Classification of Thermally Degraded Concrete by Acoustic Resonance Method and Image Analysis via Machine Learning
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
GA22-02098S
Grantová Agentura České Republiky
PubMed
36770017
PubMed Central
PMC9918185
DOI
10.3390/ma16031010
PII: ma16031010
Knihovny.cz E-resources
- Keywords
- Impact-Echo, concrete, high temperatures, image analysis, machine learning, nondestructive testing, resonance method,
- Publication type
- Journal Article MeSH
The study of the resistance of plain concrete to high temperatures is a current topic across the field of civil engineering diagnostics. It is a type of damage that affects all components in a complex way, and there are many ways to describe and diagnose this degradation process and the resulting condition of the concrete. With regard to resistance to high temperatures, phenomena such as explosive spalling or partial creep of the material may occur. The resulting condition of thermally degraded concrete can be assessed by a number of destructive and nondestructive methods based on either physical or chemical principles. The aim of this paper is to present a comparison of nondestructive testing of selected concrete mixtures and the subsequent classification of the condition after thermal degradation. In this sense, a classification model based on supervised machine learning principles is proposed, in which the thermal degradation of the selected test specimens are known classes. The whole test set was divided into five mixtures, each with seven temperature classes in 200 °C steps from 200 °C up to 1200 °C. The output of the paper is a comparison of the different settings of the classification model and validation algorithm in relation to the observed parameters and the resulting model accuracy. The classification is done by using parameters obtained by the acoustic NDT Impact-Echo method and image-processing tools.
See more in PubMed
Damtoft J.S., Lukasik J., Herfort D., Sorrentino D., Gartner E.M. Sustainable development and climate change initiatives. Cem. Concr. Res. 2008;38:115–127. doi: 10.1016/j.cemconres.2007.09.008. DOI
Scrivener K.L., Kirkpatrick R.J. Innovation in use and research on cementitious material. Cem. Concr. Res. 2008;38:128–136. doi: 10.1016/j.cemconres.2007.09.025. DOI
Crow J. The concrete conundrum. Chem. World. 2008;9:62–66.
Skibicki S., Pułtorak M., Kaszyńska M., Hoffmann M., Ekiert E., Sibera D. The effect of using recycled PET aggregates on mechanical and durability properties of 3D printed mortar. Constr. Build. Mater. 2022;335:127443. doi: 10.1016/j.conbuildmat.2022.127443. DOI
Zhou Q., Glasser F.P. Thermal stability and decomposition mechanisms of ettringite at <120 °C. Cem. Concr. Res. 2001;31:1333–1339.
Bodnarova L. Effect of high temperatures on cement composite materials in concrete structures. Acta Geodyn. Geomater. 2013;10:173–180. doi: 10.13168/AGG.2013.0017. DOI
Štefková D., Tupý M., Sotiriadis K., Šamárková K., Chobola Z. High-Temperature Degradation of Mortar Containing Rubber Aggregates and EVA Binder Evaluated by Impact-Echo Method. Appl. Mech. Mater. 2014;627:272–275. doi: 10.4028/www.scientific.net/AMM.627.272. DOI
Yüzer N., Aköz F., Öztürk L.D. Compressive strength–color change relation in mortars at high temperature. Cem. Concr. Res. 2004;34:1803–1807. doi: 10.1016/j.cemconres.2004.01.015. DOI
Pan Z., Tao Z., Murphy T., Wuhrer R. High temperature performance of mortars containing fine glass powders. J. Clean. Prod. 2017;162:16–26. doi: 10.1016/j.jclepro.2017.06.003. DOI
Rozsypalova I., Schmid P., Danek P. Determining the Condition of Reinforced and Prestressed Concrete Structures Damaged by Elevated Temperatures. Procedia Eng. 2017;195:120–126. doi: 10.1016/j.proeng.2017.04.533. DOI
Krzemien K., Hager I. Post-fire assessment of mechanical properties of concrete with the use of the impact-echo method. Constr. Build. Mater. 2015;96:155–163. doi: 10.1016/j.conbuildmat.2015.08.007. DOI
Chen X., Bu J., Zhou W., Wang Q. Effect of pre-cyclic damage and high temperature on residual tensile behavior of concrete. Fire Saf. J. 2019;108:102853. doi: 10.1016/j.firesaf.2019.102853. DOI
Mróz K., Hager I. Non-Destructive Assessment of Residual Strength of Thermally Damaged Concrete Made with Different Aggregate Types. IOP Conf. Ser. Mater. Sci. Eng. 2017;245:032034. doi: 10.1088/1757-899X/245/3/032034. DOI
Hager I., Tracz T., Choińska M., Mróz K. Effect of Cement Type on the Mechanical Behavior and Permeability of Concrete Subjected to High Temperatures. Materials. 2019;12:3021. doi: 10.3390/ma12183021. PubMed DOI PMC
Zhou A., Qiu Q., Chow C.L., Lau D. Interfacial performance of aramid, basalt and carbon fiber reinforced polymer bonded concrete exposed to high temperature. Compos. Part A Appl. Sci. Manuf. 2020;131:105802. doi: 10.1016/j.compositesa.2020.105802. DOI
Ghorbanpoor A., Benish N. Non-Destructive Testing of Wisconsin Highway Bridges. The Wisconsin Department of Transportation; Madison, WI, USA: 2003.
Hager I. Colour Change in Heated Concrete. Fire Technol. 2013;50:945–958. doi: 10.1007/s10694-012-0320-7. DOI
Non-Destructive Testing of Concrete. 1st ed. Czech Standardization Institute; Prague, The Czech Republic: 1993.
Bartoň V., Dvořák R., Cikrle P., Šnédar J. Predicting the Durability of Solid Fired Bricks Using NDT Electroacoustic Methods. Materials. 2022;15:5882. doi: 10.3390/ma15175882. PubMed DOI PMC
Dvořák R., Topolář L. Effect of Hammer Type on Generated Mechanical Signals in Impact-Echo Testing. Materials. 2021;14:606. doi: 10.3390/ma14030606. PubMed DOI PMC
Almasaeid H.H., Suleiman A., Alawneh R. Assessment of high-temperature damaged concrete using non-destructive tests and artificial neural network modelling. Case Stud. Constr. Mater. 2022;16:e01080. doi: 10.1016/j.cscm.2022.e01080. DOI
Miele S., Karve P.M., Mahadevan S., Agarwal V. Diagnosis of internal cracks in concrete using vibro-acoustic modulation and machine learning. Struct. Health Monit. 2022;21:1973–1991. doi: 10.1177/14759217211047901. DOI
BETONU K.J.V. Possibilities of NUS and impact-echo methods for monitoring steel corrosion in concrete. Mater. Tehnol. 2016;50:565–570.
Janiesch C., Zschech P., Heinrich K. Machine learning and deep learning. Electron. Mark. 2021;31:685–695. doi: 10.1007/s12525-021-00475-2. DOI
Bryant F. Snell’s Law of Refraction. Phys. Bull. 1958;9:317. doi: 10.1088/0031-9112/9/12/004. DOI
Chica L., Alzate A. Cellular concrete review: New trends for application in construction. Constr. Build. Mater. 2019;200:637–647. doi: 10.1016/j.conbuildmat.2018.12.136. DOI
Tabatabaei S.A.H., Delforouzi A., Khan M.H., Wesener T., Grzegorzek M. Automatic Detection of the Cracks on the Concrete Railway Sleepers. Int. J. Pattern Recognit. Artif. Intell. 2019;33:1955010. doi: 10.1142/S0218001419550103. DOI
Gao P.F., Lei G., Huang C.Z. Dark-Field Microscopy: Recent Advances in Accurate Analysis and Emerging Applications. Anal. Chem. 2021;93:4707–4726. doi: 10.1021/acs.analchem.0c04390. PubMed DOI
Bradley D., Roth G. Adaptive Thresholding using the Integral Image. J. Graph. Tools. 2007;12:13–21. doi: 10.1080/2151237X.2007.10129236. DOI
Ying J., Tian J., Xiao J., Tan Z. Identification and reconstruction of concrete mesostructure based on deep learning in artificial intelligence. Constr. Build. Mater. 2022;352:129018. doi: 10.1016/j.conbuildmat.2022.129018. DOI
Zkoušení Ztvrdlého Betonu–Část 5: Pevnost v Tahu Ohybem Zkušebních Těles. Czech Standardization Institute; Prague, The Czech Republic: 2009.
Zhang Q., Ye G. Dehydration kinetics of Portland cement paste at high temperature. J. Therm. Anal. Calorim. 2012;110:153–158. doi: 10.1007/s10973-012-2303-9. DOI
Niwa E., Uematsu C., Hashimoto T., Koc R. Evaluation of Specific Surface Area and Pore Size Distribution of LaNi0.6Fe0.4O3 Ceramics Prepared using Pechini Method by N 2 Adsorption Method-Optimization of Sintering Temperature as Cathode Material of Solid Oxide Fuel Cells. J. Am. Ceram. Soc. 2012;95:3802–3806. doi: 10.1111/jace.12022. DOI
Fausett L.V. Fundamentals of Neural Networks: Architectures, Algorithms and Applications. Pearson Education India; Bengaluru, India: 2006.
Hastie T., Tibshirani R., Friedman J.H., Friedman J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Volume 2 Springer; New York, NY, USA: 2009.
Bajaj N.S., Patange A.D., Jegadeeshwaran R., Kulkarni K.A., Ghatpande R.S., Kapadnis A.M. A Bayesian Optimized Discriminant Analysis Model for Condition Monitoring of Face Milling Cutter Using Vibration Datasets. [(accessed on 13 January 2023)];J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 2021 5:021002. doi: 10.1115/1.4051696. Available online: http://xxx.lanl.gov/abs/https://asmedigitalcollection.asme.org/nondestructive/article-pdf/5/2/021002/6729711/nde_5_2_021002.pdf. DOI
Hickling R. Frequency Dependence of Echoes from Bodies of Different Shapes. J. Acoust. Soc. Am. 1958;30:137–139. doi: 10.1121/1.1909509. DOI
Dvořák R., Chobola Z., Kusák I. Acoustic non-destructive testing of high temperature degraded concrete with comparison of acoustic impedance; Proceedings of the MATEC Web of Conferences, 2nd Baltic Conference for Students and Young Researchers (BalCon 2018); Gdansk, Poland. 20–23 April 2018; Les Ulis, France: EDP Sciences; p. 03003.
Horst A.M., Hill A.P., Gorman K.B. Palmerpenguins: Palmer Archipelago (Antarctica) Penguin Data. Zenodo; Geneva, Switzerland: 2020. R package version 0.1.0. DOI
Náplava J., Popel M., Straka M., Straková J. Understanding model robustness to user-generated noisy texts. arXiv. 20212110.07428
Zhu X., Wu X. Class Noise vs. Attribute Noise: A Quantitative Study. Artif. Intell. Rev. 2004;22:177–210. doi: 10.1007/s10462-004-0751-8. DOI
Lin J., Dong Y., Duan J., Zhang D., Zheng W. Experiment on single-tunnel fire in concrete immersed tunnels. Tunn. Undergr. Space Technol. 2021;116:104059. doi: 10.1016/j.tust.2021.104059. DOI
Beckman A.O., Gallaway W.S., Kaye W., Ulrich W.F. History of spectrophotometry at Beckman Instruments, Inc. Anal. Chem. 1977;49:280A–300A. doi: 10.1021/ac50011a001. DOI
Banfield R.E., Hall L.O., Bowyer K.W., Kegelmeyer W. A Comparison of Decision Tree Ensemble Creation Techniques. IEEE Trans. Pattern Anal. Mach. Intell. 2007;29:173–180. doi: 10.1109/TPAMI.2007.250609. PubMed DOI
Le T.T.H., Kang H., Kim H. Household Appliance Classification Using Lower Odd-Numbered Harmonics and the Bagging Decision Tree. IEEE Access. 2020;8:55937–55952. doi: 10.1109/ACCESS.2020.2981969. DOI
Patange A.D., Pardeshi S.S., Jegadeeshwaran R., Zarkar A., Verma K. Augmentation of Decision Tree Model Through Hyper-Parameters Tuning for Monitoring of Cutting Tool Faults Based on Vibration Signatures. J. Vib. Eng. Technol. 2022 doi: 10.1007/s42417-022-00781-9. DOI
Jolliffe I.T. Principal Component Analysis. 1st ed. Springer; New York, NY, USA: 1986.
Jierula A., Wang S., Oh T.M., Lee J.W., Lee J.H. Detection of source locations in RC columns using machine learning with acoustic emission data. Eng. Struct. 2021;246:112992. doi: 10.1016/j.engstruct.2021.112992. DOI
Non-Destructive Characterization of Cured-in-Place Pipe Defects