Recent Trends in the Pre-Drying, Drying, and Post-Drying Processes for Cassava Tuber: A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
20233101
Internal Grant Agency of the Faculty of Tropical AgriSciences
PubMed
38891006
PubMed Central
PMC11171685
DOI
10.3390/foods13111778
PII: foods13111778
Knihovny.cz E-zdroje
- Klíčová slova
- cassava tuber, dried cassava products, drying, post-drying, pre-drying,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cassava tuber is an essential staple crop in tropical regions with versatile applications in the food, feed, and industrial sectors. However, its high moisture content and perishable nature necessitate efficient preservation methods to extend its shelf life and enhance its value. Pre-drying, drying, and post-drying processes play pivotal roles in maintaining the quality and usability of cassava products. This review comprehensively examines the current status and future directions in the pre-drying, drying, and post-drying processes of cassava tuber. Various pre-drying or pretreatment methods and drying techniques are evaluated for their impacts on drying kinetics and product quality. Additionally, challenges and limitations in achieving high-quality processing of cassava flour are identified. Future directions in cassava drying methods emphasize the integration of combined pre-drying and drying techniques to optimize resource utilization and processing efficiency. Furthermore, the adoption of advanced online measurement and control technologies in drying equipment is highlighted for real-time monitoring and optimization of drying parameters. The importance of optimizing existing processes to establish a comprehensive cassava industrial chain and foster the development of the cassava deep-processing industry is emphasized. This review provides valuable insights into the current trends and future prospects in cassava drying technologies, aiming to facilitate sustainable and efficient utilization of cassava resources for various applications.
Zobrazit více v PubMed
FAOSTAT . Statistics Division Food and Agriculture Organization of the United Nations. FAOSTAT; Rome, Italy: 2021. [(accessed on 10 October 2023)]. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL.
Parmar A., Sturm B., Hensel O. Crops That Feed the World: Production and Improvement of Cassava for Food, Feed, and Industrial Uses. Food Secur. 2017;9:907–927. doi: 10.1007/s12571-017-0717-8. DOI
Market Data Forecast Cassava Starch Market Size, Share, Growth 2023–2028. [(accessed on 27 September 2023)]. Available online: https://www.marketdataforecast.com/market-reports/cassava-flour-market.
Iyer S., Mattinson D.S., Fellman J.K. Study of the Early Events Leading to Cassava Root Postharvest Deterioration. Trop. Plant Biol. 2010;3:151–165. doi: 10.1007/s12042-010-9052-3. DOI
Li S., Cui Y., Zhou Y., Luo Z., Liu J., Zhao M. The Industrial Applications of Cassava: Current Status, Opportunities and Prospects. J. Sci. Food Agric. 2017;97:2282–2290. doi: 10.1002/jsfa.8287. PubMed DOI
Oliveira L.A., Motta J.S., Jesus J.L., Sasaki F.F.C., Viana E.S. Processing of Sweet and Bitter Cassava. Embrapa; Brasília, Brazil: 2020.
Omolara G.M., Adunni A.A., Omotayo A.O. Cost and return analysis of cassava flour (Lafun) production among the women of Osun state, Nigeria. Sci. Res. 2017;5:72. doi: 10.11648/j.sr.20170505.12. DOI
Morante N., Sánchez T., Ceballos H., Calle F., Pérez J.C., Egesi C., Cuambe C.E., Escobar A.F., Ortiz D., Chávez A.L., et al. Tolerance to Postharvest Physiological Deterioration in Cassava Roots. Crop Sci. 2010;50:1333–1338. doi: 10.2135/cropsci2009.11.0666. DOI
Wang S. Starch Structure, Functionality and Application in Foods. Springer Nature; Berlin/Heidelberg, Germany: 2020.
Falade K.O., Akingbala J.O. Utilization of Cassava for Food. Food Rev. Int. 2010;27:51–83. doi: 10.1080/87559129.2010.518296. DOI
Szadzińska J., Mierzwa D., Pawłowski A., Musielak G., Pashminehazar R., Kharaghani A. Ultrasound- and Microwave-Assisted Intermittent Drying of Red Beetroot. Dry. Technol. 2019;38:93–107. doi: 10.1080/07373937.2019.1624565. DOI
Buzera A., Gikundi E., Orina I., Sila D. Effect of Pretreatments and Drying Methods on Physical and Microstructural Properties of Potato Flour. Foods. 2022;11:507. doi: 10.3390/foods11040507. PubMed DOI PMC
Utomo J.S., Che Man Y.B., Rahman R.A., Said Saad M. The Effect of Shape, Blanching Methods and Flour on Characteristics of Restructured Sweetpotato Stick. Int. J. Food Sci. Technol. 2008;43:1896–1900. doi: 10.1111/j.1365-2621.2008.01792.x. DOI
Malakar S., Arora V.K., Munshi M., Yadav D.K., Pou K.R.J., Deb S., Chandra R. Application of novel pretreatment technologies for intensification of drying performance and quality attributes of food commodities: A review. Food Sci. Biotechnol. 2023;32:1303–1335. doi: 10.1007/s10068-023-01322-0. PubMed DOI PMC
Melese A.D., Keyata E.O. Impacts of Pretreatment Techniques on the Quality of Tuber Flours. Sci. World J. 2022;2022:9323694. doi: 10.1155/2022/9323694. PubMed DOI PMC
Vera F.H.C.-D., Soriano A.N., Dugos N.P., Rubi R.V.C. A Comprehensive Review on the Drying Kinetics of Common Tubers. Appl. Sci. Eng. Prog. 2021;14:146–155. doi: 10.14416/j.asep.2021.03.003. DOI
Carvalho G.R., Santos K.C., Guedes J.S., Bitencourt B.S., Rojas M.L., Augusto P.E.D. Chapter 17—Drying of roots and tubers. In: Jafari S.M., Malekjani N., editors. Drying Technology in Food Processing. Woodhead Publishing; Witney, Oxford, UK: 2023. pp. 587–628.
Mousakhani-Ganjeh A., Amiri A., Nasrollahzadeh F., Wiktor A., Nilghaz A., Pratap-Singh A., Mousavi Khaneghah A. Electro-Based Technologies in Food Drying—A Comprehensive Review. LWT. 2021;145:111315. doi: 10.1016/j.lwt.2021.111315. DOI
Acurio L., Baquerizo A., Borja A., Vayas M., García-Segovia P., Martínez-Monzó J., Igual M. Water-Sorption Isotherms and Air-Drying-Kinetics Modelling of Andean Tubers and Tuberous Roots. Biol. Life Sci. Forum. 2023;26:71. doi: 10.3390/Foods2023-15141. DOI
Guiné R.P.F. The Drying of Foods and Its Effect on the Physical-Chemical, Sensorial and Nutritional Properties. ETP Int. J. Food Eng. 2018;4:93–100. doi: 10.18178/ijfe.4.2.93-100. DOI
Moses J.A., Norton T., Alagusundaram K., Tiwari B.K. Novel Drying Techniques for the Food Industry. Food Eng. Rev. 2014;6:43–55. doi: 10.1007/s12393-014-9078-7. DOI
Mukhtar A., Latif S., Barati Z., Müller J. Valorization of Cassava By-Products: Cyanide Content and Quality Characteristics of Leaves and Peel. Appl. Sci. 2023;13:6340. doi: 10.3390/app13106340. DOI
Quinn A.A., Myrans H., Gleadow R.M. Cyanide Content of Cassava Food Products Available in Australia. Foods. 2022;11:1384. doi: 10.3390/foods11101384. PubMed DOI PMC
Abass A.B., Awoyale W., Sulyok M., Alamu E.O. Occurrence of Regulated Mycotoxins and Other Microbial Metabolites in Dried Cassava Products from Nigeria. Toxins. 2017;9:207. doi: 10.3390/toxins9070207. PubMed DOI PMC
Precoppe M., Komlaga G.A., Chapuis A., Müller J. Comparative Study between Current Practices on Cassava Drying by Small-Size Enterprises in Africa. Appl. Sci. 2020;10:7863. doi: 10.3390/app10217863. DOI
Gonçalves L.T., Pereira N.R., Almeida S.B., Freitas S.d.J., Waldman W.R. Microwave–Hot Air Drying Applied to Selected Cassava Cultivars: Drying Kinetics and Sensory Acceptance. Int. J. Food Sci. Technol. 2016;52:389–397. doi: 10.1111/ijfs.13293. DOI
Akonor P.T., Tutu C.O., Affrifah N.S., Budu A.S., Saalia F.K. Effect of Different Drying Techniques on the Functionality and Digestibility of Yellow-Fleshed Cassava Flour and Its Performance in Food Application. J. Food Process. Preserv. 2023;2023:1775604. doi: 10.1155/2023/1775604. DOI
Ekeledo E., Latif S., Abass A., Müller J. Amylose, Rheological and Functional Properties of Yellow Cassava Flour as Affected by Pretreatment and Drying Methods. Food Humanit. 2023;1:57–63. doi: 10.1016/j.foohum.2023.03.004. DOI
Nainggolan E.A., Banout J., Urbanova K. Chemical and Thermal Treatment for Drying Cassava Tubers: Optimization, Microstructure, and Dehydration Kinetics. Life. 2023;13:2355. doi: 10.3390/life13122355. PubMed DOI PMC
Oladejo A.O., Ekpene M.M., Onwude D.I., Assian U.E., Nkem O.M. Effects of Ultrasound Pretreatments on the Drying Kinetics of Yellow Cassava during Convective Hot Air Drying. J. Food Process. Preserv. 2021;45:e15251. doi: 10.1111/jfpp.15251. DOI
Wahab B.A., Adebowale A.A., Sanni S.A., Sobukola O.P., Obadina A.O., Kajihausa O.E., Adegunwa M.O., Sanni L.O., Tomlins K. Effect of species, pretreatments, and drying methods on the functional and pasting properties of high-quality yam flour. Food Sci. Nutr. 2015;4:50–58. doi: 10.1002/fsn3.260. PubMed DOI PMC
Bikila A.M., Tola Y.B., Esho T.B., Forsido S.F., Mijena D.F. Starch composition and functional properties of raw and pretreated anchote (Coccinia abyssinica (Lam.) Cogn.) tuber flours dried at different temperatures. Food Sci. Nutr. 2021;10:645–660. doi: 10.1002/fsn3.2687. PubMed DOI PMC
Jaiswal A.K. Food Processing Technologies. CRC Press; Boca Raton, FL, USA: 2016.
Filho L.M., Frascareli E.C., Mauro M.A. Effect of an Edible Pectin Coating and Blanching Pretreatments on the Air-Drying Kinetics of Pumpkin (Cucurbita moschata) Food Bioprocess Technol. 2016;9:859–871. doi: 10.1007/s11947-016-1674-5. DOI
Ando Y., Maeda Y., Mizutani K., Wakatsuki N., Hagiwara S., Nabetani H. Impact of Blanching and Freeze-Thaw Pretreatment on Drying Rate of Carrot Roots in Relation to Changes in Cell Membrane Function and Cell Wall Structure. LWT—Food Sci. Technol. 2016;71:40–46. doi: 10.1016/j.lwt.2016.03.019. DOI
Nainggolan E.A., Banout J., Urbanova K. Application of Central Composite Design and Superimposition Approach for Optimization of Drying Parameters of Pretreated Cassava Flour. Foods. 2023;12:2101. doi: 10.3390/foods12112101. PubMed DOI PMC
Garba U., Kaur S., Gurumayum S., Rasane P. Effect of Hot Water Blanching Time and Drying Temperature on The Thin Layer Drying Kinetics and Anthocyanin Degradation of Black Carrot (Daucus carota L.) Shreds. Food Technol. Biotechnol. 2015;53:324–330. doi: 10.17113/ftb.53.03.15.3830. PubMed DOI PMC
Badwaik L.S., Gautam G., Deka S.C. Influence of Blanching on Antioxidant, Nutritional and Physical Properties of Bamboo Shoot. J. Agric. Sci.—Sri Lanka. 2015;10:140–150. doi: 10.4038/jas.v10i3.8067. DOI
Lin S., Brewer M.S. Effects of Blanching Method on the Quality Characteristics of Frozen Peas. J. Food Qual. 2005;28:350–360. doi: 10.1111/j.1745-4557.2005.00038.x. DOI
Marzuki S.U., Fardenan D., Nguyen L.T. Drying Characteristic of Blanched Purple-Fleshed Sweet Potato Under Microwave Vacuum Drying. IOP Conf. Ser. Earth Environ. Sci. 2019;309:012059. doi: 10.1088/1755-1315/309/1/012059. DOI
Miranda G., Berna À., Salazar D., Mulet A. Sulphur Dioxide Evolution during Dried Apricot Storage. LWT—Food Sci. Technol. 2009;42:531–533. doi: 10.1016/j.lwt.2008.08.008. DOI
van Hal M. Quality of Sweetpotato Flour During Processing and Storage. Food Rev. Int. 2000;16:1–37. doi: 10.1081/fri-100100280. DOI
García-Martínez E., Igual M., Martín-Esparza M.E., Martínez-Navarrete N. Assessment of the Bioactive Compounds, Color, and Mechanical Properties of Apricots as Affected by Drying Treatment. Food Bioprocess Technol. 2012;6:3247–3255. doi: 10.1007/s11947-012-0988-1. DOI
Kamiloglu S., Toydemir G., Boyacioglu D., Beekwilder J., Hall R.D., Capanoglu E. A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2015;56((Suppl. S1)):S110–S129. doi: 10.1080/10408398.2015.1045969. PubMed DOI
Hiranvarachat B., Devahastin S., Chiewchan N. Effects of Acid Pretreatments on Some Physicochemical Properties of Carrot Undergoing Hot Air Drying. Food Bioprod. Process. 2011;89:116–127. doi: 10.1016/j.fbp.2010.03.010. DOI
Wang L., Xu B., Wei B., Zeng R. Low Frequency Ultrasound Pretreatment of Carrot Slices: Effect on the Moisture Migration and Quality Attributes by Intermediate-Wave Infrared Radiation Drying. Ultrason. Sonochem. 2018;40:619–628. doi: 10.1016/j.ultsonch.2017.08.005. PubMed DOI
Miano A.C., Ibarz A., Augusto P.E.D. Mechanisms for Improving Mass Transfer in Food with Ultrasound Technology: Describing the Phenomena in Two Model Cases. Ultrason. Sonochem. 2016;29:413–419. doi: 10.1016/j.ultsonch.2015.10.020. PubMed DOI
Tao Y., Sun D.-W. Enhancement of Food Processes by Ultrasound: A Review. Crit. Rev. Food Sci. Nutr. 2014;55:570–594. doi: 10.1080/10408398.2012.667849. PubMed DOI
Chemat F., Zill-e-Huma, Khan M.K. Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction. Ultrason. Sonochem. 2011;18:813–835. doi: 10.1016/j.ultsonch.2010.11.023. PubMed DOI
Kehinde B.A., Sharma P., Kaur S. Recent Nano-, Micro- and Macrotechnological Applications of Ultrasonication in Food-Based Systems. Crit. Rev. Food Sci. Nutr. 2020;61:599–621. doi: 10.1080/10408398.2020.1740646. PubMed DOI
Amaral R.D.A., Benedetti B.C., Pujolà M., Achaerandio I., Bachelli M.L.B. A First Approach of Using Ultrasound as an Alternative for Blanching in Vacuum-Packaged Potato Strips. Food Bioprocess Technol. 2016;9:1794–1801. doi: 10.1007/s11947-016-1758-2. DOI
Peshkovsky A.S., Peshkovsky S.L., Bystryak S. Scalable High-Power Ultrasonic Technology for the Production of Translucent Nanoemulsions. Chem. Eng. Process. Process Intensif. 2013;69:77–82. doi: 10.1016/j.cep.2013.02.010. DOI
Álvarez-Arenas T.E.G. Simultaneous Determination of the Ultrasound Velocity and the Thickness of Solid Plates from the Analysis of Thickness Resonances Using Air-Coupled Ultrasound. Ultrasonics. 2010;50:104–109. doi: 10.1016/j.ultras.2009.09.009. PubMed DOI
Carvalho G.R., Massarioli A.P., Alvim I.D., Augusto P.E.D. Iron-Fortified Pineapple Chips Produced Using Microencapsulation, Ethanol, Ultrasound and Convective Drying. Food Eng. Rev. 2020;13:726–739. doi: 10.1007/s12393-020-09259-4. DOI
Rojas M.L., Augusto P.E.D., Cárcel J.A. Ethanol Pre-Treatment to Ultrasound-Assisted Convective Drying of Apple. Innov. Food Sci. Emerg. Technol. 2020;61:102328. doi: 10.1016/j.ifset.2020.102328. DOI
Wang X., Feng Y., Zhou C., Sun Y., Wu B., Yagoub A.E.A., Aboagarib E.A.A. Effect of Vacuum and Ethanol Pretreatment on Infrared-Hot Air Drying of Scallion (Allium fistulosum) Food Chem. 2019;295:432–440. doi: 10.1016/j.foodchem.2019.05.145. PubMed DOI
Guedes J.S., Santos K.C., Castanha N., Rojas M.L., Matta Junior M.D., Lima D.C., Augusto P.E.D. Structural Modification on Potato Tissue and Starch Using Ethanol Pre-Treatment and Drying Process. Food Struct. 2021;29:100202. doi: 10.1016/j.foostr.2021.100202. DOI
Santos K.C., Guedes J.S., Rojas M.L., Carvalho G.R., Augusto P.E.D. Enhancing Carrot Convective Drying by Combining Ethanol and Ultrasound as Pre-Treatments: Effect on Product Structure, Quality, Energy Consumption, Drying and Rehydration Kinetics. Ultrason. Sonochem. 2021;70:105304. doi: 10.1016/j.ultsonch.2020.105304. PubMed DOI PMC
Rojas M.L., Augusto P.E.D. Ethanol Pre-Treatment Improves Vegetable Drying and Rehydration: Kinetics, Mechanisms and Impact on Viscoelastic Properties. J. Food Eng. 2018;233:17–27. doi: 10.1016/j.jfoodeng.2018.03.028. DOI
Arshad R.N., Abdul-Malek Z., Munir A., Buntat Z., Ahmad M.H., Jusoh Y.M.M., Bekhit A.E.-D., Roobab U., Manzoor M.F., Aadil R.M. Electrical Systems for Pulsed Electric Field Applications in the Food Industry: An Engineering Perspective. Trends Food Sci. Technol. 2020;104:1–13. doi: 10.1016/j.tifs.2020.07.008. DOI
Ade-Omowaye B.I.O., Angersbach A., Taiwo K.A., Knorr D. Use of Pulsed Electric Field Pre-Treatment to Improve Dehydration Characteristics of Plant Based Foods. Trends Food Sci. Technol. 2001;12:285–295. doi: 10.1016/s0924-2244(01)00095-4. DOI
Deng L.-Z., Mujumdar A.S., Zhang Q., Yang X.-H., Wang J., Zheng Z.-A., Gao Z.-J., Xiao H.-W. Chemical and Physical Pretreatments of Fruits and Vegetables: Effects on Drying Characteristics and Quality Attributes—A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2017;59:1408–1432. doi: 10.1080/10408398.2017.1409192. PubMed DOI
Wiktor A., Śledź M., Nowacka M., Chudoba T., Witrowa-Rajchert D. Pulsed Electric Field Pretreatment for Osmotic Dehydration of Apple Tissue: Experimental and Mathematical Modeling Studies. Dry. Technol. 2014;32:408–417. doi: 10.1080/07373937.2013.834926. DOI
Liu C., Pirozzi A., Ferrari G., Vorobiev E., Grimi N. Impact of Pulsed Electric Fields on Vacuum Drying Kinetics and Physicochemical Properties of Carrot. Food Res. Int. 2020;137:109658. doi: 10.1016/j.foodres.2020.109658. PubMed DOI
Ranganathan K., Subramanian V., Shanmugam N. Effect of Thermal and Nonthermal Processing on Textural Quality of Plant Tissues. Crit. Rev. Food Sci. Nutr. 2015;56:2665–2694. doi: 10.1080/10408398.2014.908348. PubMed DOI
Llavata B., García-Pérez J.V., Simal S., Cárcel J.A. Innovative Pre-Treatments to Enhance Food Drying: A Current Review. Curr. Opin. Food Sci. 2020;35:20–26. doi: 10.1016/j.cofs.2019.12.001. DOI
Swami Hulle N.R., Rao P.S. Effect of High-Pressure Pretreatments on Structural and Dehydration Characteristics of Aloe Vera (Aloe barbadensis Miller) Cubes. Dry. Technol. 2015;34:105–118. doi: 10.1080/07373937.2015.1037887. DOI
de Oliveira M.M., Tribst A.A.L., Júnior B.R.D.C.L., de Oliveira R.A., Cristianini M. Effects of High-Pressure Processing on Cocoyam, Peruvian Carrot, and Sweet Potato: Changes in Microstructure, Physical Characteristics, Starch, and Drying Rate. Innov. Food Sci. Emerg. Technol. 2015;31:45–53. doi: 10.1016/j.ifset.2015.07.004. DOI
Li X., Farid M. A Review on Recent Development in Non-Conventional Food Sterilization Technologies. J. Food Eng. 2016;182:33–45. doi: 10.1016/j.jfoodeng.2016.02.026. DOI
Jermann C., Koutchma T., Margas E., Leadley C., Ros-Polski V. Mapping Trends in Novel and Emerging Food Processing Technologies around the World. Innov. Food Sci. Emerg. Technol. 2015;31:14–27. doi: 10.1016/j.ifset.2015.06.007. DOI
Alamu E.O., Manda N., Ntawuruhunga P., Abass A., Maziya-Dixon B. Elite Cassava Clones (Manihot esculenta) Grown in Zambia: Effects of Drying Techniques on Their Chemical, Functional, and Pasting Properties. Front. Sustain. Food Syst. 2023;7:1129779. doi: 10.3389/fsufs.2023.1129779. DOI
Okonkwo C.E., Olaniran A.F., Adeyi O., Adeyi A.J., Ojediran J.O., Adewumi A.D., Iranloye Y.M., Erinle O.C. Drying Characteristics of Fermented-cooked Cassava Chips Used in the Production of Complementary Food: Mathematical and Gaussian Process Regression Modeling Approaches. J. Food Process Eng. 2021;44:e13715. doi: 10.1111/jfpe.13715. DOI
Handojo L.A., Zefanya S., Christanto Y. Drying Performance of Fermented Cassava (Fercaf) Using a Convective Multiple Flash Dryer. AIP Conf. Proc. 2017;1840:060002. doi: 10.1063/1.4982282. DOI
Suherman, Trisnaningtyas R. Thin Layer Drying of Cassava Starch Using Continuous Vibrated Fluidized Bed Dryer. AIP Conf. Proc. 2015;1699:060021. doi: 10.1063/1.4938375. DOI
Elisabeth D.A.A., Utomo J.S., Byju G., Ginting E. Cassava Flour Production by Small Scale Processors, Its Quality and Economic Feasibility. Food Sci. Technol. 2022;42:e41522. doi: 10.1590/fst.41522. DOI
Yahya M., Fudholi A., Hafizh H., Sopian K. Comparison of Solar Dryer and Solar-Assisted Heat Pump Dryer for Cassava. Sol. Energy. 2016;136:606–613. doi: 10.1016/j.solener.2016.07.049. DOI
Suherman S., Susanto E.E., Zardani A.W., Dewi N.H.R. Performance Study of Hybrid Solar Dryer for Cassava Starch; Proceedings of the 2nd International Conference on Chemical Process and Product Engineering (ICCPPE); Semarang, Indonesia. 25–26 September 2019; DOI
Dahal P., Tamang M.K. Effects of different processing methods on anti-nutritional factors of cassava (Manihot esculenta crantz) J. Food Nutr. Disord. 2021;10:5.
Nebiyu A., Getachew E. Soaking and drying of cassava roots reduced cyanogenic potential of three cassava varieties at Jimma, Southwest Ethiopia. Afr. J. Biotechnol. 2011;10:13465–13469. doi: 10.5897/ajb10.2636. DOI
Montagnac J.A., Davis C.R., Tanumihardjo S.A. Processing Techniques to Reduce Toxicity and Antinutrients of Cassava for Use as a Staple Food. Compr. Rev. Food Sci. Food Saf. 2008;8:17–27. doi: 10.1111/j.1541-4337.2008.00064.x. PubMed DOI
Brimer L. In: Chapter 10— Cassava Production and Processing and Impact on Biological Compounds. In Processing and Impact on Active Components in Food. Preedy V., editor. Academic Press; San Diego, CA, USA: 2015. pp. 81–87.
Perera C.O. Removal of Cyanogenic Glycoside from Cassava during Controlled Drying. Dry. Technol. 2009;28:68–72. doi: 10.1080/07373930903430710. DOI
Kehinde A.T., Udoro E.O. Studies on the Physicochemical, Functional and Sensory Properties of Gari Processed from Dried Cassava Chips. J. Food Process. Technol. 2013;5:1000293. doi: 10.4172/2157-7110.1000293. DOI
Silayo V.C.K., Lazaro E.L., Yustas Y., Laswai H.S. Cassava Sun Drying Performance on Various Surfaces and Drying Bed Depths. Tanzan. J. Agric. Sci. 2013;1:31–36.
Vijaya Venkata Raman S., Iniyan S., Goic R. A Review of Solar Drying Technologies. Renew. Sustain. Energy Rev. 2012;16:2652–2670. doi: 10.1016/j.rser.2012.01.007. DOI
Suherman S., Susanto E.E., Busairi A. Applications of solar dryer for seaweed and cassava starch. J. Phys. Conf. Ser. 2019;1295:012001. doi: 10.1088/1742-6596/1295/1/012001. DOI
El-Beltagy A., Gamea G.R., Essa A.H.A. Solar Drying Characteristics of Strawberry. J. Food Eng. 2007;78:456–464. doi: 10.1016/j.jfoodeng.2005.10.015. DOI
Akonor P.T., Tortoe C., Buckman E.S., Hagan L. Proximate Composition and Sensory Evaluation of Root and Tuber Composite Flour Noodles. Cogent Food Agric. 2017;3:1292586. doi: 10.1080/23311932.2017.1292586. DOI
Famurewa J., Oluwamukomi M., Alaba J. Effect of Different Drying Methods on the Physicochemical Characteristics of Cassava Flour (“Pupuru”) Int. J. Biol. Chem. Sci. 2013;7:832–839. doi: 10.4314/ijbcs.v7i2.38. DOI
Nwafor J. Effect of drying methods on the nutritional composition of D. alata and D. rotundata yam varieties. J. Food Sci. Nutr. 2022;5:102.
Balzarini M.F., Reinheimer M.A., Ciappini M.C., Scenna N.J. Comparative study of hot air and vacuum drying on the drying kinetics and physicochemical properties of chicory roots. J. Food Sci. Technol. 2018;55:4067–4078. doi: 10.1007/s13197-018-3333-5. PubMed DOI PMC
Van ’t Land C.M. Drying in the Process Industry. John Wiley & Sons; Hoboken, NJ, USA: 2011.
Rashid M.T., Liu K., Jatoi M.A., Safdar B., Lv D., Li Q. Energy Efficient Drying Technologies for Sweet Potatoes: Operating and Drying Mechanism, Quality-Related Attributes. Front. Nutr. 2022;9:1040314. doi: 10.3389/fnut.2022.1040314. PubMed DOI PMC
Yang D., Wu G., Li P., Qi X., Zhang H., Wang X., Jin Q. Effect of microwave heating and vacuum oven drying of potato strips on oil uptake during deep-fat frying. Food Res. Int. 2020;137:109338. doi: 10.1016/j.foodres.2020.109338. PubMed DOI
Li L., Zhang M., Lu C., Xu S., Fu Z., Lin D., Zheng Y. Appearance, Microstructure, and Bioactive Components of Bletilla striata Tuber as Affected by Different Drying Methods. Food Bioprocess Technol. 2024 doi: 10.1007/s11947-024-03348-6. DOI
Fatimah S., Hafied M.A., Indiasih P.A.Y., Airlangga B., Rahmawati Y., Roesyadi A., Sumarno S. Amylose Isolation of Cassava Starch with the Combination of High Shear Mixer and Centrifugation Treatment to Improve the Quality of Resistant Starch Type 3 (RS-3) Products. Adv. Sci. Technol. 2024;138:13–19. doi: 10.4028/p-xj9zas. DOI
Sivakumar R., Saravanan R., Elaya Perumal A., Iniyan S. Fluidized Bed Drying of Some Agro Products—A Review. Renew. Sustain. Energy Rev. 2016;61:280–301. doi: 10.1016/j.rser.2016.04.014. DOI
Famurewa J.A.V., Emuekele P.O. Cyanide reduction pattern of cassava (mannihot Esculenta) as affected by variety and air velocity using fluidized bed dryer. Afr. J. Food Sci. Technol. 2014;5:75–80. doi: 10.14303/ajfst.2014.019. DOI
Bakal S.B., Sharma G.P., Sonawane S.P., Verma R.C. Kinetics of Potato Drying Using Fluidized Bed Dryer. J. Food Sci. Technol. 2011;49:608–613. doi: 10.1007/s13197-011-0328-x. PubMed DOI PMC
Lozano-Acevedo A., Jimenez-Fernández M., Ragazzo-Sánchez A., Urrea-Garcia G.R., Luna-Solano G. Fluidized Bed Drying Process of Thinly Sliced Potato (Solanum tuberosum) Am. J. Potato Res. 2011;88:360–366. doi: 10.1007/s12230-011-9201-8. DOI
Okoronkwo C.A., Nwufo O.C., Nwaigwe K.N., Ogueke N.V., Anyanwu E.E. Experimental evaluation of a fluidized bed dryer performance. Int. J. Eng. Sci. 2013;2:45–53.
Şevik S. Experimental Investigation of a New Design Solar-Heat Pump Dryer under the Different Climatic Conditions and Drying Behavior of Selected Products. Sol. Energy. 2014;105:190–205. doi: 10.1016/j.solener.2014.03.037. DOI
Prasanna N.S., Manjula B. Review on drying of agricultural produce using solar assisted heat pump drying. Int. J. Agric. Eng. 2018;11:409–420. doi: 10.15740/has/ijae/11.2/409-420. DOI
Hasibuan R., Yahya M., Fahmi H., Edison E. Comparative performance of a solar assisted heat pump dryer with a heat pump dryer for Curcuma. Int. J. Power Electron. Drive Syst. 2020;11:1617. doi: 10.11591/ijpeds.v11.i3.pp1617-1627. DOI
Loemba A.B.T., Kichonge B., Kivevele T. Comprehensive Assessment of Heat Pump Dryers for Drying Agricultural Products. Energy Sci. Eng. 2022;11:2985–3014. doi: 10.1002/ese3.1326. DOI
Monteiro R.L., De Moraes J.O., Domingos J.D., Carciofi B.A.M., Laurindo J.B. Evolution of the physicochemical properties of oil-free sweet potato chips during microwave vacuum drying. Innov. Food Sci. Emerg. Technol. 2020;63:102317. doi: 10.1016/j.ifset.2020.102317. DOI
Regier M., Mayer-Miebach E., Behsnilian D., Neff E., Schuchmann H.P. Influences of Drying and Storage of Lycopene-Rich Carrots on the Carotenoid Content. Dry. Technol. 2005;23:989–998. doi: 10.1081/drt-200054255. DOI
Li L., Zhang M., Wang W. A Novel Low-Frequency Microwave Assisted Pulse-Spouted Bed Freeze-Drying of Chinese Yam. Food Bioprod. Process. 2019;118:217–226. doi: 10.1016/j.fbp.2019.09.012. DOI
Song X., Zhang M., Mujumdar A.S., Fan L. Drying Characteristics and Kinetics of Vacuum Microwave–Dried Potato Slices. Dry. Technol. 2009;27:969–974. doi: 10.1080/07373930902902099. DOI
Lech K., Figiel A., Wojdyło A., Korzeniowska M., Serowik M., Szarycz M. Drying Kinetics and Bioactivity of Beetroot Slices Pretreated in Concentrated Chokeberry Juice and Dried with Vacuum Microwaves. Dry. Technol. 2015;33:1644–1653. doi: 10.1080/07373937.2015.1075209. DOI
Yan W., Zhang M., Huang L., Tang J., Mujumdar A.S., Sun J. Studies on Different Combined Microwave Drying of Carrot Pieces. Int. J. Food Sci. Technol. 2010;45:2141–2148. doi: 10.1111/j.1365-2621.2010.02380.x. DOI
Pawar S.B., Pratape V.M. Fundamentals of Infrared Heating and Its Application in Drying of Food Materials: A Review. J. Food Process Eng. 2015;40:e12308. doi: 10.1111/jfpe.12308. DOI
Doymaz İ. Infrared Drying Kinetics and Quality Characteristics of Carrot Slices. J. Food Process. Preserv. 2015;39:2738–2745. doi: 10.1111/jfpp.12524. DOI
Doymaz İ. Infrared Drying of Sweet Potato (Ipomoea batatas L.) Slices. J. Food Sci. Technol. 2011;49:760–766. doi: 10.1007/s13197-010-0217-8. PubMed DOI PMC
Onwude D.I., Hashim N., Abdan K., Janius R., Chen G. Investigating the Influence of Novel Drying Methods on Sweet Potato (Ipomoea batatas L.): Kinetics, Energy Consumption, Color, and Microstructure. J. Food Process Eng. 2018;41:e12686. doi: 10.1111/jfpe.12686. DOI
Guo J., Huang K., Wang J. Bactericidal Effect of Various Non-Thermal Plasma Agents and the Influence of Experimental Conditions in Microbial Inactivation: A Review. Food Control. 2015;50:482–490. doi: 10.1016/j.foodcont.2014.09.037. DOI
Onwude D.I., Hashim N., Abdan K., Janius R., Chen G. The Effectiveness of Combined Infrared and Hot-Air Drying Strategies for Sweet Potato. J. Food Eng. 2019;241:75–87. doi: 10.1016/j.jfoodeng.2018.08.008. DOI
Lee S.-H., Ko S.-C., Kang S.-M., Cha S.H., Ahn G.-N., Um B.-H., Jeon Y.-J. Antioxidative Effect of Ecklonia Cava Dried by Far Infrared Radiation Drying. Food Sci. Biotechnol. 2010;19:129–135. doi: 10.1007/s10068-010-0018-x. DOI
Wu X., Zhang M., Ye Y., Yu D. Influence of ultrasonic pretreatments on drying kinetics and quality attributes of sweet potato slices in infrared freeze drying (IRFD) LWT. 2020;131:109801. doi: 10.1016/j.lwt.2020.109801. DOI
Nowacka M., Wedzik M. Effect of Ultrasound Treatment on Microstructure, Colour and Carotenoid Content in Fresh and Dried Carrot Tissue. Appl. Acoust. 2016;103:163–171. doi: 10.1016/j.apacoust.2015.06.011. DOI
Mulet A., Cárcel J.A., Sanjuán N., Bon J. New Food Drying Technologies—Use of Ultrasound. Food Sci. Technol. Int. 2003;9:215–221. doi: 10.1177/1082013203034641. DOI
Kroehnke J., Szadzińska J., Stasiak M., Radziejewska-Kubzdela E., Biegańska-Marecik R., Musielak G. Ultrasound- and Microwave-Assisted Convective Drying of Carrots—Process Kinetics and Product’s Quality Analysis. Ultrason. Sonochem. 2018;48:249–258. doi: 10.1016/j.ultsonch.2018.05.040. PubMed DOI
Cárcel J.A., Garcia-Perez J.V., Riera E., Mulet A. Improvement of Convective Drying of Carrot by Applying Power Ultrasound—Influence of Mass Load Density. Dry. Technol. 2011;29:174–182. doi: 10.1080/07373937.2010.483032. DOI
Liu Y., Sun Y., Yu H., Yin Y., Li X., Duan X. Hot Air Drying of Purple-Fleshed Sweet Potato with Contact Ultrasound Assistance. Dry. Technol. 2016;35:564–576. doi: 10.1080/07373937.2016.1193867. DOI
Ortiz-Jerez M.J., Gulati T., Datta A.K., Ochoa-Martínez C.I. Quantitative Understanding of Refractance WindowTM Drying. Food Bioprod. Process. 2015;95:237–253. doi: 10.1016/j.fbp.2015.05.010. DOI
Bernaert N., Van Droogenbroeck B., Van Pamel E., De Ruyck H. Innovative Refractance Window Drying Technology to Keep Nutrient Value during Processing. Trends Food Sci. Technol. 2019;84:22–24. doi: 10.1016/j.tifs.2018.07.029. DOI
Raghavi L.M., Moses J.A., Anandharamakrishnan C. Refractance Window Drying of Foods: A Review. J. Food Eng. 2018;222:267–275. doi: 10.1016/j.jfoodeng.2017.11.032. DOI
Nayak B., Berrios J.D.J., Powers J.R., Tang J., Ji Y. Colored potatoes (Solanum tuberosum L.) Dried for Antioxidant-rich Value-added Foods. J. Food Process. Preserv. 2011;35:571–580. doi: 10.1111/j.1745-4549.2010.00502.x. DOI
Duarte-Correa Y., Vargas-Carmona M.I., Vásquez-Restrepo A., Ruiz Rosas I.D., Pérez Martínez N. Native Potato (Solanum phureja) Powder by Refractance Window Drying: A Promising Way for Potato Processing. J. Food Process Eng. 2021;44:e13819. doi: 10.1111/jfpe.13819. DOI
Ueda J.M., Morales P., Fernández-Ruiz V., Ferreira A., Barros L., Carocho M., Heleno S.A. Powdered Foods: Structure, Processing, and Challenges: A Review. Appl. Sci. 2023;13:12496. doi: 10.3390/app132212496. DOI
Amelework A.B., Bairu M.W. Advances in Genetic Analysis and Breeding of Cassava (Manihot esculenta Crantz): A Review. Plants. 2022;11:1617. doi: 10.3390/plants11121617. PubMed DOI PMC
Maulida Y.F., Subejo, Hardyastuti S. The Urgency of Institutional Development of Cassava Industry in Daerah Istimewa Yogyakarta and Jawa Tengah. Sodality J. Sosiol. Pedesaan. 2021;9:e33369. doi: 10.22500/9202133369. DOI
Shittu T.A., Alimi B.A., Wahab B., Sanni L.O., Abass A.B. Cassava flour and starch: Processing technology and utilization. In: Sharma H.K., Njintang N.Y., Singhal R.S., Kaushal P., editors. Tropical Roots and Tubers. John Wiley & Sons; Chichester, UK: 2016. pp. 415–450.
Breuninger W.F., Piyachomkwan K., Sriroth K. Tapioca/cassava starch: Production and use. In: BeMiller J., Whistler R., editors. Starch: Chemistry and Technology. 3rd ed. Academic Press; San Diego, CA, USA: 2009. pp. 541–568.
Neves E.C.A., Neves D.A., Lobato K.B.d.S., Nascimento G.C.d., Clerici M.T.P.S. Technological aspects of processing of cassava derivatives. In: Klein C., editor. Handbook on Cassava: Production, Potential Uses and Recent Advances. Nova Science Publishers; New York, NY, USA: 2017. pp. 105–127.
Pornpraipech P., Khusakul M., Singklin R., Sarabhorn P., Areeprasert C. Effect of Temperature and Shape on Drying Performance of Cassava Chips. Agric. Nat. Resour. 2017;51:402–409. doi: 10.1016/j.anres.2017.12.004. DOI
Veeramanipriya E., Umayal Sundari A.R. Performance Evaluation of Hybrid Photovoltaic Thermal (PVT) Solar Dryer for Drying of Cassava. Sol. Energy. 2021;215:240–251. doi: 10.1016/j.solener.2020.12.027. DOI
Akinwande B.A., Ade-Omowaye B.I.O., Olaniyan S.A., Akintaro O.O. Quality Evaluation of Ginger-flavoured Soy-cassava Biscuit. Nutr. Food Sci. 2008;38:473–481. doi: 10.1108/00346650810906994. DOI
Ammar A., Abd El-Razik M. Quality Characteristics of Gluten Free Cake Produced from Cassava, Pumpkin and Potato Flours. J. Food Dairy Sci. 2013;4:401–412. doi: 10.21608/jfds.2013.72081. DOI
Olapade A.A., Adeyemo M.A. Evaluation of Cookies Produced from Blends of Wheat, Cassava and Cowpea Flours. Int. J. Food Stud. 2014;3:175–185. doi: 10.7455/ijfs.v3i2.213. DOI
Aly M.M.A., Seleem H.A. Gluten-Free Flat Bread and Biscuits Production by Cassava, Extruded Soy Protein and Pumpkin Powder. Food Nutr. Sci. 2015;6:660–674. doi: 10.4236/fns.2015.67069. DOI
Jensen S., Skibsted L.H., Kidmose U., Thybo A.K. Addition of Cassava Flours in Bread-Making: Sensory and Textural Evaluation. LWT—Food Sci. Technol. 2015;60:292–299. doi: 10.1016/j.lwt.2014.08.037. DOI
Adeboye A.S., Babajide J.M., Shittu T.A., Omemu A.M., Oluwatola O.J. Effect of Honey as Partial Sugar Substitute on Pasting Properties, Consumer Preference and Shelf Stability of Cassava-Wheat Composite Bread. Niger. Food J. 2013;31:13–22. doi: 10.1016/s0189-7241(15)30051-5. DOI
Nwabueze T.U., Anoruoh G.A. Evaluation of Flour and Extruded Noodles from Eight Cassava Mosaic Disease (CMD)-Resistant Varieties. Food Bioprocess Technol. 2009;4:80–91. doi: 10.1007/s11947-009-0200-4. DOI
Ogugbue C.J., Gloria O. Bioburden of garri stored in different packaging materials undertropical market conditions. Middle-East J. Sci. Res. 2011;7:741–745.
Ogiehor I., Ikenebomeh M. The effects of different packaging materials on the shelf stability of garri. Afr. J. Biotechnol. 2006;23:2412–2416.
Opara U.L., Caleb O.J., Uchechukwu-Agua A.D. Evaluating the Impacts of Selected Packaging Materials on the Quality Attributes of Cassava Flour (Cvs. TME 419 and UMUCASS 36) J. Food Sci. 2016;81:C324–C331. doi: 10.1111/1750-3841.13199. PubMed DOI
Baranowska H.M., Kowalczewski P.Ł. Low-Field NMR Analyses of Gels and Starch-Stabilized Emulsions with Modified Potato Starches. Processes. 2022;10:2109. doi: 10.3390/pr10102109. DOI
Walkowiak K., Przybył K., Baranowska H.M., Koszela K., Masewicz Ł., Piątek M. The Process of Pasting and Gelling Modified Potato Starch with LF-NMR. Polymers. 2022;14:184. doi: 10.3390/polym14010184. PubMed DOI PMC