DOI

Sumardiono S., Idris F.A., Tribowo E., Cahyono H. Optimization hydrogen peroxide oxidation of cassava starch to improve psychochemical properties with surface response method. AIP Conf. Proc. 2023;2667:020011. doi: 10.1063/5.0115168. DOI

Setyaningsih W., Karmila, Fathimah R.N., Cahyanto M.N. Process Optimization for Ultrasound-Assisted Starch Production from Cassava (Manihot esculenta Crantz) Using Response Surface Methodology. Agronomy. 2021;11:117. doi: 10.3390/agronomy11010117. DOI

Olagunju T.M., Aregbesola O.A., Akpan G.E. Modeling and optimization of thin-layer drying data of pretreated taro (Colocasia esculenta) corm slices. J. Food Process Eng. 2020;43:e13564. doi: 10.1111/jfpe.13564. DOI

Sombatpraiwan S., Junyusen T., Treeamnak T., Junyusen P. Optimization of microwave-assisted alkali pretreatment of cassava rhizome for enhanced enzymatic hydrolysis glucose yield. Food Energy Secur. 2019;8:e00174. doi: 10.1002/fes3.174. DOI

Coelho D.G., Fonseca K.S., de Mélo Neto D.F., de Andrade M.T., Junior L.F.C., Ferreira-Silva S.L., Simões A.D.N. Association of preharvest management with oxidative protection and enzymatic browning in minimally processed cassava. J. Food Biochem. 2019;43:e12840. doi: 10.1111/jfbc.12840. PubMed DOI

Association of Official Analytical Chemists . Official Methods of Analysis. 17th ed. AOAC; Arlington, VA, USA: 2000.

Torbica A., Hadnadev M., Dapčević H.T. Rice and buckwheat flour characterisation and its relation to cookie quality. Food Res. Int. 2012;48:277–283. doi: 10.1016/j.foodres.2012.05.001. DOI

Mota C.L., Luciano C., Dias A., Barroca M.J., Guine R.P.F. Convective drying of onion: Kinetics and nutritional evaluation. Food Bioprod. Process. 2010;88:115–123. doi: 10.1016/j.fbp.2009.09.004. DOI

Perez-Francisco J.M., Cerecero-Enríquez R., Andrade-González I., Ragazzo-Sanchez J., Luna-Solano G. Optimization of vegetal pear drying using response surface methodology. Dry. Technol. 2008;26:1401–1405. doi: 10.1080/07373930802333601. DOI

Henderson S.M., Pabis S. Grain drying theory, I. Temperature effect on drying coefficient. J. Agric. Eng. Reserve. 1961;6:169–174.

Madamba P.S., Driscoll R.H., Buckle K.A. The thin-layer drying characteristics of garlic slices. J. Food Eng. 1996;29:75–97. doi: 10.1016/0260-8774(95)00062-3. DOI

Yagcioglu A., Degirmencioglu A., Cagatay F. Drying characteristics of laurel leaves under different conditions; Proceedings of the International Congress on Agricultural Mechanization and Energy; Adana, Turkey. 26–27 May 1999.

Togrul I.T., Pehlivan D. Modeling of thin layer drying of some fruits under open-air sun drying process. J. Food Eng. 2004;65:413–425. doi: 10.1016/j.jfoodeng.2004.02.001. DOI

Wang C.Y., Singh R.P. A Single Layer Drying Equation for Rough Rice. ASAE Press; St. Joseph, MI, USA: 1978.

Akpinar E.K. Determination of suitable thin layer drying curve model for some vegetables and fruits. J. Food Eng. 2006;73:75–84. doi: 10.1016/j.jfoodeng.2005.01.007. DOI

Midilli A., Kucuk H., Yapar Z. A new model for single-layer drying. Dry. Technol. 2002;20:1503–1513. doi: 10.1081/DRT-120005864. DOI

Ertekin C., Yaldiz O. Drying of eggplant and selection of a suitable thin layer drying model. J. Food Eng. 2004;6:349–359. doi: 10.1016/j.jfoodeng.2003.08.007. DOI

Sahoo M., Titikshya S., Aradwad P., Kumar V., Naik S.N. Study of the drying behaviour and color kinetics of convective drying of yam (Dioscorea hispida) slices. Ind. Crop. Prod. 2022;176:114258. doi: 10.1016/j.indcrop.2021.114258. DOI

Chen X., Lu J., Li X., Wang Y., Miao J., Mao X., Zhao C., Gao W. Effect of blanching and drying temperatures on starch-related physicochemical properties, bioactive components and antioxidant activities of yam flours. LWT Food Sci. Technol. 2017;82:303–310. doi: 10.1016/j.lwt.2017.04.058. DOI

Rayas-Duarte P., Majewska K., Doetkott C. Effect of extrusion process parameters on the quality of buckwheat flour mixes. Cereal Chem. 1998;75:338–345. doi: 10.1094/CCHEM.1998.75.3.338. DOI

Lewicki P.P. Effect of pre-drying treatment, drying and rehydration on plant tissue properties: A review. Int. J. Food Prop. 1998;1:1–22. doi: 10.1080/10942919809524561. DOI

Anyasi T.A., Jideani A.I.O., McHau G.R.A. Effect of organic acid pretreatment on some physical, functional and antioxidant properties of flour obtained from three unripe banana cultivars. Food Chem. 2015;172:515–522. doi: 10.1016/j.foodchem.2014.09.120. PubMed DOI

Quayson E.T., Ayernor G.S., Johnson P.N.T., Ocloo F.C.K. Effects of two pre-treatments, blanching and soaking, as processing modulation on non-enzymatic browning developments in three yam cultivars from Ghana. Heliyon. 2021;7:e07224. doi: 10.1016/j.heliyon.2021.e07224. PubMed DOI PMC

Yongjie L.I., Meiping Z.O. Simple methods for rapid determination of sulfite in food products. J. Food Control. 2005;17:975–980. doi: 10.1016/j.foodcont.2005.07.008. DOI

Utomo J.S., Cheman Y.B., Rahman R.A., Sadd M.S. The effect of shape, blanching methods and flour on characteristics of restructured sweet potato stick. Int. J. Food Sci. Technol. 2008;43:1896–1900. doi: 10.1111/j.1365-2621.2008.01792.x. DOI

Chen J.P., Tai C.Y., Chen B.H. Effects of different treatments on the stability of carotenoids in Taiwanese mango (Mangifera indica L) Food Chem. 2005;100:1005–1010. doi: 10.1016/j.foodchem.2005.10.056. DOI

Rastogi N., Raghavarao K., Niranjan K., Knorr D. Recent developments in osmotic dehydration: Methods to enhance mass transfer. Trends Food Sci. Technol. 2002;13:48–59. doi: 10.1016/S0924-2244(02)00032-8. DOI

Ekeledo E., Latif S., Abass A., Müller J. Amylose, rheological and functional properties of yellow cassava flour as affected by pretreatment and drying methods. Food Humanit. 2023;1:57–63. doi: 10.1016/j.foohum.2023.03.004. DOI

Falade K.O., Ayetigbo O.E. Effects of annealing, acid hydrolysis and citric acid modifications on physical and functional properties of starches from four yam (Dioscorea spp.) cultivars. Food Hydrocoll. 2015;43:529–539. doi: 10.1016/j.foodhyd.2014.07.008. DOI

Tunde-Akintunde T.Y., Afon A.A. Modeling of hot-air drying of pretreated cassava chips. CIGR J. 2010;12:34–41.

Ajala A.S., Abioye A.O., Poopola J.O., Adeyanju J.A. Drying characteristics and mathematical modeling of cassava chips. Chem. Process Eng. Res. 2012;4:1–9.

Waramit P., Krittakom B., Luampon R. Experimental Investigation to Evaluate the Effective Moisture Diffusivity and Activation Energy of Cassava (Manihot esculenta) under Convective Drying. Appl. Sci. Eng. Prog. 2021;49:103348. doi: 10.14416/j.asep.2021.10.008. DOI

Keneni Y.G., Hvoslef-Eide A.T., Marchetti J.M. Mathematical modelling of the drying kinetics of Jatropha curcas L. seeds. Ind. Crops Prod. 2019;132:12–20. doi: 10.1016/j.indcrop.2019.02.012. DOI

Menshutina N.V., Gordienko M.G., Voynovskiy A.A., Kudra T. Dynamic analysis of drying energy consumption. Dry. Technol. Int. J. 2004;22:2281–2290. doi: 10.1081/DRT-200039996. DOI

Srikanth K.S., Sharanagat V.S., Kumar Y., Bhadra R., Singh L., Nema P.K., Kumar V. Convective drying and quality attributes of elephant foot yam (Amorphophallus paeoniifolius) LWT. 2019;99:8–16. doi: 10.1016/j.lwt.2018.09.049. DOI

Ezeanya N.C., Akubuo C.O., Chilakpu K.O., Iheonye A.C. Modelling of thin layer solar drying kinetics of cassava noodles (Tapioca). Agric. Eng. Int. CIGR J. 2018;20:193–200.

Troncoso E., Pedreschi F. Modeling of textural changes during drying of potato slices. J. Food Eng. 2007;82:577–584. doi: 10.1016/j.jfoodeng.2007.03.015. DOI

Fasuan T.O., Akanbi C.T. Application of osmotic pressure in modification of Amaranth (Amaranthus viridis) Starch. LWT Food Sci. Technol. 2018;96:182–192. doi: 10.1016/j.lwt.2018.05.036. DOI

Soni P.L., Sharma H.W., Dobhal N.P., Bisen S.S. The starches of Dioscorea ballophylla and Amorphophallus campanulatus. Comparison with tapioca starch. Starch/Starke. 1985;37:6–9. doi: 10.1002/star.19850370103. DOI

Tacer-Caba Z., Nilufer-Erdil D., Boyacioglu M.H., Ng P.K.W. Evaluating the effects of amylose and Concord grape extract powder substitution on physicochemical properties of wheat flour extrudates produced at different temperatures. Food Chem. 2014;157:476–484. doi: 10.1016/j.foodchem.2014.02.064. PubMed DOI

Ayetigbo O., Latif S., Abass A., Müller J. Comparing Characteristics of Root, Flour and Starch of Biofortified Yellow-Flesh and White-Flesh Cassava Variants, and Sustainability Considerations: A Review. Sustainability. 2018;10:3089. doi: 10.3390/su10093089. DOI

Kuttigounder D., Lingamallu J.R., Bhattacharya S. Turmeric Powder and Starch: Selected Physical, Physicochemical, and Microstructural Properties. J. Food Sci. 2011;76:C1284–C1291. doi: 10.1111/j.1750-3841.2011.02403.x. PubMed DOI

Oladejo A.O., Ekpene M.-A.M., Onwude D.I., Assian U.E., Nkem O.M. Effects of ultrasound pretreatments on the drying kinetics of yellow cassava during convective hot air drying. J. Food Process Preserv. 2021;45:e15251. doi: 10.1111/jfpp.15251. DOI

Marín R.A.F., Aguirre J.C.L. The Evaluation of the Drying Kinetics of Cassava Slices (Manihot Esculenta Crantz) Variety Ica Catumare. J. Hunan Univ. Nat. Sci. 2023;50:47–56. doi: 10.55463/issn.1674-2974.50.6.6. DOI

Pornpraipech P., Khusakul M., Singklin R., Sarabhorn P., Areeprasert C. Effect of temperature and shape on drying performance of cassava chips. Agric. Nat. Resour. 2017;51:402–409. doi: 10.1016/j.anres.2017.12.004. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...