Amphiphilic Sialic Acid Derivatives as Potential Dual-Specific Inhibitors of Influenza Hemagglutinin and Neuraminidase
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FK 142315
National Research, Development and Innovation Office
RRF-2.3.1-21-2022-00010
National Laboratory of Virology in Hungary
LM2023042
MEYS CR
CZ.02.1.01/0.0/0.0/18_046/0015974
European Regional Development Fund-Project
PubMed
38139095
PubMed Central
PMC10743929
DOI
10.3390/ijms242417268
PII: ijms242417268
Knihovny.cz E-zdroje
- Klíčová slova
- aggregates, hemagglutinin, influenza, neuraminidase, sialic acid,
- MeSH
- chřipka lidská * farmakoterapie MeSH
- hemaglutininové glykoproteiny viru chřipky metabolismus MeSH
- hemaglutininy farmakologie MeSH
- kyselina N-acetylneuraminová farmakologie metabolismus MeSH
- kyseliny neuraminové MeSH
- lidé MeSH
- neuraminidasa metabolismus MeSH
- virus chřipky A, podtyp H1N1 * MeSH
- virus chřipky A, podtyp H3N2 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hemaglutininové glykoproteiny viru chřipky MeSH
- hemaglutininy MeSH
- kyselina N-acetylneuraminová MeSH
- kyseliny neuraminové MeSH
- neuraminidasa MeSH
In the shadow of SARS-CoV-2, influenza seems to be an innocent virus, although new zoonotic influenza viruses evolved by mutations may lead to severe pandemics. According to WHO, there is an urgent need for better antiviral drugs. Blocking viral hemagglutinin with multivalent N-acetylneuraminic acid derivatives is a promising approach to prevent influenza infection. Moreover, dual inhibition of both hemagglutinin and neuraminidase may result in a more powerful effect. Since both viral glycoproteins can bind to neuraminic acid, we have prepared three series of amphiphilic self-assembling 2-thio-neuraminic acid derivatives constituting aggregates in aqueous medium to take advantage of their multivalent effect. One of the series was prepared by the azide-alkyne click reaction, and the other two by the thio-click reaction to yield neuraminic acid derivatives containing lipophilic tails of different sizes and an enzymatically stable thioglycosidic bond. Two of the three bis-octyl derivatives produced proved to be active against influenza viruses, while all three octyl derivatives bound to hemagglutinin and neuraminidase from H1N1 and H3N2 influenza types.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Department of Applied Chemistry University of Debrecen H 4032 Debrecen Hungary
Department of Biochemistry Faculty of Science Masaryk University 611 37 Brno Czech Republic
Department of Pharmaceutical Chemistry University of Debrecen H 4032 Debrecen Hungary
Doctoral School of Pharmaceutical Sciences University of Debrecen H 4032 Debrecen Hungary
National Centre for Biomolecular Research Masaryk University 611 37 Brno Czech Republic
National Laboratory of Virology University of Pécs H 7624 Pécs Hungary
Rega Institute for Medical Research KU Leuven B 3000 Leuven Belgium
Zobrazit více v PubMed
Iuliano A.D., Roguski K.M., Chang H.H., Muscatello D.J., Palekar R., Tempia S., Cohen C., Gran J.M., Schanzer D., Cowling B.J., et al. Global Seasonal Influenza-associated Mor-tality Collaborator Network. Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. Lancet. 2018;391:1285–1300. doi: 10.1016/S0140-6736(17)33293-2. PubMed DOI PMC
Johnson N.P.A.S., Mueller J. Updating the Accounts: Global Mortality of the 1918–1920 “Spanish” Influenza Pandemic. Bull. Hist. Med. 2002;76:105–115. doi: 10.1353/bhm.2002.0022. PubMed DOI
Bouvier N.M., Palese P. The biology of influenza viruses. Vaccine. 2008;26((Suppl. S4)):D49–D53. doi: 10.1016/j.vaccine.2008.07.039. PubMed DOI PMC
World Health Organization Ten Threats to Global Health in 2019. [(accessed on 29 September 2023)]. Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019.
Global Influenza Strategy 2019–2030. Prevent. Control. Prepare. [(accessed on 29 September 2023)]. Available online: https://apps.who.int/iris/bitstream/handle/10665/311184/9789241515320-eng.pdf?ua=1.
Jefferson T., Doshi P. Multisystem failure: The story of anti-influenza drugs. BMJ. 2014;348:g2263. doi: 10.1136/bmj.g2263. PubMed DOI
Dharan N.J., Gubareva L.V., Meyer J.J., Okomo-Adhiambo M., McClinton R.C., Marshall S.A., George K.S., Epperson S., Brammer L., Klimov A.I., et al. Infections with Oseltamivir-Resistant Influenza A(H1N1) Virus in the United States. JAMA. 2009;301:1034–1041. doi: 10.1001/jama.2009.294. PubMed DOI
Kosik I., Yewdell J.W. Influenza Hemagglutinin and Neuraminidase: Yin–Yang Proteins Coevolving to Thwart Immunity. Viruses. 2019;11:346. doi: 10.3390/v11040346. PubMed DOI PMC
Sauter N.K., Bednarski M.D., Wurzburg B.A., Hanson J.E., Whitesides G.M., Skehel J.J., Wiley D.C. Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: A 500-MHz proton nuclear magnetic resonance study. Biochemistry. 1989;28:8388–8396. doi: 10.1021/bi00447a018. PubMed DOI
Chaudhary P.M., Toraskar S., Yadav R., Hande A., Yellin R.A., Kikkeri R. Multivalent Sialosides: A Tool to Explore the Role of Sialic Acids in Biological Processes. Chem. Asian J. 2019;14:1344–1355. doi: 10.1002/asia.201900031. PubMed DOI PMC
Sigal G.B., Mammen M., Dahmann G., Whitesides G.M. Polyacrylamides Bearing Pendant α-Sialoside Groups Strongly Inhibit Agglutination of Erythrocytes by Influenza Virus: The Strong Inhibition Reflects Enhanced Binding through Cooperative Polyvalent Interactions. J. Am. Chem. Soc. 1996;118:3789–3800. doi: 10.1021/ja953729u. DOI
Choi S.-K., Mammen M., Whitesides G.M. Generation and In Situ Evaluation of Libraries of Poly(acrylic acid) Presenting Sialosides as Side Chains as Polyvalent Inhibitors of Influenza-Mediated Hemagglutination. J. Am. Chem. Soc. 1997;119:4103–4111. doi: 10.1021/ja963519x. DOI
Matrosovich M.N., Mochalova L.V., Marinina V.P., Byramova N.E., Bovin N.V. Synthetic polymeric sialoside inhibitors of influenza virus receptor-binding activity. FEBS Lett. 1990;272:209–212. doi: 10.1016/0014-5793(90)80486-3. PubMed DOI
Nagao M., Fujiwara Y., Matsubara T., Hoshino Y., Sato T., Miura Y. Design of Glycopolymers Carrying Sialyl Oligosaccharides for Controlling the Interaction with the Influenza Virus. Biomacromolecules. 2017;18:4385–4392. doi: 10.1021/acs.biomac.7b01426. PubMed DOI
Makimura Y., Watanabe S., Suzuki T., Suzuki Y., Ishida H., Kiso M., Katayama T., Kumagai H., Yamamoto K. Chemoenzymatic synthesis and application of a sialoglycopolymer with a chitosan backbone as a potent inhibitor of human influenza virus hemagglutination. Carbohydr. Res. 2006;341:1803–1808. doi: 10.1016/j.carres.2006.04.024. PubMed DOI
Stadtmueller M.N., Bhatia S., Kiran P., Hilsch M., Reiter-Scherer V., Adam L., Parshad B., Budt M., Klenk S., Sellrie K., et al. Evaluation of Multivalent Sialylated Polyglycerols for Resistance Induction in and Broad Antiviral Activity against Influenza A Viruses. J. Med. Chem. 2021;64:12774–12789. doi: 10.1021/acs.jmedchem.1c00794. PubMed DOI
Ohta T., Miura N., Fujitani N., Nakajima F., Niikura K., Sadamoto R., Guo C.-T., Suzuki T., Suzuki Y., Monde K., et al. Glycotentacles: Synthesis of Cyclic Glycopeptides, Toward a Tailored Blocker of Influenza Virus Hemagglutinin. Angew. Chem. Int. Ed. 2003;42:5186–5189. doi: 10.1002/anie.200351640. PubMed DOI
Yamabe M., Kaihatsu K., Ebara Y. Binding inhibition of various influenza viruses by sialyllactose-modified trimer DNAs. Bioorg. Med. Chem. Lett. 2019;29:744–748. doi: 10.1016/j.bmcl.2018.12.064. PubMed DOI
Waldmann M., Jirmann R., Hoelscher K., Wienke M., Niemeyer F.C., Rehders D., Meyer B. A Nanomolar Multivalent Ligand as Entry Inhibitor of the Hemagglutinin of Avian Influenza. J. Am. Chem. Soc. 2014;136:783–788. doi: 10.1021/ja410918a. PubMed DOI
Reichert A., Nagy J.O., Spevak W., Charych D. Polydiacetylene Liposomes Functionalized with Sialic Acid Bind and Colorimetrically Detect Influenza Virus. J. Am. Chem. Soc. 1995;117:829–830. doi: 10.1021/ja00107a032. DOI
Cheng H.-W., Wang H.-W., Wong T.-Y., Yeh H.-W., Chen Y.-C., Liu D.-Z., Liang P.-H. Synthesis of S-linked NeuAc-α(2-6)-di-LacNAc bearing liposomes for H1N1 influenza virus inhibition assays. Bioorg. Med. Chem. 2018;26:2262–2270. doi: 10.1016/j.bmc.2018.02.012. PubMed DOI
Lu W., Xiong H., Chen Y., Wang C., Zhang H., Xu P., Han J., Xiao S., Ding H., Chen Z., et al. Discovery and biological evaluation of thiobarbituric derivatives as potent p300/CBP inhibitors. Bioorg. Med. Chem. 2018;26:5397–5407. doi: 10.1016/j.bmc.2018.07.048. PubMed DOI
Kingery-Wood J.E., Williams K.W., Sigal G.B., Whitesides G.M. The agglutination of erythrocytes by influenza virus is strongly inhibited by liposomes incorporating an analog of sialyl gangliosides. J. Am. Chem. Soc. 1992;114:7303–7305. doi: 10.1021/ja00044a057. DOI
Hendricks G.L., Weirich K.L., Viswanathan K., Li J., Shriver Z.H., Ashour J., Ploegh H.L., Kurt-Jones E.A., Fygenson D.K., Finberg R.W., et al. Sialylneolacto-N-tetraose c (LSTc)-bearing Liposomal Decoys Capture Influenza A Virus. J. Biol. Chem. 2013;288:8061–8073. doi: 10.1074/jbc.M112.437202. PubMed DOI PMC
Tollas S., Bereczki I., Borbás A., Batta G., Vanderlinden E., Naesens L., Herczegh P. Synthesis of a cluster-forming sialylthio-d-galactose fullerene conjugate and evaluation of its interaction with influenza virus hemagglutinin and neuraminidase. Bioorg. Med. Chem. Lett. 2014;24:2420–2423. doi: 10.1016/j.bmcl.2014.04.032. PubMed DOI
Weinhold E.G., Knowles J.R. Design and evaluation of a tightly binding fluorescent ligand for influenza A hemagglutinin. J. Am. Chem. Soc. 1992;114:9270–9275. doi: 10.1021/ja00050a004. DOI
Moitessier N., Englebienne P., Chapleur Y. Directing-protecting groups for carbohydrates. Design, conformational study, synthesis and application to regioselective functionalization. Tetrahedron. 2005;61:6839–6853. doi: 10.1016/j.tet.2005.04.060. DOI
Kiefel M.J., von Itzstein M. Recent Advances in the Synthesis of Sialic Acid Derivatives and Sialylmimetics as Biological Probes. Chem. Rev. 2002;102:471–490. doi: 10.1021/cr000414a. PubMed DOI
Bereczki I., Kicsák M., Dobray L., Borbás A., Batta G., Kéki S., Nikodém É.N., Ostorházi E., Rozgonyi F., Vanderlinden E., et al. Semisynthetic teicoplanin derivatives as new influenza virus binding inhibitors: Synthesis and antiviral studies. Bioorg. Med. Chem. Lett. 2014;24:3251–3254. doi: 10.1016/j.bmcl.2014.06.018. PubMed DOI
Szűcs Z., Bereczki I., Csávás M., Rőth E., Borbás A., Batta G., Ostorházi E., Szatmári R., Herczegh P. Lipophilic teicoplanin pseudoaglycon derivatives are active against vancomycin- and teicoplanin-resistant enterococci. J. Antibiot. 2017;70:664–670. doi: 10.1038/ja.2017.2. PubMed DOI
Kolb H.C., Finn M.G., Sharpless K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001;40:2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5. PubMed DOI
Meldal M., Tornoe C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 2008;108:2952–3015. doi: 10.1021/cr0783479. PubMed DOI
Brunner K., Harder J., Halbach T., Willibald J., Spada F., Gnerlich F., Sparrer K., Beil A., Möckl L., Bräuchle C., et al. Cell-Penetrating and Neurotargeting Dendritic siRNA Nanostructures. Angew. Chem. Int. Ed. 2015;54:1946–1949. doi: 10.1002/anie.201409803. PubMed DOI
Bakai-Bereczki I., Herczeg M., György B., Naesens L., Herczegh P. Synthesis of a sialic acid derivative of ristocetin aglycone as an inhibitor of influenza virus. Chem. Pap. 2015;69:1136–1140. doi: 10.1515/chempap-2015-0116. DOI
Ferrier R.J., Zubkov O.A. Transformation of Glycals into 2,3-Unsaturated Glycosyl Derivatives. Org. React. 2003;62:569–736. doi: 10.1002/0471264180.or062.04. DOI
Arribas R.L., Bordas A., Domènech Omella J., Cedillo J.L., Janssens V., Montiel C., de Los Ríos C. An okadaic acid fragment analogue prevents nicotine-induced resistance to cisplatin by recovering PP2A activity in non-small cell lung cancer cells. Bioorg. Chem. 2020;100:103874. doi: 10.1016/j.bioorg.2020.103874. PubMed DOI
Roy R., Zanini D., Meunier S.J., Romanowska A. Solid-phase synthesis of dendritic sialoside inhibitors of influenza A virus haemagglutinin. J. Chem. Soc. Chem. Commun. 1993;24:1869–1872. doi: 10.1039/c39930001869. DOI
Csávás M., Herczeg M., Borbás A. Synthesis of S-Linked N-Acetylneuraminic Acid Derivatives via Photoinduced Thiol-ene and Thiol-yne Couplings. Synlett. 2013;24:719–722. doi: 10.1055/s-0032-1318480. DOI
Zona C., D’Orazio G., La Ferla B. Controlled-Length Efficient Synthesis of Heterobifunctionalized Oligo Ethylene Glycols. Synlett. 2013;24:709–712. doi: 10.1055/s-0032-1318433. DOI
Wang Q., Tian X., Chen X., Ma J. Structural basis for receptor specificity of influenza B virus hemagglutinin. Proc. Natl. Acad. Sci. USA. 2007;104:16874–16879. doi: 10.1073/pnas.0708363104. PubMed DOI PMC
Yang Y., Liu H.-P., Yu Q., Yang M.-B., Wang D.-M., Jia T.-W., He H.-J., He Y., Xiao H.-X., Iyer S.S., et al. Multivalent S-sialoside protein conjugates block influenza hemagglutinin and neuraminidase. Carbohydr. Res. 2016;435:68–75. doi: 10.1016/j.carres.2016.09.017. PubMed DOI
Dey A., Patra N., Mal A., Ghosh S. Impact of organic polar solvents (DMSO and DMF) on the micellization and related behavior of an anionic (AOT), cationic (CEM2AB) and cationic gemini surfactant (16-5-16) J. Mol. Liq. 2017;244:85–96. doi: 10.1016/j.molliq.2017.08.094. DOI
Joondan N., Caumul P., Jackson G., Jhaumeer Laulloo S. Novel quaternary ammonium compounds derived from aromatic and cyclic amino acids: Synthesis, physicochemical studies and biological evaluation. Chem. Phys. Lipids. 2021;235:105051. doi: 10.1016/j.chemphyslip.2021.105051. PubMed DOI
Cihan-Üstündağ G., Zopun M., Vanderlinden E., Ozkirimli E., Persoons L., Çapan G., Naesens L. Superior inhibition of influenza virus hemagglutinin-mediated fusion by indole-substituted spirothiazolidinones. Bioorg. Med. Chem. 2020;28:115130. doi: 10.1016/j.bmc.2019.115130. PubMed DOI
Szűcs Z., Kelemen V., Le Thai S., Csávás M., Rőth E., Batta G., Stevaert A., Vanderlinden E., Naesens L., Herczegh P., et al. Structure-activity relationship studies of lipophilic teicoplanin pseudoaglycon derivatives as new anti-influenza virus agents. Eur. J. Med. Chem. 2018;157:1017–1030. doi: 10.1016/j.ejmech.2018.08.058. PubMed DOI PMC
Mehta A., Conyers B., Tyrrell D.L.J., Walters K.-A., Tipples G.A., Dwek R.A., Block T.M. Structure-Activity Relationship of a New Class of Anti-Hepatitis B Virus Agents. Antimicrob. Agents Chemother. 2002;46:4004–4008. doi: 10.1128/AAC.46.12.4004-4008.2002. PubMed DOI PMC
Uozaki M., Yamasaki H., Katsuyama Y., Higuchi M., Higuti T., Koyama A.H. Antiviral effect of octyl gallate against DNA and RNA viruses. Antivir. Res. 2007;73:85–91. doi: 10.1016/j.antiviral.2006.07.010. PubMed DOI
Takai E., Hirano A., Shiraki K. Effects of alkyl chain length of gallate on self-association and membrane binding. J. Biochem. 2011;150:165–171. doi: 10.1093/jb/mvr048. PubMed DOI PMC