Benchmarking of Two Peptide Clean-Up Protocols: SP2 and Ethyl Acetate Extraction for Sodium Dodecyl Sulfate or Polyethylene Glycol Removal from Plant Samples before LC-MS/MS
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/16_026/0008446
Ministry of Education, Youth and Sports of CR
LM2023042
Ministry of Education, Youth and Sports of CR
ID:90254
Ministry of Education, Youth and Sports of CR
PubMed
38139176
PubMed Central
PMC10743447
DOI
10.3390/ijms242417347
PII: ijms242417347
Knihovny.cz E-resources
- Keywords
- Arabidopsis thaliana, LC-MS/MS, SP2, detergent, ethyl acetate extraction, magnetic beads, peptide clean-up, polyethylene glycol, sodium dodecyl sulfate,
- MeSH
- Chromatography, Liquid methods MeSH
- Sodium Dodecyl Sulfate MeSH
- Liquid Chromatography-Mass Spectrometry * MeSH
- Peptides analysis MeSH
- Polyethylene Glycols * MeSH
- Proteomics methods MeSH
- Tandem Mass Spectrometry methods MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Sodium Dodecyl Sulfate MeSH
- ethyl acetate MeSH Browser
- Peptides MeSH
- Polyethylene Glycols * MeSH
The success of bottom-up proteomic analysis frequently depends on the efficient removal of contaminants from protein or peptide samples before LC-MS/MS. For a peptide clean-up workflow, single-pot solid-phase-enhanced peptide sample preparation on carboxylate-modified paramagnetic beads (termed SP2) was evaluated for sodium dodecyl sulfate or polyethylene glycol removal from Arabidopsis thaliana tryptic peptides. The robust and efficient 40-min SP2 protocol, tested for 10-ng, 250-ng, and 10-µg peptide samples, was proposed and benchmarked thoroughly against the ethyl acetate extraction protocol. The SP2 protocol on carboxylated magnetic beads proved to be the most robust approach, even for the simultaneous removal of massive sodium dodecyl sulfate (SDS) and polyethylene glycol (PEG) contaminations from AT peptide samples in respect of the LC-MS/MS data outperforming ethyl acetate extraction.
See more in PubMed
Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. Universal Sample Preparation Method for Proteome Analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI
Botelho D., Wall M.J., Vieira D.B., Fitzsimmons S., Liu F., Doucette A. Top-Down and Bottom-Up Proteomics of SDS-Containing Solutions Following Mass-Based Separation. J. Proteome Res. 2010;9:2863–2870. doi: 10.1021/pr900949p. PubMed DOI
Rardin M.J. Rapid Assessment of Contaminants and Interferences in Mass Spectrometry Data Using Skyline. J. Am. Soc. Mass Spectrom. 2018;29:1327–1330. doi: 10.1007/s13361-018-1940-z. PubMed DOI
Hesse A.-M., Marcelo P., Rossier J., Vinh J. Simple and Universal Tool to Remove On-Line Impurities in Mono- or Two-Dimensional Liquid Chromatography–Mass Spectrometry Analysis. J. Chromatogr. A. 2008;1189:175–182. doi: 10.1016/j.chroma.2007.12.060. PubMed DOI
Česla P., Křenková J. Fraction Transfer Process in On-Line Comprehensive Two-Dimensional Liquid-Phase Separations. [(accessed on 4 December 2023)];J. Sep. Sci. 2017 40:109–123. doi: 10.1002/jssc.201600921. Available online: https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/jssc.201600921. PubMed DOI
Mihailova A., Lundanes E., Greibrokk T. Determination and Removal of Impurities in 2-D LC-MS of Peptides. J. Sep. Sci. 2006;29:576–581. doi: 10.1002/jssc.200500496. PubMed DOI
Hodge K., Have S.T., Hutton L., Lamond A.I. Cleaning up the Masses: Exclusion Lists to Reduce Contamination with HPLC-MS/MS. J. Proteom. 2013;88:92–103. doi: 10.1016/j.jprot.2013.02.023. PubMed DOI PMC
Wessel D., Flügge U.I. A Method for the Quantitative Recovery of Protein in Dilute Solution in the Presence of Detergents and Lipids. Anal. Biochem. 1984;138:141–143. doi: 10.1016/0003-2697(84)90782-6. PubMed DOI
Damerval C., De Vienne D., Zivy M., Thiellement H. Technical Improvements in Two-Dimensional Electrophoresis Increase the Level of Genetic Variation Detected in Wheat-Seedling Proteins. Electrophoresis. 1986;7:52–54. doi: 10.1002/elps.1150070108. DOI
Wu X., Gong F., Wang W. Protein Extraction from Plant Tissues for 2DE and Its Application in Proteomic Analysis. Proteomics. 2014;14:645–658. doi: 10.1002/pmic.201300239. PubMed DOI
Hughes C.S., Moggridge S., Müller T., Sorensen P.H., Morin G.B., Krijgsveld J. Single-Pot, Solid-Phase-Enhanced Sample Preparation for Proteomics Experiments. Nat. Protoc. 2019;14:68–85. doi: 10.1038/s41596-018-0082-x. PubMed DOI
Waas M., Pereckas M., Lipinski R.A.J., Ashwood C., Gundry R.L. SP2: Rapid and Automatable Contaminant Removal from Peptide Samples for Proteomic Analyses. J. Proteome Res. 2019;18:1644–1656. doi: 10.1021/acs.jproteome.8b00916. PubMed DOI PMC
Wojtkiewicz M., Berg Luecke L., Kelly M.I., Gundry R.L. Facile Preparation of Peptides for Mass Spectrometry Analysis in Bottom-Up Proteomics Workflows. Curr. Protoc. 2021;1:e85. doi: 10.1002/cpz1.85. PubMed DOI PMC
Hughes C.S., Foehr S., Garfield D.A., Furlong E.E., Steinmetz L.M., Krijgsveld J. Ultrasensitive Proteome Analysis Using Paramagnetic Bead Technology. Mol. Syst. Biol. 2014;10:757. doi: 10.15252/msb.20145625. PubMed DOI PMC
Sera-MagTM Carboxylate-Modified Magnetic Beads & SpeedBeads. [(accessed on 4 December 2023)]. Available online: https://www.cytivalifesciences.com/en/cz/shop/molecular-and-immunodiagnostics/magnetic-beads-and-kits/sera-mag-speedbeads-and-sera-mag-carboxylate-modified-magnetic-particles-p-05936.
Deng W., Sha J., Plath K., Wohlschlegel J.A. Carboxylate-Modified Magnetic Bead (CMMB)-Based Isopropanol Gradient Peptide Fractionation (CIF) Enables Rapid and Robust Off-Line Peptide Mixture Fractionation in Bottom-Up Proteomics. Mol. Cell. Proteom. 2021;20:100039. doi: 10.1074/mcp.RA120.002411. PubMed DOI PMC
Yeung Y.-G., Stanley E.R. Rapid Detergent Removal From Peptide Samples With Ethyl Acetate For Mass Spectrometry Analysis. Curr. Protoc. Protein Sci. 2010;59:16.12.1–16.12.5. doi: 10.1002/0471140864.ps1612s59. PubMed DOI PMC
Stalikas C.D. Extraction, Separation, and Detection Methods for Phenolic Acids and Flavonoids. J. Sep. Sci. 2007;30:3268–3295. doi: 10.1002/jssc.200700261. PubMed DOI
Stejskal K., Potěšil D., Zdráhal Z. Suppression of Peptide Sample Losses in Autosampler Vials. J. Proteome Res. 2013;12:3057–3062. doi: 10.1021/pr400183v. PubMed DOI
Wiśniewski J.R., Gaugaz F.Z. Fast and Sensitive Total Protein and Peptide Assays for Proteomic Analysis. Anal. Chem. 2015;87:4110–4116. doi: 10.1021/ac504689z. PubMed DOI
Demichev V., Messner C.B., Vernardis S.I., Lilley K.S., Ralser M. DIA-NN: Neural Networks and Interference Correction Enable Deep Proteome Coverage in High Throughput. Nat. Methods. 2020;17:41–44. doi: 10.1038/s41592-019-0638-x. PubMed DOI PMC
Mikulášek K., Konečná H., Potěšil D., Holánková R., Havliš J., Zdráhal Z. SP3 Protocol for Proteomic Plant Sample Preparation Prior LC-MS/MS. Front. Plant Sci. 2021;12:635550. doi: 10.3389/fpls.2021.635550. PubMed DOI PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE Database and Related Tools and Resources in 2019: Improving Support for Quantification Data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC