Amphiphilic Sialic Acid Derivatives as Potential Dual-Specific Inhibitors of Influenza Hemagglutinin and Neuraminidase

. 2023 Dec 08 ; 24 (24) : . [epub] 20231208

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38139095

Grantová podpora
FK 142315 National Research, Development and Innovation Office
RRF-2.3.1-21-2022-00010 National Laboratory of Virology in Hungary
LM2023042 MEYS CR
CZ.02.1.01/0.0/0.0/18_046/0015974 European Regional Development Fund-Project

In the shadow of SARS-CoV-2, influenza seems to be an innocent virus, although new zoonotic influenza viruses evolved by mutations may lead to severe pandemics. According to WHO, there is an urgent need for better antiviral drugs. Blocking viral hemagglutinin with multivalent N-acetylneuraminic acid derivatives is a promising approach to prevent influenza infection. Moreover, dual inhibition of both hemagglutinin and neuraminidase may result in a more powerful effect. Since both viral glycoproteins can bind to neuraminic acid, we have prepared three series of amphiphilic self-assembling 2-thio-neuraminic acid derivatives constituting aggregates in aqueous medium to take advantage of their multivalent effect. One of the series was prepared by the azide-alkyne click reaction, and the other two by the thio-click reaction to yield neuraminic acid derivatives containing lipophilic tails of different sizes and an enzymatically stable thioglycosidic bond. Two of the three bis-octyl derivatives produced proved to be active against influenza viruses, while all three octyl derivatives bound to hemagglutinin and neuraminidase from H1N1 and H3N2 influenza types.

Zobrazit více v PubMed

Iuliano A.D., Roguski K.M., Chang H.H., Muscatello D.J., Palekar R., Tempia S., Cohen C., Gran J.M., Schanzer D., Cowling B.J., et al. Global Seasonal Influenza-associated Mor-tality Collaborator Network. Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. Lancet. 2018;391:1285–1300. doi: 10.1016/S0140-6736(17)33293-2. PubMed DOI PMC

Johnson N.P.A.S., Mueller J. Updating the Accounts: Global Mortality of the 1918–1920 “Spanish” Influenza Pandemic. Bull. Hist. Med. 2002;76:105–115. doi: 10.1353/bhm.2002.0022. PubMed DOI

Bouvier N.M., Palese P. The biology of influenza viruses. Vaccine. 2008;26((Suppl. S4)):D49–D53. doi: 10.1016/j.vaccine.2008.07.039. PubMed DOI PMC

World Health Organization Ten Threats to Global Health in 2019. [(accessed on 29 September 2023)]. Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019.

Global Influenza Strategy 2019–2030. Prevent. Control. Prepare. [(accessed on 29 September 2023)]. Available online: https://apps.who.int/iris/bitstream/handle/10665/311184/9789241515320-eng.pdf?ua=1.

Jefferson T., Doshi P. Multisystem failure: The story of anti-influenza drugs. BMJ. 2014;348:g2263. doi: 10.1136/bmj.g2263. PubMed DOI

Dharan N.J., Gubareva L.V., Meyer J.J., Okomo-Adhiambo M., McClinton R.C., Marshall S.A., George K.S., Epperson S., Brammer L., Klimov A.I., et al. Infections with Oseltamivir-Resistant Influenza A(H1N1) Virus in the United States. JAMA. 2009;301:1034–1041. doi: 10.1001/jama.2009.294. PubMed DOI

Kosik I., Yewdell J.W. Influenza Hemagglutinin and Neuraminidase: Yin–Yang Proteins Coevolving to Thwart Immunity. Viruses. 2019;11:346. doi: 10.3390/v11040346. PubMed DOI PMC

Sauter N.K., Bednarski M.D., Wurzburg B.A., Hanson J.E., Whitesides G.M., Skehel J.J., Wiley D.C. Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: A 500-MHz proton nuclear magnetic resonance study. Biochemistry. 1989;28:8388–8396. doi: 10.1021/bi00447a018. PubMed DOI

Chaudhary P.M., Toraskar S., Yadav R., Hande A., Yellin R.A., Kikkeri R. Multivalent Sialosides: A Tool to Explore the Role of Sialic Acids in Biological Processes. Chem. Asian J. 2019;14:1344–1355. doi: 10.1002/asia.201900031. PubMed DOI PMC

Sigal G.B., Mammen M., Dahmann G., Whitesides G.M. Polyacrylamides Bearing Pendant α-Sialoside Groups Strongly Inhibit Agglutination of Erythrocytes by Influenza Virus: The Strong Inhibition Reflects Enhanced Binding through Cooperative Polyvalent Interactions. J. Am. Chem. Soc. 1996;118:3789–3800. doi: 10.1021/ja953729u. DOI

Choi S.-K., Mammen M., Whitesides G.M. Generation and In Situ Evaluation of Libraries of Poly(acrylic acid) Presenting Sialosides as Side Chains as Polyvalent Inhibitors of Influenza-Mediated Hemagglutination. J. Am. Chem. Soc. 1997;119:4103–4111. doi: 10.1021/ja963519x. DOI

Matrosovich M.N., Mochalova L.V., Marinina V.P., Byramova N.E., Bovin N.V. Synthetic polymeric sialoside inhibitors of influenza virus receptor-binding activity. FEBS Lett. 1990;272:209–212. doi: 10.1016/0014-5793(90)80486-3. PubMed DOI

Nagao M., Fujiwara Y., Matsubara T., Hoshino Y., Sato T., Miura Y. Design of Glycopolymers Carrying Sialyl Oligosaccharides for Controlling the Interaction with the Influenza Virus. Biomacromolecules. 2017;18:4385–4392. doi: 10.1021/acs.biomac.7b01426. PubMed DOI

Makimura Y., Watanabe S., Suzuki T., Suzuki Y., Ishida H., Kiso M., Katayama T., Kumagai H., Yamamoto K. Chemoenzymatic synthesis and application of a sialoglycopolymer with a chitosan backbone as a potent inhibitor of human influenza virus hemagglutination. Carbohydr. Res. 2006;341:1803–1808. doi: 10.1016/j.carres.2006.04.024. PubMed DOI

Stadtmueller M.N., Bhatia S., Kiran P., Hilsch M., Reiter-Scherer V., Adam L., Parshad B., Budt M., Klenk S., Sellrie K., et al. Evaluation of Multivalent Sialylated Polyglycerols for Resistance Induction in and Broad Antiviral Activity against Influenza A Viruses. J. Med. Chem. 2021;64:12774–12789. doi: 10.1021/acs.jmedchem.1c00794. PubMed DOI

Ohta T., Miura N., Fujitani N., Nakajima F., Niikura K., Sadamoto R., Guo C.-T., Suzuki T., Suzuki Y., Monde K., et al. Glycotentacles: Synthesis of Cyclic Glycopeptides, Toward a Tailored Blocker of Influenza Virus Hemagglutinin. Angew. Chem. Int. Ed. 2003;42:5186–5189. doi: 10.1002/anie.200351640. PubMed DOI

Yamabe M., Kaihatsu K., Ebara Y. Binding inhibition of various influenza viruses by sialyllactose-modified trimer DNAs. Bioorg. Med. Chem. Lett. 2019;29:744–748. doi: 10.1016/j.bmcl.2018.12.064. PubMed DOI

Waldmann M., Jirmann R., Hoelscher K., Wienke M., Niemeyer F.C., Rehders D., Meyer B. A Nanomolar Multivalent Ligand as Entry Inhibitor of the Hemagglutinin of Avian Influenza. J. Am. Chem. Soc. 2014;136:783–788. doi: 10.1021/ja410918a. PubMed DOI

Reichert A., Nagy J.O., Spevak W., Charych D. Polydiacetylene Liposomes Functionalized with Sialic Acid Bind and Colorimetrically Detect Influenza Virus. J. Am. Chem. Soc. 1995;117:829–830. doi: 10.1021/ja00107a032. DOI

Cheng H.-W., Wang H.-W., Wong T.-Y., Yeh H.-W., Chen Y.-C., Liu D.-Z., Liang P.-H. Synthesis of S-linked NeuAc-α(2-6)-di-LacNAc bearing liposomes for H1N1 influenza virus inhibition assays. Bioorg. Med. Chem. 2018;26:2262–2270. doi: 10.1016/j.bmc.2018.02.012. PubMed DOI

Lu W., Xiong H., Chen Y., Wang C., Zhang H., Xu P., Han J., Xiao S., Ding H., Chen Z., et al. Discovery and biological evaluation of thiobarbituric derivatives as potent p300/CBP inhibitors. Bioorg. Med. Chem. 2018;26:5397–5407. doi: 10.1016/j.bmc.2018.07.048. PubMed DOI

Kingery-Wood J.E., Williams K.W., Sigal G.B., Whitesides G.M. The agglutination of erythrocytes by influenza virus is strongly inhibited by liposomes incorporating an analog of sialyl gangliosides. J. Am. Chem. Soc. 1992;114:7303–7305. doi: 10.1021/ja00044a057. DOI

Hendricks G.L., Weirich K.L., Viswanathan K., Li J., Shriver Z.H., Ashour J., Ploegh H.L., Kurt-Jones E.A., Fygenson D.K., Finberg R.W., et al. Sialylneolacto-N-tetraose c (LSTc)-bearing Liposomal Decoys Capture Influenza A Virus. J. Biol. Chem. 2013;288:8061–8073. doi: 10.1074/jbc.M112.437202. PubMed DOI PMC

Tollas S., Bereczki I., Borbás A., Batta G., Vanderlinden E., Naesens L., Herczegh P. Synthesis of a cluster-forming sialylthio-d-galactose fullerene conjugate and evaluation of its interaction with influenza virus hemagglutinin and neuraminidase. Bioorg. Med. Chem. Lett. 2014;24:2420–2423. doi: 10.1016/j.bmcl.2014.04.032. PubMed DOI

Weinhold E.G., Knowles J.R. Design and evaluation of a tightly binding fluorescent ligand for influenza A hemagglutinin. J. Am. Chem. Soc. 1992;114:9270–9275. doi: 10.1021/ja00050a004. DOI

Moitessier N., Englebienne P., Chapleur Y. Directing-protecting groups for carbohydrates. Design, conformational study, synthesis and application to regioselective functionalization. Tetrahedron. 2005;61:6839–6853. doi: 10.1016/j.tet.2005.04.060. DOI

Kiefel M.J., von Itzstein M. Recent Advances in the Synthesis of Sialic Acid Derivatives and Sialylmimetics as Biological Probes. Chem. Rev. 2002;102:471–490. doi: 10.1021/cr000414a. PubMed DOI

Bereczki I., Kicsák M., Dobray L., Borbás A., Batta G., Kéki S., Nikodém É.N., Ostorházi E., Rozgonyi F., Vanderlinden E., et al. Semisynthetic teicoplanin derivatives as new influenza virus binding inhibitors: Synthesis and antiviral studies. Bioorg. Med. Chem. Lett. 2014;24:3251–3254. doi: 10.1016/j.bmcl.2014.06.018. PubMed DOI

Szűcs Z., Bereczki I., Csávás M., Rőth E., Borbás A., Batta G., Ostorházi E., Szatmári R., Herczegh P. Lipophilic teicoplanin pseudoaglycon derivatives are active against vancomycin- and teicoplanin-resistant enterococci. J. Antibiot. 2017;70:664–670. doi: 10.1038/ja.2017.2. PubMed DOI

Kolb H.C., Finn M.G., Sharpless K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001;40:2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5. PubMed DOI

Meldal M., Tornoe C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 2008;108:2952–3015. doi: 10.1021/cr0783479. PubMed DOI

Brunner K., Harder J., Halbach T., Willibald J., Spada F., Gnerlich F., Sparrer K., Beil A., Möckl L., Bräuchle C., et al. Cell-Penetrating and Neurotargeting Dendritic siRNA Nanostructures. Angew. Chem. Int. Ed. 2015;54:1946–1949. doi: 10.1002/anie.201409803. PubMed DOI

Bakai-Bereczki I., Herczeg M., György B., Naesens L., Herczegh P. Synthesis of a sialic acid derivative of ristocetin aglycone as an inhibitor of influenza virus. Chem. Pap. 2015;69:1136–1140. doi: 10.1515/chempap-2015-0116. DOI

Ferrier R.J., Zubkov O.A. Transformation of Glycals into 2,3-Unsaturated Glycosyl Derivatives. Org. React. 2003;62:569–736. doi: 10.1002/0471264180.or062.04. DOI

Arribas R.L., Bordas A., Domènech Omella J., Cedillo J.L., Janssens V., Montiel C., de Los Ríos C. An okadaic acid fragment analogue prevents nicotine-induced resistance to cisplatin by recovering PP2A activity in non-small cell lung cancer cells. Bioorg. Chem. 2020;100:103874. doi: 10.1016/j.bioorg.2020.103874. PubMed DOI

Roy R., Zanini D., Meunier S.J., Romanowska A. Solid-phase synthesis of dendritic sialoside inhibitors of influenza A virus haemagglutinin. J. Chem. Soc. Chem. Commun. 1993;24:1869–1872. doi: 10.1039/c39930001869. DOI

Csávás M., Herczeg M., Borbás A. Synthesis of S-Linked N-Acetylneuraminic Acid Derivatives via Photoinduced Thiol-ene and Thiol-yne Couplings. Synlett. 2013;24:719–722. doi: 10.1055/s-0032-1318480. DOI

Zona C., D’Orazio G., La Ferla B. Controlled-Length Efficient Synthesis of Heterobifunctionalized Oligo Ethylene Glycols. Synlett. 2013;24:709–712. doi: 10.1055/s-0032-1318433. DOI

Wang Q., Tian X., Chen X., Ma J. Structural basis for receptor specificity of influenza B virus hemagglutinin. Proc. Natl. Acad. Sci. USA. 2007;104:16874–16879. doi: 10.1073/pnas.0708363104. PubMed DOI PMC

Yang Y., Liu H.-P., Yu Q., Yang M.-B., Wang D.-M., Jia T.-W., He H.-J., He Y., Xiao H.-X., Iyer S.S., et al. Multivalent S-sialoside protein conjugates block influenza hemagglutinin and neuraminidase. Carbohydr. Res. 2016;435:68–75. doi: 10.1016/j.carres.2016.09.017. PubMed DOI

Dey A., Patra N., Mal A., Ghosh S. Impact of organic polar solvents (DMSO and DMF) on the micellization and related behavior of an anionic (AOT), cationic (CEM2AB) and cationic gemini surfactant (16-5-16) J. Mol. Liq. 2017;244:85–96. doi: 10.1016/j.molliq.2017.08.094. DOI

Joondan N., Caumul P., Jackson G., Jhaumeer Laulloo S. Novel quaternary ammonium compounds derived from aromatic and cyclic amino acids: Synthesis, physicochemical studies and biological evaluation. Chem. Phys. Lipids. 2021;235:105051. doi: 10.1016/j.chemphyslip.2021.105051. PubMed DOI

Cihan-Üstündağ G., Zopun M., Vanderlinden E., Ozkirimli E., Persoons L., Çapan G., Naesens L. Superior inhibition of influenza virus hemagglutinin-mediated fusion by indole-substituted spirothiazolidinones. Bioorg. Med. Chem. 2020;28:115130. doi: 10.1016/j.bmc.2019.115130. PubMed DOI

Szűcs Z., Kelemen V., Le Thai S., Csávás M., Rőth E., Batta G., Stevaert A., Vanderlinden E., Naesens L., Herczegh P., et al. Structure-activity relationship studies of lipophilic teicoplanin pseudoaglycon derivatives as new anti-influenza virus agents. Eur. J. Med. Chem. 2018;157:1017–1030. doi: 10.1016/j.ejmech.2018.08.058. PubMed DOI PMC

Mehta A., Conyers B., Tyrrell D.L.J., Walters K.-A., Tipples G.A., Dwek R.A., Block T.M. Structure-Activity Relationship of a New Class of Anti-Hepatitis B Virus Agents. Antimicrob. Agents Chemother. 2002;46:4004–4008. doi: 10.1128/AAC.46.12.4004-4008.2002. PubMed DOI PMC

Uozaki M., Yamasaki H., Katsuyama Y., Higuchi M., Higuti T., Koyama A.H. Antiviral effect of octyl gallate against DNA and RNA viruses. Antivir. Res. 2007;73:85–91. doi: 10.1016/j.antiviral.2006.07.010. PubMed DOI

Takai E., Hirano A., Shiraki K. Effects of alkyl chain length of gallate on self-association and membrane binding. J. Biochem. 2011;150:165–171. doi: 10.1093/jb/mvr048. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...