Chemical and Thermal Treatment for Drying Cassava Tubers: Optimization, Microstructure, and Dehydration Kinetics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20233101
Internal Grant Agency of the Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague
PubMed
38137956
PubMed Central
PMC10744824
DOI
10.3390/life13122355
PII: life13122355
Knihovny.cz E-zdroje
- Klíčová slova
- cassava tubers, chemical treatment, dehydration kinetics, microstructure, optimization, thermal treatment,
- Publikační typ
- časopisecké články MeSH
Perishable commodities like cassava necessitate effective postharvest preservation for various industrial applications. Hence, optimizing pretreatment processes and modeling drying kinetics hold paramount importance. This study aimed to optimize cassava pretreatment using the central composite design of a response surface methodology while also assessing microstructure and dehydration kinetics. Diverse chemical and thermal pretreatments were explored, encompassing sodium metabisulfite concentrations (0-4% w/w), citric acid concentrations (0-4% w/w), and blanching time (0-4 min). The four investigated responses were moisture content, whiteness index, activation energy (Ea), and effective moisture diffusivity (Deff). Employing five established drying models, suitability was appraised after optimal pretreatment conditions were determined. The findings revealed that moisture content ranged from 5.82 to 9.42% db, whereas the whiteness index ranged from 87.16 to 94.23. Deff and Ea ranged from 5.06 × 10-9 to 6.71 × 10-9 m2/s and 29.65-33.28 kJ/mol, respectively. The optimal pretreatment conditions for dried cassava were identified by optimizing the use of 1.31% citric acid, 1.03% sodium metabisulfite, and blanching time for 1.01 min. The microstructure indicated that particular chemical and thermal pretreatment configurations yielded particles in the shape of circular and elliptical granules. The logarithmic model provided the most accurate description of the dehydration kinetics, with the highest R2 value (0.9859) and the lowest χ2, RSME, and SSE values of 0.0351, 0.0015, and 0.0123, respectively.
Zobrazit více v PubMed
Chimphepo L., Alamu E.O., Monjerezi M., Ntawuruhunga P., Saka J.D.K. Physicochemical parameters and functional properties of flours from advanced genotypes and improved cassava varieties for industrial applications. LWT. 2021;147:111592. doi: 10.1016/j.lwt.2021.111592. PubMed DOI PMC
FAO . Statistics Division Food and Agriculture Organization of the United Nations. FAOSTAT; Rome, Italy: 2021. [(accessed on 3 October 2023)]. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL.
Abass A.B., Mlingi N., Ranaivoson R., Zulu M., Mukuka I., Abele S. Potential for Commercial Production and Marketing of Cassava: Experiences from the Small-Scale Cassava Processing Project in East and Southern Africa. IITA; Ibadan, Nigeria: 2013.
Warji W., Tamrin T. Hybrid Dryer of Cassava Chips. IOP Conf. Ser. Earth Environ. Sci. 2021;757:012027. doi: 10.1088/1755-1315/757/1/012027. DOI
Elisabeth D.A.A., Utomo J.S., Byju G., Ginting E. Cassava flour production by small scale processors, its quality and economic feasibility. Food Sci. Technol. 2022;42:e41522. doi: 10.1590/fst.41522. DOI
Kwaw E., Osae R., Apaliya M.T., Rapheal A.N., Aikins A.S.S., Olivia A., Nancy A., Veronica O. Influence of different osmotic dehydration pretreatment on the physiochemical and sensory characteristics of fried cassava chips (Manihot esculenta) J. Agric. Food Res. 2023;12:100613. doi: 10.1016/j.jafr.2023.100613. DOI
Riley C.K., Adebayo S.A., Wheatley A.O., Asemota H.N. Fundamental and Derived Properties of Yam (Dioscorea spp.) Starch Powders and Implications in Tablet and Capsule Formulation. Starch/Stärke. 2006;58:418–424. doi: 10.1002/star.200600491. DOI
Srikanth N. Emphasis on integrative and inclusive health approaches: An essential current need. J. Res. Ayurvedic Sci. 2021;5:1–3. doi: 10.4103/jras.jras_41_21. DOI
Falade K.O., Olurin T.O., Ike E.A., Aworh O.C. Effect of pretreatment and temperature on air-drying of Dioscorea alata and Dioscorea rotundata slices. J. Food Eng. 2007;80:1002–1010. doi: 10.1016/j.jfoodeng.2006.06.034. DOI
Pham N.D., Khan M.I.H., Karim M.A. A mathematical model for predicting the transport process and quality changes during intermittent microwave convective drying. Food Chem. 2020;325:126932. doi: 10.1016/j.foodchem.2020.126932. PubMed DOI
Trujillo M.E., Kroppenstedt R.M., Fernandez-Molinero C., Schumann P., Martinez-Molina E. Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int. J. Syst. Evol. Microbiol. 2007;57:2799–2804. doi: 10.1099/ijs.0.65192-0. PubMed DOI
Kerkhof P., Coumans W.J. Drying: A fascinating unit operation. Chem. Eng. J. 2002;86:1.e2. doi: 10.1016/S1385-8947(01)00264-9. DOI
Babalis S.J., Belessiotis V.G. Influence of drying conditions on the drying constant and moisture diffusivity during the thin-layer drying of figs. J. Food Eng. 2006;65:449–458. doi: 10.1016/j.jfoodeng.2004.02.005. DOI
Udoro E.O., Anyasi T.A., Jideani A.I.O. Interactive Effects of Chemical Pretreatment and Drying on the Physicochemical Properties of Cassava Flour Using Response Surface Methodology. Int. J. Food Sci. 2020;2020:7234372. doi: 10.1155/2020/7234372. PubMed DOI PMC
Haile S.A.F., Fisseha A. Effects of pretreatments and drying methods on chemical composition, microbial and sensory quality of orange-fleshed sweet potato flour and porridge. Am. J. Food Sci. Technol. 2015;3:82–88.
Nainggolan E.A., Banout J., Urbanova K. Application of Central Composite Design and Superimposition Approach for Optimization of Drying Parameters of Pretreated Cassava Flour. Foods. 2023;12:2101. doi: 10.3390/foods12112101. PubMed DOI PMC
Wahab B.A., Adebowale A.A., Sanni S.A. Effect of species pretreatments and drying methods on the functional and pasting properties of high-quality yam flour. Food Sci. Nutr. 2016;4:50–58. doi: 10.1002/fsn3.260. PubMed DOI PMC
Doymaz I. Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Heat Mass Transf. 2011;47:277–285. doi: 10.1007/s00231-010-0722-3. DOI
Rafiee S., Mirzaee E., Keyhani A.R., Emam Djom–eh Z., Kheuralipour K. Mass modeling of two varieties of apricot (Prunus armenaica L) with some physical characteristics. Plant Omics. 2008;1:37–43.
Perea-Flores M.J., Garibay-Febles V., Chanona-Perez J.J., Calderon-Dominguez G., Mendez-Mendez J.V., Palacios-Gonzalez E., Gutierrez-Lopez G.F. Mathematical modelling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Ind. Crop. Prod. 2012;38:64–71. doi: 10.1016/j.indcrop.2012.01.008. DOI
Onwude D.I., Hashim N., Janius R.B., Nawi N.M., Abdan K. Modeling the thinlayer drying of fruits and vegetables: A review. Compr. Rev. Food Sci. Food Saf. 2016;15:599–618. doi: 10.1111/1541-4337.12196. PubMed DOI
Akpinar E.K., Bicer Y., Cetinkaya F. Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun. J. Food Eng. 2006;75:308–315. doi: 10.1016/j.jfoodeng.2005.04.018. DOI
Jimoh K.O., Olurin T.O., Aina J.O. Effect of drying methods on the rheological characteristics and colour of yam flours. Afr. J. Biotechnol. 2009;8:2325–2328.
Cosme-De Vera F.H., Soriano A.N., Dugos N.P., Rubi R.V.C. A comprehensive review on the drying kinetics of common tubers. Appl. Sci. Eng. Prog. 2021;14:146–155. doi: 10.14416/j.asep.2021.03.003. DOI
Al-Hilphy A.R., Al-Asadi M.H., Zhuang H. Effect of Electrical Stimulation on Qualitative Characteristics of Aged Chicken Carcasses: A Comprehensive Review. Basrah J. Agric. Sci. 2020;33:135–158. doi: 10.37077/25200860.2020.33.1.11. DOI
Al-Hilphy A.R., Al-Mtury A.A.A., Al-Iessa S.A., Gavahian M., Al-Shatty S.M., Jassim M.A., Mohusen Z.A.A., Mousavi Khaneghah A. A pilot-scale rotary infrared dryer of shrimp (Metapenaeus affinis): Mathematical modeling and effect on physicochemical attributes. J. Food Process Eng. 2022;45:e13945. doi: 10.1111/jfpe.13945. DOI
Al-Hilphy A.R., Gavahian M., Barba F.J., Lorenzo J.M., Al-Shalah Z.M., Verma D.K. Drying of sliced tomato (Lycopersicon esculentum L.) by a novel halogen dryer: Effects of drying temperature on physical properties, drying kinetics, and energy consumption. J. Food Process Eng. 2021;44:e13624. doi: 10.1111/jfpe.13624. DOI
Duque-Dussán E., Banout J. Improving the drying performance of parchment coffee due to the newly redesigned drying chamber. J. Food Process Eng. 2022;45:e14161. doi: 10.1111/jfpe.14161. DOI
Duque-Dussán E., Villada-Dussán A., Roubík H., Banout J. Modeling of Forced and Natural Convection Drying Process of a Coffee Seed. J. ASABE. 2022;65:1061–1070. doi: 10.13031/ja.15156. DOI
Hatamipour M.S., Kazemi H.H., Nooralivand A., Nozarpoorm A. Drying characteristics of six varieties of sweet potatoes in different dryers. Food Bioprod. Process. 2007;85:171–177. doi: 10.1205/fbp07032. DOI
Ngoma K., Mashau M.E., Silungwe H. Physicochemical and functional properties of chemically pretreated Ndou sweet potato flour. Int. J. Food Sci. 2019;2019:4158213. doi: 10.1155/2019/4158213. PubMed DOI PMC
Ulfa Z., Julianti E., Nurminah M. Effect of pre-treatment in the production of purple-fleshed sweet potato flour on cookies quality. IOP Conf. Ser. Earth Environ. Sci. 2019;260:1. doi: 10.1088/1755-1315/260/1/012095. DOI
Desalegn A., Kibr G. Effect of pretreatment and drying methods on the quality of anchote (Coccinia abyssinica (Lam.)) Flour. J. Food Qual. 2021;2021:3183629. doi: 10.1155/2021/3183629. DOI
Nascimento R.F.D., Canteri M.H.G. Effect of blanching on physicochemical characteristics of potato flour. Hortic. Bras. 2018;36:461–465. doi: 10.1590/s0102-053620180406. DOI
Sumardiono S., Idris F.A., Tribowo E., Cahyono H. Optimization hydrogen peroxide oxidation of cassava starch to improve psychochemical properties with surface response method. AIP Conf. Proc. 2023;2667:020011. doi: 10.1063/5.0115168. DOI
Setyaningsih W., Karmila, Fathimah R.N., Cahyanto M.N. Process Optimization for Ultrasound-Assisted Starch Production from Cassava (Manihot esculenta Crantz) Using Response Surface Methodology. Agronomy. 2021;11:117. doi: 10.3390/agronomy11010117. DOI
Olagunju T.M., Aregbesola O.A., Akpan G.E. Modeling and optimization of thin-layer drying data of pretreated taro (Colocasia esculenta) corm slices. J. Food Process Eng. 2020;43:e13564. doi: 10.1111/jfpe.13564. DOI
Sombatpraiwan S., Junyusen T., Treeamnak T., Junyusen P. Optimization of microwave-assisted alkali pretreatment of cassava rhizome for enhanced enzymatic hydrolysis glucose yield. Food Energy Secur. 2019;8:e00174. doi: 10.1002/fes3.174. DOI
Coelho D.G., Fonseca K.S., de Mélo Neto D.F., de Andrade M.T., Junior L.F.C., Ferreira-Silva S.L., Simões A.D.N. Association of preharvest management with oxidative protection and enzymatic browning in minimally processed cassava. J. Food Biochem. 2019;43:e12840. doi: 10.1111/jfbc.12840. PubMed DOI
Association of Official Analytical Chemists . Official Methods of Analysis. 17th ed. AOAC; Arlington, VA, USA: 2000.
Torbica A., Hadnadev M., Dapčević H.T. Rice and buckwheat flour characterisation and its relation to cookie quality. Food Res. Int. 2012;48:277–283. doi: 10.1016/j.foodres.2012.05.001. DOI
Mota C.L., Luciano C., Dias A., Barroca M.J., Guine R.P.F. Convective drying of onion: Kinetics and nutritional evaluation. Food Bioprod. Process. 2010;88:115–123. doi: 10.1016/j.fbp.2009.09.004. DOI
Perez-Francisco J.M., Cerecero-Enríquez R., Andrade-González I., Ragazzo-Sanchez J., Luna-Solano G. Optimization of vegetal pear drying using response surface methodology. Dry. Technol. 2008;26:1401–1405. doi: 10.1080/07373930802333601. DOI
Henderson S.M., Pabis S. Grain drying theory, I. Temperature effect on drying coefficient. J. Agric. Eng. Reserve. 1961;6:169–174.
Madamba P.S., Driscoll R.H., Buckle K.A. The thin-layer drying characteristics of garlic slices. J. Food Eng. 1996;29:75–97. doi: 10.1016/0260-8774(95)00062-3. DOI
Yagcioglu A., Degirmencioglu A., Cagatay F. Drying characteristics of laurel leaves under different conditions; Proceedings of the International Congress on Agricultural Mechanization and Energy; Adana, Turkey. 26–27 May 1999.
Togrul I.T., Pehlivan D. Modeling of thin layer drying of some fruits under open-air sun drying process. J. Food Eng. 2004;65:413–425. doi: 10.1016/j.jfoodeng.2004.02.001. DOI
Wang C.Y., Singh R.P. A Single Layer Drying Equation for Rough Rice. ASAE Press; St. Joseph, MI, USA: 1978.
Akpinar E.K. Determination of suitable thin layer drying curve model for some vegetables and fruits. J. Food Eng. 2006;73:75–84. doi: 10.1016/j.jfoodeng.2005.01.007. DOI
Midilli A., Kucuk H., Yapar Z. A new model for single-layer drying. Dry. Technol. 2002;20:1503–1513. doi: 10.1081/DRT-120005864. DOI
Ertekin C., Yaldiz O. Drying of eggplant and selection of a suitable thin layer drying model. J. Food Eng. 2004;6:349–359. doi: 10.1016/j.jfoodeng.2003.08.007. DOI
Sahoo M., Titikshya S., Aradwad P., Kumar V., Naik S.N. Study of the drying behaviour and color kinetics of convective drying of yam (Dioscorea hispida) slices. Ind. Crop. Prod. 2022;176:114258. doi: 10.1016/j.indcrop.2021.114258. DOI
Chen X., Lu J., Li X., Wang Y., Miao J., Mao X., Zhao C., Gao W. Effect of blanching and drying temperatures on starch-related physicochemical properties, bioactive components and antioxidant activities of yam flours. LWT Food Sci. Technol. 2017;82:303–310. doi: 10.1016/j.lwt.2017.04.058. DOI
Rayas-Duarte P., Majewska K., Doetkott C. Effect of extrusion process parameters on the quality of buckwheat flour mixes. Cereal Chem. 1998;75:338–345. doi: 10.1094/CCHEM.1998.75.3.338. DOI
Lewicki P.P. Effect of pre-drying treatment, drying and rehydration on plant tissue properties: A review. Int. J. Food Prop. 1998;1:1–22. doi: 10.1080/10942919809524561. DOI
Anyasi T.A., Jideani A.I.O., McHau G.R.A. Effect of organic acid pretreatment on some physical, functional and antioxidant properties of flour obtained from three unripe banana cultivars. Food Chem. 2015;172:515–522. doi: 10.1016/j.foodchem.2014.09.120. PubMed DOI
Quayson E.T., Ayernor G.S., Johnson P.N.T., Ocloo F.C.K. Effects of two pre-treatments, blanching and soaking, as processing modulation on non-enzymatic browning developments in three yam cultivars from Ghana. Heliyon. 2021;7:e07224. doi: 10.1016/j.heliyon.2021.e07224. PubMed DOI PMC
Yongjie L.I., Meiping Z.O. Simple methods for rapid determination of sulfite in food products. J. Food Control. 2005;17:975–980. doi: 10.1016/j.foodcont.2005.07.008. DOI
Utomo J.S., Cheman Y.B., Rahman R.A., Sadd M.S. The effect of shape, blanching methods and flour on characteristics of restructured sweet potato stick. Int. J. Food Sci. Technol. 2008;43:1896–1900. doi: 10.1111/j.1365-2621.2008.01792.x. DOI
Chen J.P., Tai C.Y., Chen B.H. Effects of different treatments on the stability of carotenoids in Taiwanese mango (Mangifera indica L) Food Chem. 2005;100:1005–1010. doi: 10.1016/j.foodchem.2005.10.056. DOI
Rastogi N., Raghavarao K., Niranjan K., Knorr D. Recent developments in osmotic dehydration: Methods to enhance mass transfer. Trends Food Sci. Technol. 2002;13:48–59. doi: 10.1016/S0924-2244(02)00032-8. DOI
Ekeledo E., Latif S., Abass A., Müller J. Amylose, rheological and functional properties of yellow cassava flour as affected by pretreatment and drying methods. Food Humanit. 2023;1:57–63. doi: 10.1016/j.foohum.2023.03.004. DOI
Falade K.O., Ayetigbo O.E. Effects of annealing, acid hydrolysis and citric acid modifications on physical and functional properties of starches from four yam (Dioscorea spp.) cultivars. Food Hydrocoll. 2015;43:529–539. doi: 10.1016/j.foodhyd.2014.07.008. DOI
Tunde-Akintunde T.Y., Afon A.A. Modeling of hot-air drying of pretreated cassava chips. CIGR J. 2010;12:34–41.
Ajala A.S., Abioye A.O., Poopola J.O., Adeyanju J.A. Drying characteristics and mathematical modeling of cassava chips. Chem. Process Eng. Res. 2012;4:1–9.
Waramit P., Krittakom B., Luampon R. Experimental Investigation to Evaluate the Effective Moisture Diffusivity and Activation Energy of Cassava (Manihot esculenta) under Convective Drying. Appl. Sci. Eng. Prog. 2021;49:103348. doi: 10.14416/j.asep.2021.10.008. DOI
Keneni Y.G., Hvoslef-Eide A.T., Marchetti J.M. Mathematical modelling of the drying kinetics of Jatropha curcas L. seeds. Ind. Crops Prod. 2019;132:12–20. doi: 10.1016/j.indcrop.2019.02.012. DOI
Menshutina N.V., Gordienko M.G., Voynovskiy A.A., Kudra T. Dynamic analysis of drying energy consumption. Dry. Technol. Int. J. 2004;22:2281–2290. doi: 10.1081/DRT-200039996. DOI
Srikanth K.S., Sharanagat V.S., Kumar Y., Bhadra R., Singh L., Nema P.K., Kumar V. Convective drying and quality attributes of elephant foot yam (Amorphophallus paeoniifolius) LWT. 2019;99:8–16. doi: 10.1016/j.lwt.2018.09.049. DOI
Ezeanya N.C., Akubuo C.O., Chilakpu K.O., Iheonye A.C. Modelling of thin layer solar drying kinetics of cassava noodles (Tapioca). Agric. Eng. Int. CIGR J. 2018;20:193–200.
Troncoso E., Pedreschi F. Modeling of textural changes during drying of potato slices. J. Food Eng. 2007;82:577–584. doi: 10.1016/j.jfoodeng.2007.03.015. DOI
Fasuan T.O., Akanbi C.T. Application of osmotic pressure in modification of Amaranth (Amaranthus viridis) Starch. LWT Food Sci. Technol. 2018;96:182–192. doi: 10.1016/j.lwt.2018.05.036. DOI
Soni P.L., Sharma H.W., Dobhal N.P., Bisen S.S. The starches of Dioscorea ballophylla and Amorphophallus campanulatus. Comparison with tapioca starch. Starch/Starke. 1985;37:6–9. doi: 10.1002/star.19850370103. DOI
Tacer-Caba Z., Nilufer-Erdil D., Boyacioglu M.H., Ng P.K.W. Evaluating the effects of amylose and Concord grape extract powder substitution on physicochemical properties of wheat flour extrudates produced at different temperatures. Food Chem. 2014;157:476–484. doi: 10.1016/j.foodchem.2014.02.064. PubMed DOI
Ayetigbo O., Latif S., Abass A., Müller J. Comparing Characteristics of Root, Flour and Starch of Biofortified Yellow-Flesh and White-Flesh Cassava Variants, and Sustainability Considerations: A Review. Sustainability. 2018;10:3089. doi: 10.3390/su10093089. DOI
Kuttigounder D., Lingamallu J.R., Bhattacharya S. Turmeric Powder and Starch: Selected Physical, Physicochemical, and Microstructural Properties. J. Food Sci. 2011;76:C1284–C1291. doi: 10.1111/j.1750-3841.2011.02403.x. PubMed DOI
Oladejo A.O., Ekpene M.-A.M., Onwude D.I., Assian U.E., Nkem O.M. Effects of ultrasound pretreatments on the drying kinetics of yellow cassava during convective hot air drying. J. Food Process Preserv. 2021;45:e15251. doi: 10.1111/jfpp.15251. DOI
Marín R.A.F., Aguirre J.C.L. The Evaluation of the Drying Kinetics of Cassava Slices (Manihot Esculenta Crantz) Variety Ica Catumare. J. Hunan Univ. Nat. Sci. 2023;50:47–56. doi: 10.55463/issn.1674-2974.50.6.6. DOI
Pornpraipech P., Khusakul M., Singklin R., Sarabhorn P., Areeprasert C. Effect of temperature and shape on drying performance of cassava chips. Agric. Nat. Resour. 2017;51:402–409. doi: 10.1016/j.anres.2017.12.004. DOI