Recent Trends in the Pre-Drying, Drying, and Post-Drying Processes for Cassava Tuber: A Review

. 2024 Jun 05 ; 13 (11) : . [epub] 20240605

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38891006

Grantová podpora
20233101 Internal Grant Agency of the Faculty of Tropical AgriSciences

Cassava tuber is an essential staple crop in tropical regions with versatile applications in the food, feed, and industrial sectors. However, its high moisture content and perishable nature necessitate efficient preservation methods to extend its shelf life and enhance its value. Pre-drying, drying, and post-drying processes play pivotal roles in maintaining the quality and usability of cassava products. This review comprehensively examines the current status and future directions in the pre-drying, drying, and post-drying processes of cassava tuber. Various pre-drying or pretreatment methods and drying techniques are evaluated for their impacts on drying kinetics and product quality. Additionally, challenges and limitations in achieving high-quality processing of cassava flour are identified. Future directions in cassava drying methods emphasize the integration of combined pre-drying and drying techniques to optimize resource utilization and processing efficiency. Furthermore, the adoption of advanced online measurement and control technologies in drying equipment is highlighted for real-time monitoring and optimization of drying parameters. The importance of optimizing existing processes to establish a comprehensive cassava industrial chain and foster the development of the cassava deep-processing industry is emphasized. This review provides valuable insights into the current trends and future prospects in cassava drying technologies, aiming to facilitate sustainable and efficient utilization of cassava resources for various applications.

Zobrazit více v PubMed

FAOSTAT . Statistics Division Food and Agriculture Organization of the United Nations. FAOSTAT; Rome, Italy: 2021. [(accessed on 10 October 2023)]. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL.

Parmar A., Sturm B., Hensel O. Crops That Feed the World: Production and Improvement of Cassava for Food, Feed, and Industrial Uses. Food Secur. 2017;9:907–927. doi: 10.1007/s12571-017-0717-8. DOI

Market Data Forecast Cassava Starch Market Size, Share, Growth 2023–2028. [(accessed on 27 September 2023)]. Available online: https://www.marketdataforecast.com/market-reports/cassava-flour-market.

Iyer S., Mattinson D.S., Fellman J.K. Study of the Early Events Leading to Cassava Root Postharvest Deterioration. Trop. Plant Biol. 2010;3:151–165. doi: 10.1007/s12042-010-9052-3. DOI

Li S., Cui Y., Zhou Y., Luo Z., Liu J., Zhao M. The Industrial Applications of Cassava: Current Status, Opportunities and Prospects. J. Sci. Food Agric. 2017;97:2282–2290. doi: 10.1002/jsfa.8287. PubMed DOI

Oliveira L.A., Motta J.S., Jesus J.L., Sasaki F.F.C., Viana E.S. Processing of Sweet and Bitter Cassava. Embrapa; Brasília, Brazil: 2020.

Omolara G.M., Adunni A.A., Omotayo A.O. Cost and return analysis of cassava flour (Lafun) production among the women of Osun state, Nigeria. Sci. Res. 2017;5:72. doi: 10.11648/j.sr.20170505.12. DOI

Morante N., Sánchez T., Ceballos H., Calle F., Pérez J.C., Egesi C., Cuambe C.E., Escobar A.F., Ortiz D., Chávez A.L., et al. Tolerance to Postharvest Physiological Deterioration in Cassava Roots. Crop Sci. 2010;50:1333–1338. doi: 10.2135/cropsci2009.11.0666. DOI

Wang S. Starch Structure, Functionality and Application in Foods. Springer Nature; Berlin/Heidelberg, Germany: 2020.

Falade K.O., Akingbala J.O. Utilization of Cassava for Food. Food Rev. Int. 2010;27:51–83. doi: 10.1080/87559129.2010.518296. DOI

Szadzińska J., Mierzwa D., Pawłowski A., Musielak G., Pashminehazar R., Kharaghani A. Ultrasound- and Microwave-Assisted Intermittent Drying of Red Beetroot. Dry. Technol. 2019;38:93–107. doi: 10.1080/07373937.2019.1624565. DOI

Buzera A., Gikundi E., Orina I., Sila D. Effect of Pretreatments and Drying Methods on Physical and Microstructural Properties of Potato Flour. Foods. 2022;11:507. doi: 10.3390/foods11040507. PubMed DOI PMC

Utomo J.S., Che Man Y.B., Rahman R.A., Said Saad M. The Effect of Shape, Blanching Methods and Flour on Characteristics of Restructured Sweetpotato Stick. Int. J. Food Sci. Technol. 2008;43:1896–1900. doi: 10.1111/j.1365-2621.2008.01792.x. DOI

Malakar S., Arora V.K., Munshi M., Yadav D.K., Pou K.R.J., Deb S., Chandra R. Application of novel pretreatment technologies for intensification of drying performance and quality attributes of food commodities: A review. Food Sci. Biotechnol. 2023;32:1303–1335. doi: 10.1007/s10068-023-01322-0. PubMed DOI PMC

Melese A.D., Keyata E.O. Impacts of Pretreatment Techniques on the Quality of Tuber Flours. Sci. World J. 2022;2022:9323694. doi: 10.1155/2022/9323694. PubMed DOI PMC

Vera F.H.C.-D., Soriano A.N., Dugos N.P., Rubi R.V.C. A Comprehensive Review on the Drying Kinetics of Common Tubers. Appl. Sci. Eng. Prog. 2021;14:146–155. doi: 10.14416/j.asep.2021.03.003. DOI

Carvalho G.R., Santos K.C., Guedes J.S., Bitencourt B.S., Rojas M.L., Augusto P.E.D. Chapter 17—Drying of roots and tubers. In: Jafari S.M., Malekjani N., editors. Drying Technology in Food Processing. Woodhead Publishing; Witney, Oxford, UK: 2023. pp. 587–628.

Mousakhani-Ganjeh A., Amiri A., Nasrollahzadeh F., Wiktor A., Nilghaz A., Pratap-Singh A., Mousavi Khaneghah A. Electro-Based Technologies in Food Drying—A Comprehensive Review. LWT. 2021;145:111315. doi: 10.1016/j.lwt.2021.111315. DOI

Acurio L., Baquerizo A., Borja A., Vayas M., García-Segovia P., Martínez-Monzó J., Igual M. Water-Sorption Isotherms and Air-Drying-Kinetics Modelling of Andean Tubers and Tuberous Roots. Biol. Life Sci. Forum. 2023;26:71. doi: 10.3390/Foods2023-15141. DOI

Guiné R.P.F. The Drying of Foods and Its Effect on the Physical-Chemical, Sensorial and Nutritional Properties. ETP Int. J. Food Eng. 2018;4:93–100. doi: 10.18178/ijfe.4.2.93-100. DOI

Moses J.A., Norton T., Alagusundaram K., Tiwari B.K. Novel Drying Techniques for the Food Industry. Food Eng. Rev. 2014;6:43–55. doi: 10.1007/s12393-014-9078-7. DOI

Mukhtar A., Latif S., Barati Z., Müller J. Valorization of Cassava By-Products: Cyanide Content and Quality Characteristics of Leaves and Peel. Appl. Sci. 2023;13:6340. doi: 10.3390/app13106340. DOI

Quinn A.A., Myrans H., Gleadow R.M. Cyanide Content of Cassava Food Products Available in Australia. Foods. 2022;11:1384. doi: 10.3390/foods11101384. PubMed DOI PMC

Abass A.B., Awoyale W., Sulyok M., Alamu E.O. Occurrence of Regulated Mycotoxins and Other Microbial Metabolites in Dried Cassava Products from Nigeria. Toxins. 2017;9:207. doi: 10.3390/toxins9070207. PubMed DOI PMC

Precoppe M., Komlaga G.A., Chapuis A., Müller J. Comparative Study between Current Practices on Cassava Drying by Small-Size Enterprises in Africa. Appl. Sci. 2020;10:7863. doi: 10.3390/app10217863. DOI

Gonçalves L.T., Pereira N.R., Almeida S.B., Freitas S.d.J., Waldman W.R. Microwave–Hot Air Drying Applied to Selected Cassava Cultivars: Drying Kinetics and Sensory Acceptance. Int. J. Food Sci. Technol. 2016;52:389–397. doi: 10.1111/ijfs.13293. DOI

Akonor P.T., Tutu C.O., Affrifah N.S., Budu A.S., Saalia F.K. Effect of Different Drying Techniques on the Functionality and Digestibility of Yellow-Fleshed Cassava Flour and Its Performance in Food Application. J. Food Process. Preserv. 2023;2023:1775604. doi: 10.1155/2023/1775604. DOI

Ekeledo E., Latif S., Abass A., Müller J. Amylose, Rheological and Functional Properties of Yellow Cassava Flour as Affected by Pretreatment and Drying Methods. Food Humanit. 2023;1:57–63. doi: 10.1016/j.foohum.2023.03.004. DOI

Nainggolan E.A., Banout J., Urbanova K. Chemical and Thermal Treatment for Drying Cassava Tubers: Optimization, Microstructure, and Dehydration Kinetics. Life. 2023;13:2355. doi: 10.3390/life13122355. PubMed DOI PMC

Oladejo A.O., Ekpene M.M., Onwude D.I., Assian U.E., Nkem O.M. Effects of Ultrasound Pretreatments on the Drying Kinetics of Yellow Cassava during Convective Hot Air Drying. J. Food Process. Preserv. 2021;45:e15251. doi: 10.1111/jfpp.15251. DOI

Wahab B.A., Adebowale A.A., Sanni S.A., Sobukola O.P., Obadina A.O., Kajihausa O.E., Adegunwa M.O., Sanni L.O., Tomlins K. Effect of species, pretreatments, and drying methods on the functional and pasting properties of high-quality yam flour. Food Sci. Nutr. 2015;4:50–58. doi: 10.1002/fsn3.260. PubMed DOI PMC

Bikila A.M., Tola Y.B., Esho T.B., Forsido S.F., Mijena D.F. Starch composition and functional properties of raw and pretreated anchote (Coccinia abyssinica (Lam.) Cogn.) tuber flours dried at different temperatures. Food Sci. Nutr. 2021;10:645–660. doi: 10.1002/fsn3.2687. PubMed DOI PMC

Jaiswal A.K. Food Processing Technologies. CRC Press; Boca Raton, FL, USA: 2016.

Filho L.M., Frascareli E.C., Mauro M.A. Effect of an Edible Pectin Coating and Blanching Pretreatments on the Air-Drying Kinetics of Pumpkin (Cucurbita moschata) Food Bioprocess Technol. 2016;9:859–871. doi: 10.1007/s11947-016-1674-5. DOI

Ando Y., Maeda Y., Mizutani K., Wakatsuki N., Hagiwara S., Nabetani H. Impact of Blanching and Freeze-Thaw Pretreatment on Drying Rate of Carrot Roots in Relation to Changes in Cell Membrane Function and Cell Wall Structure. LWT—Food Sci. Technol. 2016;71:40–46. doi: 10.1016/j.lwt.2016.03.019. DOI

Nainggolan E.A., Banout J., Urbanova K. Application of Central Composite Design and Superimposition Approach for Optimization of Drying Parameters of Pretreated Cassava Flour. Foods. 2023;12:2101. doi: 10.3390/foods12112101. PubMed DOI PMC

Garba U., Kaur S., Gurumayum S., Rasane P. Effect of Hot Water Blanching Time and Drying Temperature on The Thin Layer Drying Kinetics and Anthocyanin Degradation of Black Carrot (Daucus carota L.) Shreds. Food Technol. Biotechnol. 2015;53:324–330. doi: 10.17113/ftb.53.03.15.3830. PubMed DOI PMC

Badwaik L.S., Gautam G., Deka S.C. Influence of Blanching on Antioxidant, Nutritional and Physical Properties of Bamboo Shoot. J. Agric. Sci.—Sri Lanka. 2015;10:140–150. doi: 10.4038/jas.v10i3.8067. DOI

Lin S., Brewer M.S. Effects of Blanching Method on the Quality Characteristics of Frozen Peas. J. Food Qual. 2005;28:350–360. doi: 10.1111/j.1745-4557.2005.00038.x. DOI

Marzuki S.U., Fardenan D., Nguyen L.T. Drying Characteristic of Blanched Purple-Fleshed Sweet Potato Under Microwave Vacuum Drying. IOP Conf. Ser. Earth Environ. Sci. 2019;309:012059. doi: 10.1088/1755-1315/309/1/012059. DOI

Miranda G., Berna À., Salazar D., Mulet A. Sulphur Dioxide Evolution during Dried Apricot Storage. LWT—Food Sci. Technol. 2009;42:531–533. doi: 10.1016/j.lwt.2008.08.008. DOI

van Hal M. Quality of Sweetpotato Flour During Processing and Storage. Food Rev. Int. 2000;16:1–37. doi: 10.1081/fri-100100280. DOI

García-Martínez E., Igual M., Martín-Esparza M.E., Martínez-Navarrete N. Assessment of the Bioactive Compounds, Color, and Mechanical Properties of Apricots as Affected by Drying Treatment. Food Bioprocess Technol. 2012;6:3247–3255. doi: 10.1007/s11947-012-0988-1. DOI

Kamiloglu S., Toydemir G., Boyacioglu D., Beekwilder J., Hall R.D., Capanoglu E. A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2015;56((Suppl. S1)):S110–S129. doi: 10.1080/10408398.2015.1045969. PubMed DOI

Hiranvarachat B., Devahastin S., Chiewchan N. Effects of Acid Pretreatments on Some Physicochemical Properties of Carrot Undergoing Hot Air Drying. Food Bioprod. Process. 2011;89:116–127. doi: 10.1016/j.fbp.2010.03.010. DOI

Wang L., Xu B., Wei B., Zeng R. Low Frequency Ultrasound Pretreatment of Carrot Slices: Effect on the Moisture Migration and Quality Attributes by Intermediate-Wave Infrared Radiation Drying. Ultrason. Sonochem. 2018;40:619–628. doi: 10.1016/j.ultsonch.2017.08.005. PubMed DOI

Miano A.C., Ibarz A., Augusto P.E.D. Mechanisms for Improving Mass Transfer in Food with Ultrasound Technology: Describing the Phenomena in Two Model Cases. Ultrason. Sonochem. 2016;29:413–419. doi: 10.1016/j.ultsonch.2015.10.020. PubMed DOI

Tao Y., Sun D.-W. Enhancement of Food Processes by Ultrasound: A Review. Crit. Rev. Food Sci. Nutr. 2014;55:570–594. doi: 10.1080/10408398.2012.667849. PubMed DOI

Chemat F., Zill-e-Huma, Khan M.K. Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction. Ultrason. Sonochem. 2011;18:813–835. doi: 10.1016/j.ultsonch.2010.11.023. PubMed DOI

Kehinde B.A., Sharma P., Kaur S. Recent Nano-, Micro- and Macrotechnological Applications of Ultrasonication in Food-Based Systems. Crit. Rev. Food Sci. Nutr. 2020;61:599–621. doi: 10.1080/10408398.2020.1740646. PubMed DOI

Amaral R.D.A., Benedetti B.C., Pujolà M., Achaerandio I., Bachelli M.L.B. A First Approach of Using Ultrasound as an Alternative for Blanching in Vacuum-Packaged Potato Strips. Food Bioprocess Technol. 2016;9:1794–1801. doi: 10.1007/s11947-016-1758-2. DOI

Peshkovsky A.S., Peshkovsky S.L., Bystryak S. Scalable High-Power Ultrasonic Technology for the Production of Translucent Nanoemulsions. Chem. Eng. Process. Process Intensif. 2013;69:77–82. doi: 10.1016/j.cep.2013.02.010. DOI

Álvarez-Arenas T.E.G. Simultaneous Determination of the Ultrasound Velocity and the Thickness of Solid Plates from the Analysis of Thickness Resonances Using Air-Coupled Ultrasound. Ultrasonics. 2010;50:104–109. doi: 10.1016/j.ultras.2009.09.009. PubMed DOI

Carvalho G.R., Massarioli A.P., Alvim I.D., Augusto P.E.D. Iron-Fortified Pineapple Chips Produced Using Microencapsulation, Ethanol, Ultrasound and Convective Drying. Food Eng. Rev. 2020;13:726–739. doi: 10.1007/s12393-020-09259-4. DOI

Rojas M.L., Augusto P.E.D., Cárcel J.A. Ethanol Pre-Treatment to Ultrasound-Assisted Convective Drying of Apple. Innov. Food Sci. Emerg. Technol. 2020;61:102328. doi: 10.1016/j.ifset.2020.102328. DOI

Wang X., Feng Y., Zhou C., Sun Y., Wu B., Yagoub A.E.A., Aboagarib E.A.A. Effect of Vacuum and Ethanol Pretreatment on Infrared-Hot Air Drying of Scallion (Allium fistulosum) Food Chem. 2019;295:432–440. doi: 10.1016/j.foodchem.2019.05.145. PubMed DOI

Guedes J.S., Santos K.C., Castanha N., Rojas M.L., Matta Junior M.D., Lima D.C., Augusto P.E.D. Structural Modification on Potato Tissue and Starch Using Ethanol Pre-Treatment and Drying Process. Food Struct. 2021;29:100202. doi: 10.1016/j.foostr.2021.100202. DOI

Santos K.C., Guedes J.S., Rojas M.L., Carvalho G.R., Augusto P.E.D. Enhancing Carrot Convective Drying by Combining Ethanol and Ultrasound as Pre-Treatments: Effect on Product Structure, Quality, Energy Consumption, Drying and Rehydration Kinetics. Ultrason. Sonochem. 2021;70:105304. doi: 10.1016/j.ultsonch.2020.105304. PubMed DOI PMC

Rojas M.L., Augusto P.E.D. Ethanol Pre-Treatment Improves Vegetable Drying and Rehydration: Kinetics, Mechanisms and Impact on Viscoelastic Properties. J. Food Eng. 2018;233:17–27. doi: 10.1016/j.jfoodeng.2018.03.028. DOI

Arshad R.N., Abdul-Malek Z., Munir A., Buntat Z., Ahmad M.H., Jusoh Y.M.M., Bekhit A.E.-D., Roobab U., Manzoor M.F., Aadil R.M. Electrical Systems for Pulsed Electric Field Applications in the Food Industry: An Engineering Perspective. Trends Food Sci. Technol. 2020;104:1–13. doi: 10.1016/j.tifs.2020.07.008. DOI

Ade-Omowaye B.I.O., Angersbach A., Taiwo K.A., Knorr D. Use of Pulsed Electric Field Pre-Treatment to Improve Dehydration Characteristics of Plant Based Foods. Trends Food Sci. Technol. 2001;12:285–295. doi: 10.1016/s0924-2244(01)00095-4. DOI

Deng L.-Z., Mujumdar A.S., Zhang Q., Yang X.-H., Wang J., Zheng Z.-A., Gao Z.-J., Xiao H.-W. Chemical and Physical Pretreatments of Fruits and Vegetables: Effects on Drying Characteristics and Quality Attributes—A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2017;59:1408–1432. doi: 10.1080/10408398.2017.1409192. PubMed DOI

Wiktor A., Śledź M., Nowacka M., Chudoba T., Witrowa-Rajchert D. Pulsed Electric Field Pretreatment for Osmotic Dehydration of Apple Tissue: Experimental and Mathematical Modeling Studies. Dry. Technol. 2014;32:408–417. doi: 10.1080/07373937.2013.834926. DOI

Liu C., Pirozzi A., Ferrari G., Vorobiev E., Grimi N. Impact of Pulsed Electric Fields on Vacuum Drying Kinetics and Physicochemical Properties of Carrot. Food Res. Int. 2020;137:109658. doi: 10.1016/j.foodres.2020.109658. PubMed DOI

Ranganathan K., Subramanian V., Shanmugam N. Effect of Thermal and Nonthermal Processing on Textural Quality of Plant Tissues. Crit. Rev. Food Sci. Nutr. 2015;56:2665–2694. doi: 10.1080/10408398.2014.908348. PubMed DOI

Llavata B., García-Pérez J.V., Simal S., Cárcel J.A. Innovative Pre-Treatments to Enhance Food Drying: A Current Review. Curr. Opin. Food Sci. 2020;35:20–26. doi: 10.1016/j.cofs.2019.12.001. DOI

Swami Hulle N.R., Rao P.S. Effect of High-Pressure Pretreatments on Structural and Dehydration Characteristics of Aloe Vera (Aloe barbadensis Miller) Cubes. Dry. Technol. 2015;34:105–118. doi: 10.1080/07373937.2015.1037887. DOI

de Oliveira M.M., Tribst A.A.L., Júnior B.R.D.C.L., de Oliveira R.A., Cristianini M. Effects of High-Pressure Processing on Cocoyam, Peruvian Carrot, and Sweet Potato: Changes in Microstructure, Physical Characteristics, Starch, and Drying Rate. Innov. Food Sci. Emerg. Technol. 2015;31:45–53. doi: 10.1016/j.ifset.2015.07.004. DOI

Li X., Farid M. A Review on Recent Development in Non-Conventional Food Sterilization Technologies. J. Food Eng. 2016;182:33–45. doi: 10.1016/j.jfoodeng.2016.02.026. DOI

Jermann C., Koutchma T., Margas E., Leadley C., Ros-Polski V. Mapping Trends in Novel and Emerging Food Processing Technologies around the World. Innov. Food Sci. Emerg. Technol. 2015;31:14–27. doi: 10.1016/j.ifset.2015.06.007. DOI

Alamu E.O., Manda N., Ntawuruhunga P., Abass A., Maziya-Dixon B. Elite Cassava Clones (Manihot esculenta) Grown in Zambia: Effects of Drying Techniques on Their Chemical, Functional, and Pasting Properties. Front. Sustain. Food Syst. 2023;7:1129779. doi: 10.3389/fsufs.2023.1129779. DOI

Okonkwo C.E., Olaniran A.F., Adeyi O., Adeyi A.J., Ojediran J.O., Adewumi A.D., Iranloye Y.M., Erinle O.C. Drying Characteristics of Fermented-cooked Cassava Chips Used in the Production of Complementary Food: Mathematical and Gaussian Process Regression Modeling Approaches. J. Food Process Eng. 2021;44:e13715. doi: 10.1111/jfpe.13715. DOI

Handojo L.A., Zefanya S., Christanto Y. Drying Performance of Fermented Cassava (Fercaf) Using a Convective Multiple Flash Dryer. AIP Conf. Proc. 2017;1840:060002. doi: 10.1063/1.4982282. DOI

Suherman, Trisnaningtyas R. Thin Layer Drying of Cassava Starch Using Continuous Vibrated Fluidized Bed Dryer. AIP Conf. Proc. 2015;1699:060021. doi: 10.1063/1.4938375. DOI

Elisabeth D.A.A., Utomo J.S., Byju G., Ginting E. Cassava Flour Production by Small Scale Processors, Its Quality and Economic Feasibility. Food Sci. Technol. 2022;42:e41522. doi: 10.1590/fst.41522. DOI

Yahya M., Fudholi A., Hafizh H., Sopian K. Comparison of Solar Dryer and Solar-Assisted Heat Pump Dryer for Cassava. Sol. Energy. 2016;136:606–613. doi: 10.1016/j.solener.2016.07.049. DOI

Suherman S., Susanto E.E., Zardani A.W., Dewi N.H.R. Performance Study of Hybrid Solar Dryer for Cassava Starch; Proceedings of the 2nd International Conference on Chemical Process and Product Engineering (ICCPPE); Semarang, Indonesia. 25–26 September 2019; DOI

Dahal P., Tamang M.K. Effects of different processing methods on anti-nutritional factors of cassava (Manihot esculenta crantz) J. Food Nutr. Disord. 2021;10:5.

Nebiyu A., Getachew E. Soaking and drying of cassava roots reduced cyanogenic potential of three cassava varieties at Jimma, Southwest Ethiopia. Afr. J. Biotechnol. 2011;10:13465–13469. doi: 10.5897/ajb10.2636. DOI

Montagnac J.A., Davis C.R., Tanumihardjo S.A. Processing Techniques to Reduce Toxicity and Antinutrients of Cassava for Use as a Staple Food. Compr. Rev. Food Sci. Food Saf. 2008;8:17–27. doi: 10.1111/j.1541-4337.2008.00064.x. PubMed DOI

Brimer L. In: Chapter 10— Cassava Production and Processing and Impact on Biological Compounds. In Processing and Impact on Active Components in Food. Preedy V., editor. Academic Press; San Diego, CA, USA: 2015. pp. 81–87.

Perera C.O. Removal of Cyanogenic Glycoside from Cassava during Controlled Drying. Dry. Technol. 2009;28:68–72. doi: 10.1080/07373930903430710. DOI

Kehinde A.T., Udoro E.O. Studies on the Physicochemical, Functional and Sensory Properties of Gari Processed from Dried Cassava Chips. J. Food Process. Technol. 2013;5:1000293. doi: 10.4172/2157-7110.1000293. DOI

Silayo V.C.K., Lazaro E.L., Yustas Y., Laswai H.S. Cassava Sun Drying Performance on Various Surfaces and Drying Bed Depths. Tanzan. J. Agric. Sci. 2013;1:31–36.

Vijaya Venkata Raman S., Iniyan S., Goic R. A Review of Solar Drying Technologies. Renew. Sustain. Energy Rev. 2012;16:2652–2670. doi: 10.1016/j.rser.2012.01.007. DOI

Suherman S., Susanto E.E., Busairi A. Applications of solar dryer for seaweed and cassava starch. J. Phys. Conf. Ser. 2019;1295:012001. doi: 10.1088/1742-6596/1295/1/012001. DOI

El-Beltagy A., Gamea G.R., Essa A.H.A. Solar Drying Characteristics of Strawberry. J. Food Eng. 2007;78:456–464. doi: 10.1016/j.jfoodeng.2005.10.015. DOI

Akonor P.T., Tortoe C., Buckman E.S., Hagan L. Proximate Composition and Sensory Evaluation of Root and Tuber Composite Flour Noodles. Cogent Food Agric. 2017;3:1292586. doi: 10.1080/23311932.2017.1292586. DOI

Famurewa J., Oluwamukomi M., Alaba J. Effect of Different Drying Methods on the Physicochemical Characteristics of Cassava Flour (“Pupuru”) Int. J. Biol. Chem. Sci. 2013;7:832–839. doi: 10.4314/ijbcs.v7i2.38. DOI

Nwafor J. Effect of drying methods on the nutritional composition of D. alata and D. rotundata yam varieties. J. Food Sci. Nutr. 2022;5:102.

Balzarini M.F., Reinheimer M.A., Ciappini M.C., Scenna N.J. Comparative study of hot air and vacuum drying on the drying kinetics and physicochemical properties of chicory roots. J. Food Sci. Technol. 2018;55:4067–4078. doi: 10.1007/s13197-018-3333-5. PubMed DOI PMC

Van ’t Land C.M. Drying in the Process Industry. John Wiley & Sons; Hoboken, NJ, USA: 2011.

Rashid M.T., Liu K., Jatoi M.A., Safdar B., Lv D., Li Q. Energy Efficient Drying Technologies for Sweet Potatoes: Operating and Drying Mechanism, Quality-Related Attributes. Front. Nutr. 2022;9:1040314. doi: 10.3389/fnut.2022.1040314. PubMed DOI PMC

Yang D., Wu G., Li P., Qi X., Zhang H., Wang X., Jin Q. Effect of microwave heating and vacuum oven drying of potato strips on oil uptake during deep-fat frying. Food Res. Int. 2020;137:109338. doi: 10.1016/j.foodres.2020.109338. PubMed DOI

Li L., Zhang M., Lu C., Xu S., Fu Z., Lin D., Zheng Y. Appearance, Microstructure, and Bioactive Components of Bletilla striata Tuber as Affected by Different Drying Methods. Food Bioprocess Technol. 2024 doi: 10.1007/s11947-024-03348-6. DOI

Fatimah S., Hafied M.A., Indiasih P.A.Y., Airlangga B., Rahmawati Y., Roesyadi A., Sumarno S. Amylose Isolation of Cassava Starch with the Combination of High Shear Mixer and Centrifugation Treatment to Improve the Quality of Resistant Starch Type 3 (RS-3) Products. Adv. Sci. Technol. 2024;138:13–19. doi: 10.4028/p-xj9zas. DOI

Sivakumar R., Saravanan R., Elaya Perumal A., Iniyan S. Fluidized Bed Drying of Some Agro Products—A Review. Renew. Sustain. Energy Rev. 2016;61:280–301. doi: 10.1016/j.rser.2016.04.014. DOI

Famurewa J.A.V., Emuekele P.O. Cyanide reduction pattern of cassava (mannihot Esculenta) as affected by variety and air velocity using fluidized bed dryer. Afr. J. Food Sci. Technol. 2014;5:75–80. doi: 10.14303/ajfst.2014.019. DOI

Bakal S.B., Sharma G.P., Sonawane S.P., Verma R.C. Kinetics of Potato Drying Using Fluidized Bed Dryer. J. Food Sci. Technol. 2011;49:608–613. doi: 10.1007/s13197-011-0328-x. PubMed DOI PMC

Lozano-Acevedo A., Jimenez-Fernández M., Ragazzo-Sánchez A., Urrea-Garcia G.R., Luna-Solano G. Fluidized Bed Drying Process of Thinly Sliced Potato (Solanum tuberosum) Am. J. Potato Res. 2011;88:360–366. doi: 10.1007/s12230-011-9201-8. DOI

Okoronkwo C.A., Nwufo O.C., Nwaigwe K.N., Ogueke N.V., Anyanwu E.E. Experimental evaluation of a fluidized bed dryer performance. Int. J. Eng. Sci. 2013;2:45–53.

Şevik S. Experimental Investigation of a New Design Solar-Heat Pump Dryer under the Different Climatic Conditions and Drying Behavior of Selected Products. Sol. Energy. 2014;105:190–205. doi: 10.1016/j.solener.2014.03.037. DOI

Prasanna N.S., Manjula B. Review on drying of agricultural produce using solar assisted heat pump drying. Int. J. Agric. Eng. 2018;11:409–420. doi: 10.15740/has/ijae/11.2/409-420. DOI

Hasibuan R., Yahya M., Fahmi H., Edison E. Comparative performance of a solar assisted heat pump dryer with a heat pump dryer for Curcuma. Int. J. Power Electron. Drive Syst. 2020;11:1617. doi: 10.11591/ijpeds.v11.i3.pp1617-1627. DOI

Loemba A.B.T., Kichonge B., Kivevele T. Comprehensive Assessment of Heat Pump Dryers for Drying Agricultural Products. Energy Sci. Eng. 2022;11:2985–3014. doi: 10.1002/ese3.1326. DOI

Monteiro R.L., De Moraes J.O., Domingos J.D., Carciofi B.A.M., Laurindo J.B. Evolution of the physicochemical properties of oil-free sweet potato chips during microwave vacuum drying. Innov. Food Sci. Emerg. Technol. 2020;63:102317. doi: 10.1016/j.ifset.2020.102317. DOI

Regier M., Mayer-Miebach E., Behsnilian D., Neff E., Schuchmann H.P. Influences of Drying and Storage of Lycopene-Rich Carrots on the Carotenoid Content. Dry. Technol. 2005;23:989–998. doi: 10.1081/drt-200054255. DOI

Li L., Zhang M., Wang W. A Novel Low-Frequency Microwave Assisted Pulse-Spouted Bed Freeze-Drying of Chinese Yam. Food Bioprod. Process. 2019;118:217–226. doi: 10.1016/j.fbp.2019.09.012. DOI

Song X., Zhang M., Mujumdar A.S., Fan L. Drying Characteristics and Kinetics of Vacuum Microwave–Dried Potato Slices. Dry. Technol. 2009;27:969–974. doi: 10.1080/07373930902902099. DOI

Lech K., Figiel A., Wojdyło A., Korzeniowska M., Serowik M., Szarycz M. Drying Kinetics and Bioactivity of Beetroot Slices Pretreated in Concentrated Chokeberry Juice and Dried with Vacuum Microwaves. Dry. Technol. 2015;33:1644–1653. doi: 10.1080/07373937.2015.1075209. DOI

Yan W., Zhang M., Huang L., Tang J., Mujumdar A.S., Sun J. Studies on Different Combined Microwave Drying of Carrot Pieces. Int. J. Food Sci. Technol. 2010;45:2141–2148. doi: 10.1111/j.1365-2621.2010.02380.x. DOI

Pawar S.B., Pratape V.M. Fundamentals of Infrared Heating and Its Application in Drying of Food Materials: A Review. J. Food Process Eng. 2015;40:e12308. doi: 10.1111/jfpe.12308. DOI

Doymaz İ. Infrared Drying Kinetics and Quality Characteristics of Carrot Slices. J. Food Process. Preserv. 2015;39:2738–2745. doi: 10.1111/jfpp.12524. DOI

Doymaz İ. Infrared Drying of Sweet Potato (Ipomoea batatas L.) Slices. J. Food Sci. Technol. 2011;49:760–766. doi: 10.1007/s13197-010-0217-8. PubMed DOI PMC

Onwude D.I., Hashim N., Abdan K., Janius R., Chen G. Investigating the Influence of Novel Drying Methods on Sweet Potato (Ipomoea batatas L.): Kinetics, Energy Consumption, Color, and Microstructure. J. Food Process Eng. 2018;41:e12686. doi: 10.1111/jfpe.12686. DOI

Guo J., Huang K., Wang J. Bactericidal Effect of Various Non-Thermal Plasma Agents and the Influence of Experimental Conditions in Microbial Inactivation: A Review. Food Control. 2015;50:482–490. doi: 10.1016/j.foodcont.2014.09.037. DOI

Onwude D.I., Hashim N., Abdan K., Janius R., Chen G. The Effectiveness of Combined Infrared and Hot-Air Drying Strategies for Sweet Potato. J. Food Eng. 2019;241:75–87. doi: 10.1016/j.jfoodeng.2018.08.008. DOI

Lee S.-H., Ko S.-C., Kang S.-M., Cha S.H., Ahn G.-N., Um B.-H., Jeon Y.-J. Antioxidative Effect of Ecklonia Cava Dried by Far Infrared Radiation Drying. Food Sci. Biotechnol. 2010;19:129–135. doi: 10.1007/s10068-010-0018-x. DOI

Wu X., Zhang M., Ye Y., Yu D. Influence of ultrasonic pretreatments on drying kinetics and quality attributes of sweet potato slices in infrared freeze drying (IRFD) LWT. 2020;131:109801. doi: 10.1016/j.lwt.2020.109801. DOI

Nowacka M., Wedzik M. Effect of Ultrasound Treatment on Microstructure, Colour and Carotenoid Content in Fresh and Dried Carrot Tissue. Appl. Acoust. 2016;103:163–171. doi: 10.1016/j.apacoust.2015.06.011. DOI

Mulet A., Cárcel J.A., Sanjuán N., Bon J. New Food Drying Technologies—Use of Ultrasound. Food Sci. Technol. Int. 2003;9:215–221. doi: 10.1177/1082013203034641. DOI

Kroehnke J., Szadzińska J., Stasiak M., Radziejewska-Kubzdela E., Biegańska-Marecik R., Musielak G. Ultrasound- and Microwave-Assisted Convective Drying of Carrots—Process Kinetics and Product’s Quality Analysis. Ultrason. Sonochem. 2018;48:249–258. doi: 10.1016/j.ultsonch.2018.05.040. PubMed DOI

Cárcel J.A., Garcia-Perez J.V., Riera E., Mulet A. Improvement of Convective Drying of Carrot by Applying Power Ultrasound—Influence of Mass Load Density. Dry. Technol. 2011;29:174–182. doi: 10.1080/07373937.2010.483032. DOI

Liu Y., Sun Y., Yu H., Yin Y., Li X., Duan X. Hot Air Drying of Purple-Fleshed Sweet Potato with Contact Ultrasound Assistance. Dry. Technol. 2016;35:564–576. doi: 10.1080/07373937.2016.1193867. DOI

Ortiz-Jerez M.J., Gulati T., Datta A.K., Ochoa-Martínez C.I. Quantitative Understanding of Refractance WindowTM Drying. Food Bioprod. Process. 2015;95:237–253. doi: 10.1016/j.fbp.2015.05.010. DOI

Bernaert N., Van Droogenbroeck B., Van Pamel E., De Ruyck H. Innovative Refractance Window Drying Technology to Keep Nutrient Value during Processing. Trends Food Sci. Technol. 2019;84:22–24. doi: 10.1016/j.tifs.2018.07.029. DOI

Raghavi L.M., Moses J.A., Anandharamakrishnan C. Refractance Window Drying of Foods: A Review. J. Food Eng. 2018;222:267–275. doi: 10.1016/j.jfoodeng.2017.11.032. DOI

Nayak B., Berrios J.D.J., Powers J.R., Tang J., Ji Y. Colored potatoes (Solanum tuberosum L.) Dried for Antioxidant-rich Value-added Foods. J. Food Process. Preserv. 2011;35:571–580. doi: 10.1111/j.1745-4549.2010.00502.x. DOI

Duarte-Correa Y., Vargas-Carmona M.I., Vásquez-Restrepo A., Ruiz Rosas I.D., Pérez Martínez N. Native Potato (Solanum phureja) Powder by Refractance Window Drying: A Promising Way for Potato Processing. J. Food Process Eng. 2021;44:e13819. doi: 10.1111/jfpe.13819. DOI

Ueda J.M., Morales P., Fernández-Ruiz V., Ferreira A., Barros L., Carocho M., Heleno S.A. Powdered Foods: Structure, Processing, and Challenges: A Review. Appl. Sci. 2023;13:12496. doi: 10.3390/app132212496. DOI

Amelework A.B., Bairu M.W. Advances in Genetic Analysis and Breeding of Cassava (Manihot esculenta Crantz): A Review. Plants. 2022;11:1617. doi: 10.3390/plants11121617. PubMed DOI PMC

Maulida Y.F., Subejo, Hardyastuti S. The Urgency of Institutional Development of Cassava Industry in Daerah Istimewa Yogyakarta and Jawa Tengah. Sodality J. Sosiol. Pedesaan. 2021;9:e33369. doi: 10.22500/9202133369. DOI

Shittu T.A., Alimi B.A., Wahab B., Sanni L.O., Abass A.B. Cassava flour and starch: Processing technology and utilization. In: Sharma H.K., Njintang N.Y., Singhal R.S., Kaushal P., editors. Tropical Roots and Tubers. John Wiley & Sons; Chichester, UK: 2016. pp. 415–450.

Breuninger W.F., Piyachomkwan K., Sriroth K. Tapioca/cassava starch: Production and use. In: BeMiller J., Whistler R., editors. Starch: Chemistry and Technology. 3rd ed. Academic Press; San Diego, CA, USA: 2009. pp. 541–568.

Neves E.C.A., Neves D.A., Lobato K.B.d.S., Nascimento G.C.d., Clerici M.T.P.S. Technological aspects of processing of cassava derivatives. In: Klein C., editor. Handbook on Cassava: Production, Potential Uses and Recent Advances. Nova Science Publishers; New York, NY, USA: 2017. pp. 105–127.

Pornpraipech P., Khusakul M., Singklin R., Sarabhorn P., Areeprasert C. Effect of Temperature and Shape on Drying Performance of Cassava Chips. Agric. Nat. Resour. 2017;51:402–409. doi: 10.1016/j.anres.2017.12.004. DOI

Veeramanipriya E., Umayal Sundari A.R. Performance Evaluation of Hybrid Photovoltaic Thermal (PVT) Solar Dryer for Drying of Cassava. Sol. Energy. 2021;215:240–251. doi: 10.1016/j.solener.2020.12.027. DOI

Akinwande B.A., Ade-Omowaye B.I.O., Olaniyan S.A., Akintaro O.O. Quality Evaluation of Ginger-flavoured Soy-cassava Biscuit. Nutr. Food Sci. 2008;38:473–481. doi: 10.1108/00346650810906994. DOI

Ammar A., Abd El-Razik M. Quality Characteristics of Gluten Free Cake Produced from Cassava, Pumpkin and Potato Flours. J. Food Dairy Sci. 2013;4:401–412. doi: 10.21608/jfds.2013.72081. DOI

Olapade A.A., Adeyemo M.A. Evaluation of Cookies Produced from Blends of Wheat, Cassava and Cowpea Flours. Int. J. Food Stud. 2014;3:175–185. doi: 10.7455/ijfs.v3i2.213. DOI

Aly M.M.A., Seleem H.A. Gluten-Free Flat Bread and Biscuits Production by Cassava, Extruded Soy Protein and Pumpkin Powder. Food Nutr. Sci. 2015;6:660–674. doi: 10.4236/fns.2015.67069. DOI

Jensen S., Skibsted L.H., Kidmose U., Thybo A.K. Addition of Cassava Flours in Bread-Making: Sensory and Textural Evaluation. LWT—Food Sci. Technol. 2015;60:292–299. doi: 10.1016/j.lwt.2014.08.037. DOI

Adeboye A.S., Babajide J.M., Shittu T.A., Omemu A.M., Oluwatola O.J. Effect of Honey as Partial Sugar Substitute on Pasting Properties, Consumer Preference and Shelf Stability of Cassava-Wheat Composite Bread. Niger. Food J. 2013;31:13–22. doi: 10.1016/s0189-7241(15)30051-5. DOI

Nwabueze T.U., Anoruoh G.A. Evaluation of Flour and Extruded Noodles from Eight Cassava Mosaic Disease (CMD)-Resistant Varieties. Food Bioprocess Technol. 2009;4:80–91. doi: 10.1007/s11947-009-0200-4. DOI

Ogugbue C.J., Gloria O. Bioburden of garri stored in different packaging materials undertropical market conditions. Middle-East J. Sci. Res. 2011;7:741–745.

Ogiehor I., Ikenebomeh M. The effects of different packaging materials on the shelf stability of garri. Afr. J. Biotechnol. 2006;23:2412–2416.

Opara U.L., Caleb O.J., Uchechukwu-Agua A.D. Evaluating the Impacts of Selected Packaging Materials on the Quality Attributes of Cassava Flour (Cvs. TME 419 and UMUCASS 36) J. Food Sci. 2016;81:C324–C331. doi: 10.1111/1750-3841.13199. PubMed DOI

Baranowska H.M., Kowalczewski P.Ł. Low-Field NMR Analyses of Gels and Starch-Stabilized Emulsions with Modified Potato Starches. Processes. 2022;10:2109. doi: 10.3390/pr10102109. DOI

Walkowiak K., Przybył K., Baranowska H.M., Koszela K., Masewicz Ł., Piątek M. The Process of Pasting and Gelling Modified Potato Starch with LF-NMR. Polymers. 2022;14:184. doi: 10.3390/polym14010184. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...