Non-Destructive Characterization of Cured-in-Place Pipe Defects
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FAST-S-23-8275
Brno University of Technology
PubMed
38138712
PubMed Central
PMC10745074
DOI
10.3390/ma16247570
PII: ma16247570
Knihovny.cz E-zdroje
- Klíčová slova
- cured-in-place pipes, machine learning, non-destructive testing, pipe defects, polymers, retrofitting,
- Publikační typ
- časopisecké články MeSH
Sewage and water networks are crucial infrastructures of modern urban society. The uninterrupted functionality of these networks is paramount, necessitating regular maintenance and rehabilitation. In densely populated urban areas, trenchless methods, particularly those employing cured-in-place pipe technology, have emerged as the most cost-efficient approach for network rehabilitation. Common diagnostic methods for assessing pipe conditions, whether original or retrofitted with-cured-in-place pipes, typically include camera examination or laser scans, and are limited in material characterization. This study introduces three innovative methods for characterizing critical aspects of pipe conditions. The impact-echo method, ground-penetrating radar, and impedance spectroscopy address the challenges posed by polymer liners and offer enhanced accuracy in defect detection. These methods enable the characterization of delamination, identification of caverns behind cured-in-place pipes, and evaluation of overall pipe health. A machine learning algorithm using deep learning on images acquired from impact-echo signals using continuous wavelet transformation is presented to characterize defects. The aim is to compare traditional machine learning and deep learning methods to characterize selected pipe defects. The measurement conducted with ground-penetrating radar is depicted, employing a heuristic algorithm to estimate caverns behind the tested polymer composites. This study also presents results obtained through impedance spectroscopy, employed to characterize the delamination of polymer liners caused by uneven curing. A comparative analysis of these methods is conducted, assessing the accuracy by comparing the known positions of defects with their predicted characteristics based on laboratory measurements.
Zobrazit více v PubMed
Kaushal V., Najafi M., Serajiantehrani R., Malek Mohammadi M., Shirkhanloo S. Pipelines 2022. American Society of Civil Engineers; Reston, VA, USA: 2022. Construction Cost Comparison between Trenchless Cured-in-Place Pipe (CIPP) Renewal and Open-Cut Replacement for Sanitary Sewer Applications; pp. 171–177.
Patil R.R., Ansari S.M., Calay R.K., Mustafa M.Y. Review of the State-of-the-art Sewer Monitoring and Maintenance Systems Pune Municipal Corporation—A Case Study. TEM J. 2021;10:1500–1508. doi: 10.18421/TEM104-02. DOI
Coombes P., Micevski T., Kuczera G. Deterioration, depreciation and serviceability of stormwater pipes; Proceedings of the Stormwater Industry Association 2002 Conference on Urban Stormwater Management; Orange, NSW, Australia. 23–24 April 2002.
Trávníček P., Junga P., Kotek L., Vítěz T. Analysis of accidents at municipal wastewater treatment plants in Europe. J. Loss Prev. Process. Ind. 2022;74:104634. doi: 10.1016/j.jlp.2021.104634. DOI
Alam S., Sterling R.L., Allouche E., Condit W., Matthews J., Selvakumar A., Simicevic J. A retrospective evaluation of the performance of liner systems used to rehabilitate municipal gravity sewers. Tunn. Undergr. Space Technol. 2015;50:451–464. doi: 10.1016/j.tust.2015.08.011. DOI
Ma B. Trenchless Pipeline Rehabilitation and Renewal Technology. 2023. [(accessed on 1 September 2023)]. Available online: https://www.coffman.com/news/trenchless-technologies-for-pipeline-rehab-replace/
Ma Q., Tian G., Zeng Y., Li R., Song H., Wang Z., Gao B., Zeng K. Pipeline In-Line Inspection Method, Instrumentation And Data Management. Sensors. 2021;21:3862. doi: 10.3390/s21113862. PubMed DOI PMC
Hashemi B., Iseley T., Raulston J. ICPTT 2011: Sustainable Solutions for Water, Sewer, Gas, and Oil Pipelines. American Society of Civil Engineers; Reston, VA, USA: 2011. Water pipeline renewal evaluation using AWWA class IV CIPP, pipe bursting, and open-cut; pp. 1257–1266.
Hashemi B., Najafi M., Mohamed R. Pipelines 2008: Pipeline Asset Management: Maximizing Performance of Our Pipeline Infrastructure. American Society of Civil Engineers; Reston, VA, USA: 2008. Cost of underground infrastructure renewal: A comparison of open-cut and trenchless methods; pp. 1–11.
Kakde P., Kaushal V., Najafi M., Arjun M. Pipelines 2022. American Society of Civil Engineers; Reston, VA, USA: 2022. Comparative Life Cycle Cost Analysis of Trenchless Cured-in-Place Pipe, Pipe Bursting, SAPL, and Sliplining Renewal Methods for Pipeline Systems; pp. 277–287.
Camerini C., Rebello J., Braga L., Santos R., Chady T., Psuj G., Pereira G. In-Line Inspection Tool with Eddy Current Instrumentation For Fatigue Crack Detection. Sensors. 2018;18:2161. doi: 10.3390/s18072161. PubMed DOI PMC
Iurchenko V., Lebedeva E., Brigada E. Environmental safety of the sewage disposal by the sewerage pipelines. Procedia Eng. 2016;134:181–186. doi: 10.1016/j.proeng.2016.01.058. DOI
Ojha V.K., Dutta P., Chaudhuri A. Identifying hazardousness of sewer pipeline gas mixture using classification methods: A comparative study. Neural Comput. Appl. 2017;28:1343–1354. doi: 10.1007/s00521-016-2443-0. DOI
Lim M., Cao H. Combining Multiple NDT Methods to Improve Testing Effectiveness. Constr. Build. Mater. 2013;38:1310–1315. doi: 10.1016/j.conbuildmat.2011.01.011. DOI
Safizadeh M., Azizzadeh T. Corrosion Detection Of Internal Pipeline Using NDT Optical Inspection System. NDT E Int. 2012;52:144–148. doi: 10.1016/j.ndteint.2012.07.008. DOI
Trenchless Technology: A Review Of The Methods. [(accessed on 1 November 2023)]. Available online: https://www.wateronline.com/doc/trenchless-technology-a-review-of-the-methods-0001.
Belani D., Pitroda J., Bhavsar J.J. A Review on Trenchless Technology: State of Art Technology for Underground Utility Services; Proceedings of the Trends and Challenges of Civil Engineering in Today-s Transforming World; Gujarat, India. 29 March 2014; pp. 1–14.
Noshahri H., olde Scholtenhuis L.L., Doree A.G., Dertien E.C. Linking sewer condition assessment methods to asset managers’ data-needs. Autom. Constr. 2021;131:103878. doi: 10.1016/j.autcon.2021.103878. DOI
Khadr W.M.H., Hamed M.M., Nashwan M.S. Pressure Driven analysis of water distribution systems for preventing siphonic flow. J. Hydro-Environ. Res. 2022;44:102–109. doi: 10.1016/j.jher.2022.09.001. DOI
The International Society for Trenchless Technology. [(accessed on 30 August 2023)]. Available online: https://istt.com/
Kramer S., McDonald W., Thomson J. An Introduction to Trenchless Technology. Springer; New York, NY, USA: 2012.
Feng Q., Li R., Nie B., Liu S., Zhao L., Zhang H. Literature review: Theory and application of in-line inspection technologies for oil and gas pipeline girth weld defection. Sensors. 2016;17:50. doi: 10.3390/s17010050. PubMed DOI PMC
Hellier C. Handbook of Nondestructive Evaluation. 2nd ed. McGraw Hill; New York, NY, USA: 2012.
Hicks J., Kaushal V., Jamali K. A Comparative Review of Trenchless Cured-in-Place Pipe (CIPP) with Spray Applied Pipe Lining (SAPL) Renewal Methods for Pipelines. Front. Water. 2022;4:904821. doi: 10.3389/frwa.2022.904821. DOI
Oladele I.O., Omotosho T.F., Adediran A.A. Polymer-based composites: An indispensable material for present and future applications. Int. J. Polym. Sci. 2020;2020:8834518. doi: 10.1155/2020/8834518. DOI
Singh Bisht R., Kumar D., Garg N., Kumar V., Singh S., Panigrahi S.K., Chourasia A. Trenchless Mechanized Inspection and Retrofitting Strategy for Buried Sewerage Systems. J. Sci. Ind. Res. 2023;82 doi: 10.56042/jsir.v82i07.2493. DOI
Dalmont J.P. Acoustic impedance measurement, Part I: A review. J. Sound Vib. 2001;243:427–439. doi: 10.1006/jsvi.2000.3428. DOI
Kuliczkowska E. Analysis of defects with a proposal of the method of establishing structural failure probability categories for concrete sewers. Arch. Civ. Mech. Eng. 2015;15:1078–1084. doi: 10.1016/j.acme.2015.02.002. DOI
NASSCO . Pipe Rehabilitation. NASSCO; San Diego, CA, USA: 2022.
ASTM; West Conshohocken, PA, USA: 2022. Standard Practice for Rehabilitation of Existing Pipelines and Conduits by the Inversion and Curing of a Resin-Impregnated Tube.
Gras-Travesset F., Andreu-Torras A., Pérez M.A. A novel test procedure for evaluating the performance of composite cured-in-place-pipe liners in water pressure pipe rehabilitation. Case Stud. Constr. Mater. 2023;19:e02381. doi: 10.1016/j.cscm.2023.e02381. DOI
Apply Geometric Transformation to Image—MATLAB Imwarp. [(accessed on 13 October 2023)]. Available online: https://www.mathworks.com/help/images/ref/imwarp.html.
Malhotra V.M., Carino N.J. Handbook on Nondestructive Testing of Concrete. 2nd ed. CRC Press; Boca Raton, FL, USA: 2003.
Carino N.J. Structures 2001. American Society of Civil Engineers; Reston, VA, USA: 2012. The Impact-Echo Method; pp. 1–18. DOI
PreSonus® PRM1 Precision Reference Microphone, Black. [(accessed on 3 August 2023)]. Available online: https://www.presonus.com/en-US/misc/more/microphone/2777300105.html.
Scarlett Solo [3rd Gen] [(accessed on 5 July 2023)]. Available online: https://focusrite.com/products/scarlett-solo-3rd-gen.
Welch P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967;15:70–73. doi: 10.1109/TAU.1967.1161901. DOI
Sadowsky J. The Continuous Wavelet Transform: A Tool for Signal Investigation and Understanding. Johns Hopkins APL Tech. Dig. 1994;15:306–318.
Safaei M., Soleymani S.A., Safaei M., Chizari H., Nilashi M. Deep learning algorithm for supervision process in production using acoustic signal. Appl. Soft Comput. 2023;146:110682. doi: 10.1016/j.asoc.2023.110682. DOI
Kant P., Laskar S.H., Hazarika J., Mahamune R. CWT Based Transfer Learning for Motor Imagery Classification for Brain computer Interfaces. J. Neurosci. Methods. 2020;345:108886. doi: 10.1016/j.jneumeth.2020.108886. PubMed DOI
Jadhav P., Rajguru G., Datta D., Mukhopadhyay S. Automatic sleep stage classification using time–frequency images of CWT and transfer learning using convolution neural network. Biocybern. Biomed. Eng. 2020;40:494–504. doi: 10.1016/j.bbe.2020.01.010. DOI
Arts L.P.A., van den Broek E.L. The fast continuous wavelet transformation (fCWT) for real-time, high-quality, noise-resistant time–frequency analysis. Nat. Comput. Sci. 2022;2:47–58. doi: 10.1038/s43588-021-00183-z. PubMed DOI PMC
Dvořák R., Chobola Z., Plšková I., Hela R., Bodnárová L. Classification of Thermally Degraded Concrete by Acoustic Resonance Method and Image Analysis via Machine Learning. Materials. 2023;16:1010. doi: 10.3390/ma16031010. PubMed DOI PMC
Dorafshan S., Azari H. Deep learning models for bridge deck evaluation using impact echo. Constr. Build. Mater. 2020;263:120109. doi: 10.1016/j.conbuildmat.2020.120109. DOI
Song S., Kim H., Park D., Kang J., Choi C. Assessment of Impact-echo Method for Cavity Detection in Dorsal Side of Sewer Pipe. J. Korean Geotech. Soc. 2016;32:5–14. doi: 10.7843/kgs.2016.32.8.5. DOI
Wai-Lok Lai W., Dérobert X., Annan P. A review of Ground Penetrating Radar application in civil engineering: A 30-year journey from Locating and Testing to Imaging and Diagnosis. NDT E Int. 2018;96:58–78. doi: 10.1016/j.ndteint.2017.04.002. DOI
Falorni P., Capineri L., Masotti L., Pinelli G. 3-D radar imaging of buried utilities by features estimation of hyperbolic diffraction patterns in radar scans; Proceedings of the Tenth International Conference on Grounds Penetrating Radar; Delft, The Netherlands. 21–24 June 2004; pp. 403–406.
Satuluri S., Malik J.N., Kumar A., Vikrama B., Rai G. Ground penetrating radar investigations of buried remnants at ancient capital cities of Panchala and Vatsa kingdoms spread along Ganga-Yamuna doab of India from 600 BCE to 1100 CE. J. Archaeol. Sci. Rep. 2023;52:104271. doi: 10.1016/j.jasrep.2023.104271. DOI
Zhao Y., Ling C., Zhang K., Gao Y., Sun B., Wang X. Detection of hidden mining-induced ground fissures via unmanned aerial vehicle infrared system and ground-penetrating radar. Int. J. Rock Mech. Min. Sci. 2022;160:105254. doi: 10.1016/j.ijrmms.2022.105254. DOI
Bellanova J., Calamita G., Catapano I., Ciucci A., Cornacchia C., Gennarelli G., Giocoli A., Fisangher F., Ludeno G., Morelli G., et al. GPR and ERT Investigations in Urban Areas: The Case-Study of Matera (Southern Italy) Remote Sens. 2020;12:1879. doi: 10.3390/rs12111879. DOI
Sărăcin A. Using georadar systems for mapping underground utility networks. Procedia Eng. 2017;209:216–223. doi: 10.1016/j.proeng.2017.11.150. DOI
Grant J.A., Leuschen C.J. The strata ground penetrating radar as a means for constraining the near surface properties of the Moon and Mars; Proceedings of the 2011 IEEE RadarCon (RADAR); Kansas City, MO, USA. 23–27 May 2011; pp. 1132–1134. DOI
Rekonstrukce Jednopolového Zavěšeného Mostu v Hrachovci Společnosti REPONT | Tvstav.cz—Stavební Portál. [(accessed on 10 November 2023)]. Available online: https://tvstav.cz/clanek/5993-rekonstrukci-jednopoloveho-zaveseneho-mostu-v-hrachovci-zvladl-repont-na-jednicku.
Gerhardt R.A. Reference Module in Materials Science and Materials Engineering. Elsevier; Amsterdam, The Netherlands: 2022. Spectroscopy: Impedance spectroscopy and mobility spectra. DOI
Goodfellow I., Bengio Y., Courville A. Deep Learning. MIT Press; Cambridge, MA, USA: 2016. [(accessed on 13 July 2023)]. Available online: http://www.deeplearningbook.org.
Kumar A. Hold-Out Method for Training Machine Learning Models. Analytics Yogi; New York, NY, USA: 2023.
Bajaj N.S., Patange A.D., Jegadeeshwaran R., Kulkarni K.A., Ghatpande R.S., Kapadnis A.M. A Bayesian Optimized Discriminant Analysis Model for Condition Monitoring of Face Milling Cutter Using Vibration Datasets. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 2021;5:021002. doi: 10.1115/1.4051696. DOI
Kang Q., Chen E.J., Li Z.C., Luo H.B., Liu Y. Attention-based LSTM predictive model for the attitude and position of shield machine in tunneling. Undergr. Space. 2023;13:335–350. doi: 10.1016/j.undsp.2023.05.006. DOI
Hastie T., Tibshirani R., Friedman J.H., Friedman J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Volume 2 Springer; Berlin/Heidelberg, Germany: 2009.
Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Z., Karpathy A., Khosla A., Bernstein M., et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015;115:211–252. doi: 10.1007/s11263-015-0816-y. DOI
He K., Zhang X., Ren S., Sun J. Deep Residual Learning for Image Recognition. arXiv. 2015 doi: 10.48550/arxiv.1512.03385.1512.03385 DOI
Bottou L., Bousquet O., Orr G.B., Müller K.R. COMPSTAT’2010, Proceedings of the 19th International Conference on Computational Statistics, Paris France, 22–27 August 2010. Physica-Verlag HD; Dresden, Germany: 2010. Large-Scale Machine Learning with Stochastic Gradient Descent. DOI
Ruder S. An Overview of Gradient Descent Optimization Algorithms. arXiv. 2016 doi: 10.48550/arXiv.1609.04747.1609.04747 DOI
Bishop C.M. Pattern Recognition and Machine Learning. Springer; Berlin/Heidelberg, Germany: 2006.
NVIDIA. Vingelmann P., Fitzek F.H. CUDA, Release, version 10.2.89. NVIDIA; Santa Clara, CA, USA: 2020.
Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., Killeen T., Lin Z., Gimelshein N., Antiga L., et al. Advances in Neural Information Processing Systems 32. Curran Associates, Inc.; New York, NY, USA: 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library; pp. 8024–8035.
Dvořák R., Topolář L. Effect of Hammer Type on Generated Mechanical Signals in Impact-Echo Testing. Materials. 2021;14:606. doi: 10.3390/ma14030606. PubMed DOI PMC
Nogueira F. Bayesian Optimization: Open Source Constrained Global Optimization Tool for Python, 2014–2023. [(accessed on 15 September 2023)]. Available online: https://github.com/fmfn/BayesianOptimization.
La H., Gucunski N., Kee S.H., Nguyen L. Visual and Acoustic Data Analysis for the Bridge Deck Inspection Robotic System; Proceedings of the 31st ISARC; Sydney, NSW, Australia. 31 January 2014; DOI