• This record comes from PubMed

Classification of Thermally Degraded Concrete by Acoustic Resonance Method and Image Analysis via Machine Learning

. 2023 Jan 22 ; 16 (3) : . [epub] 20230122

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
GA22-02098S Grantová Agentura České Republiky

The study of the resistance of plain concrete to high temperatures is a current topic across the field of civil engineering diagnostics. It is a type of damage that affects all components in a complex way, and there are many ways to describe and diagnose this degradation process and the resulting condition of the concrete. With regard to resistance to high temperatures, phenomena such as explosive spalling or partial creep of the material may occur. The resulting condition of thermally degraded concrete can be assessed by a number of destructive and nondestructive methods based on either physical or chemical principles. The aim of this paper is to present a comparison of nondestructive testing of selected concrete mixtures and the subsequent classification of the condition after thermal degradation. In this sense, a classification model based on supervised machine learning principles is proposed, in which the thermal degradation of the selected test specimens are known classes. The whole test set was divided into five mixtures, each with seven temperature classes in 200 °C steps from 200 °C up to 1200 °C. The output of the paper is a comparison of the different settings of the classification model and validation algorithm in relation to the observed parameters and the resulting model accuracy. The classification is done by using parameters obtained by the acoustic NDT Impact-Echo method and image-processing tools.

See more in PubMed

Damtoft J.S., Lukasik J., Herfort D., Sorrentino D., Gartner E.M. Sustainable development and climate change initiatives. Cem. Concr. Res. 2008;38:115–127. doi: 10.1016/j.cemconres.2007.09.008. DOI

Scrivener K.L., Kirkpatrick R.J. Innovation in use and research on cementitious material. Cem. Concr. Res. 2008;38:128–136. doi: 10.1016/j.cemconres.2007.09.025. DOI

Crow J. The concrete conundrum. Chem. World. 2008;9:62–66.

Skibicki S., Pułtorak M., Kaszyńska M., Hoffmann M., Ekiert E., Sibera D. The effect of using recycled PET aggregates on mechanical and durability properties of 3D printed mortar. Constr. Build. Mater. 2022;335:127443. doi: 10.1016/j.conbuildmat.2022.127443. DOI

Zhou Q., Glasser F.P. Thermal stability and decomposition mechanisms of ettringite at <120 °C. Cem. Concr. Res. 2001;31:1333–1339.

Bodnarova L. Effect of high temperatures on cement composite materials in concrete structures. Acta Geodyn. Geomater. 2013;10:173–180. doi: 10.13168/AGG.2013.0017. DOI

Štefková D., Tupý M., Sotiriadis K., Šamárková K., Chobola Z. High-Temperature Degradation of Mortar Containing Rubber Aggregates and EVA Binder Evaluated by Impact-Echo Method. Appl. Mech. Mater. 2014;627:272–275. doi: 10.4028/www.scientific.net/AMM.627.272. DOI

Yüzer N., Aköz F., Öztürk L.D. Compressive strength–color change relation in mortars at high temperature. Cem. Concr. Res. 2004;34:1803–1807. doi: 10.1016/j.cemconres.2004.01.015. DOI

Pan Z., Tao Z., Murphy T., Wuhrer R. High temperature performance of mortars containing fine glass powders. J. Clean. Prod. 2017;162:16–26. doi: 10.1016/j.jclepro.2017.06.003. DOI

Rozsypalova I., Schmid P., Danek P. Determining the Condition of Reinforced and Prestressed Concrete Structures Damaged by Elevated Temperatures. Procedia Eng. 2017;195:120–126. doi: 10.1016/j.proeng.2017.04.533. DOI

Krzemien K., Hager I. Post-fire assessment of mechanical properties of concrete with the use of the impact-echo method. Constr. Build. Mater. 2015;96:155–163. doi: 10.1016/j.conbuildmat.2015.08.007. DOI

Chen X., Bu J., Zhou W., Wang Q. Effect of pre-cyclic damage and high temperature on residual tensile behavior of concrete. Fire Saf. J. 2019;108:102853. doi: 10.1016/j.firesaf.2019.102853. DOI

Mróz K., Hager I. Non-Destructive Assessment of Residual Strength of Thermally Damaged Concrete Made with Different Aggregate Types. IOP Conf. Ser. Mater. Sci. Eng. 2017;245:032034. doi: 10.1088/1757-899X/245/3/032034. DOI

Hager I., Tracz T., Choińska M., Mróz K. Effect of Cement Type on the Mechanical Behavior and Permeability of Concrete Subjected to High Temperatures. Materials. 2019;12:3021. doi: 10.3390/ma12183021. PubMed DOI PMC

Zhou A., Qiu Q., Chow C.L., Lau D. Interfacial performance of aramid, basalt and carbon fiber reinforced polymer bonded concrete exposed to high temperature. Compos. Part A Appl. Sci. Manuf. 2020;131:105802. doi: 10.1016/j.compositesa.2020.105802. DOI

Ghorbanpoor A., Benish N. Non-Destructive Testing of Wisconsin Highway Bridges. The Wisconsin Department of Transportation; Madison, WI, USA: 2003.

Hager I. Colour Change in Heated Concrete. Fire Technol. 2013;50:945–958. doi: 10.1007/s10694-012-0320-7. DOI

Non-Destructive Testing of Concrete. 1st ed. Czech Standardization Institute; Prague, The Czech Republic: 1993.

Bartoň V., Dvořák R., Cikrle P., Šnédar J. Predicting the Durability of Solid Fired Bricks Using NDT Electroacoustic Methods. Materials. 2022;15:5882. doi: 10.3390/ma15175882. PubMed DOI PMC

Dvořák R., Topolář L. Effect of Hammer Type on Generated Mechanical Signals in Impact-Echo Testing. Materials. 2021;14:606. doi: 10.3390/ma14030606. PubMed DOI PMC

Almasaeid H.H., Suleiman A., Alawneh R. Assessment of high-temperature damaged concrete using non-destructive tests and artificial neural network modelling. Case Stud. Constr. Mater. 2022;16:e01080. doi: 10.1016/j.cscm.2022.e01080. DOI

Miele S., Karve P.M., Mahadevan S., Agarwal V. Diagnosis of internal cracks in concrete using vibro-acoustic modulation and machine learning. Struct. Health Monit. 2022;21:1973–1991. doi: 10.1177/14759217211047901. DOI

BETONU K.J.V. Possibilities of NUS and impact-echo methods for monitoring steel corrosion in concrete. Mater. Tehnol. 2016;50:565–570.

Janiesch C., Zschech P., Heinrich K. Machine learning and deep learning. Electron. Mark. 2021;31:685–695. doi: 10.1007/s12525-021-00475-2. DOI

Bryant F. Snell’s Law of Refraction. Phys. Bull. 1958;9:317. doi: 10.1088/0031-9112/9/12/004. DOI

Chica L., Alzate A. Cellular concrete review: New trends for application in construction. Constr. Build. Mater. 2019;200:637–647. doi: 10.1016/j.conbuildmat.2018.12.136. DOI

Tabatabaei S.A.H., Delforouzi A., Khan M.H., Wesener T., Grzegorzek M. Automatic Detection of the Cracks on the Concrete Railway Sleepers. Int. J. Pattern Recognit. Artif. Intell. 2019;33:1955010. doi: 10.1142/S0218001419550103. DOI

Gao P.F., Lei G., Huang C.Z. Dark-Field Microscopy: Recent Advances in Accurate Analysis and Emerging Applications. Anal. Chem. 2021;93:4707–4726. doi: 10.1021/acs.analchem.0c04390. PubMed DOI

Bradley D., Roth G. Adaptive Thresholding using the Integral Image. J. Graph. Tools. 2007;12:13–21. doi: 10.1080/2151237X.2007.10129236. DOI

Ying J., Tian J., Xiao J., Tan Z. Identification and reconstruction of concrete mesostructure based on deep learning in artificial intelligence. Constr. Build. Mater. 2022;352:129018. doi: 10.1016/j.conbuildmat.2022.129018. DOI

Zkoušení Ztvrdlého Betonu–Část 5: Pevnost v Tahu Ohybem Zkušebních Těles. Czech Standardization Institute; Prague, The Czech Republic: 2009.

Zhang Q., Ye G. Dehydration kinetics of Portland cement paste at high temperature. J. Therm. Anal. Calorim. 2012;110:153–158. doi: 10.1007/s10973-012-2303-9. DOI

Niwa E., Uematsu C., Hashimoto T., Koc R. Evaluation of Specific Surface Area and Pore Size Distribution of LaNi0.6Fe0.4O3 Ceramics Prepared using Pechini Method by N 2 Adsorption Method-Optimization of Sintering Temperature as Cathode Material of Solid Oxide Fuel Cells. J. Am. Ceram. Soc. 2012;95:3802–3806. doi: 10.1111/jace.12022. DOI

Fausett L.V. Fundamentals of Neural Networks: Architectures, Algorithms and Applications. Pearson Education India; Bengaluru, India: 2006.

Hastie T., Tibshirani R., Friedman J.H., Friedman J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Volume 2 Springer; New York, NY, USA: 2009.

Bajaj N.S., Patange A.D., Jegadeeshwaran R., Kulkarni K.A., Ghatpande R.S., Kapadnis A.M. A Bayesian Optimized Discriminant Analysis Model for Condition Monitoring of Face Milling Cutter Using Vibration Datasets. [(accessed on 13 January 2023)];J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 2021 5:021002. doi: 10.1115/1.4051696. Available online: http://xxx.lanl.gov/abs/https://asmedigitalcollection.asme.org/nondestructive/article-pdf/5/2/021002/6729711/nde_5_2_021002.pdf. DOI

Hickling R. Frequency Dependence of Echoes from Bodies of Different Shapes. J. Acoust. Soc. Am. 1958;30:137–139. doi: 10.1121/1.1909509. DOI

Dvořák R., Chobola Z., Kusák I. Acoustic non-destructive testing of high temperature degraded concrete with comparison of acoustic impedance; Proceedings of the MATEC Web of Conferences, 2nd Baltic Conference for Students and Young Researchers (BalCon 2018); Gdansk, Poland. 20–23 April 2018; Les Ulis, France: EDP Sciences; p. 03003.

Horst A.M., Hill A.P., Gorman K.B. Palmerpenguins: Palmer Archipelago (Antarctica) Penguin Data. Zenodo; Geneva, Switzerland: 2020. R package version 0.1.0. DOI

Náplava J., Popel M., Straka M., Straková J. Understanding model robustness to user-generated noisy texts. arXiv. 20212110.07428

Zhu X., Wu X. Class Noise vs. Attribute Noise: A Quantitative Study. Artif. Intell. Rev. 2004;22:177–210. doi: 10.1007/s10462-004-0751-8. DOI

Lin J., Dong Y., Duan J., Zhang D., Zheng W. Experiment on single-tunnel fire in concrete immersed tunnels. Tunn. Undergr. Space Technol. 2021;116:104059. doi: 10.1016/j.tust.2021.104059. DOI

Beckman A.O., Gallaway W.S., Kaye W., Ulrich W.F. History of spectrophotometry at Beckman Instruments, Inc. Anal. Chem. 1977;49:280A–300A. doi: 10.1021/ac50011a001. DOI

Banfield R.E., Hall L.O., Bowyer K.W., Kegelmeyer W. A Comparison of Decision Tree Ensemble Creation Techniques. IEEE Trans. Pattern Anal. Mach. Intell. 2007;29:173–180. doi: 10.1109/TPAMI.2007.250609. PubMed DOI

Le T.T.H., Kang H., Kim H. Household Appliance Classification Using Lower Odd-Numbered Harmonics and the Bagging Decision Tree. IEEE Access. 2020;8:55937–55952. doi: 10.1109/ACCESS.2020.2981969. DOI

Patange A.D., Pardeshi S.S., Jegadeeshwaran R., Zarkar A., Verma K. Augmentation of Decision Tree Model Through Hyper-Parameters Tuning for Monitoring of Cutting Tool Faults Based on Vibration Signatures. J. Vib. Eng. Technol. 2022 doi: 10.1007/s42417-022-00781-9. DOI

Jolliffe I.T. Principal Component Analysis. 1st ed. Springer; New York, NY, USA: 1986.

Jierula A., Wang S., Oh T.M., Lee J.W., Lee J.H. Detection of source locations in RC columns using machine learning with acoustic emission data. Eng. Struct. 2021;246:112992. doi: 10.1016/j.engstruct.2021.112992. DOI

Newest 20 citations...

See more in
Medvik | PubMed

Non-Destructive Characterization of Cured-in-Place Pipe Defects

. 2023 Dec 08 ; 16 (24) : . [epub] 20231208

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...