2D Metal-Organic Framework Nanosheets based on Pd-TCPP as Photocatalysts for Highly Improved Hydrogen Evolution

. 2024 Feb 12 ; 63 (7) : e202319255. [epub] 20240115

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38157446

Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000416 European Regional Development Fund
23-08019X EXPRO grant
DE 1830/ 5-1 | SCHM 1597/35-1 Emerging Talents Initiatives
Deutsche Forschungsgemeinschaft

In this report, a 2D MOF nanosheet derived Pd single-atom catalyst, denoted as Pd-MOF, was fabricated and examined for visible light photocatalytic hydrogen evolution reaction (HER). This Pd-MOF can provide a remarkable photocatalytic activity (a H2 production rate of 21.3 mmol/gh in the visible range), which outperforms recently reported Pt-MOFs (with a H2 production rate of 6.6 mmol/gh) with a similar noble metal loading. Notably, this high efficiency of Pd-MOF is not due to different chemical environment of the metal center, nor by changes in the spectral light absorption. The higher performance of the Pd-MOF in comparison to the analogue Pt-MOF is attributed to the longer lifetime of the photogenerated electron-hole pairs and higher charge transfer efficiency.

Zobrazit více v PubMed

Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, Y. Li, Joule 2018, 2, 1242-1264;

Q. Zhang, J. Guan, Adv. Funct. Mater. 2020, 30, 2000768.

Z.-H. Xue, D. Luan, H. Zhang, X. W. D. Lou, Joule 2022, 6, 92-133;

F. Zhang, Y. Zhu, Q. Lin, L. Zhang, X. Zhang, H. Wang, Energy Environ. Sci. 2021, 14, 2954-3009;

X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740-1748.

Q. Wang, K. Domen, Chem. Rev. 2020, 120, 919-985.

T. Hisatomi, K. Takanabe, K. Domen, Catal. Lett. 2015, 145, 95-108.

J. Yang, D. Wang, H. Han, C. Li, Acc. Chem. Res. 2013, 46, 1900-1909;

K. C. Christoforidis, P. Fornasiero, ChemCatChem 2017, 9, 1523-1544.

D. Nunes, A. Pimentel, R. Branquinho, E. Fortunato, R. Martins, Catalysts 2021, 11, 504;

M. Mohsin, T. Ishaq, I. A. Bhatti, A. Jilani, A. A. Melaibari, N. H. Abu-Hamdeh, Nanomaterials 2023, 13, 546.

L. Jiang, J. Yang, S. Zhou, H. Yu, J. Liang, W. Chu, H. Li, H. Wang, Z. Wu, X. Yuan, Coord. Chem. Rev. 2021, 439, 213947.

J. C. Conesa, Catalysts 2022, 12, 40.

T. Zhang, W. Lin, Chem. Soc. Rev. 2014, 43, 5982-5993.

Y. Wang, H. Lv, E. S. Grape, C. A. Gaggioli, A. Tayal, A. Dharanipragada, T. Willhammar, A. K. Inge, X. Zou, B. Liu, J. Am. Chem. Soc. 2021, 143, 6333-6338;

Y. Shi, A.-F. Yang, C.-S. Cao, B. Zhao, Coord. Chem. Rev. 2019, 390, 50-75;

Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang, L. Dai, P. Zhou, B. Lu, J. Zhou, Z. He, Nano-Micro Lett. 2022, 14, 218;

Z. Peng, Y. Li, P. Ruan, Z. He, L. Dai, S. Liu, L. Wang, S. C. Jun, B. Lu, J. Zhou, Coord. Chem. Rev. 2023, 488, 215190.

Y. Xue, G. Zhao, R. Yang, F. Chu, J. Chen, L. Wang, X. Huang, Nanoscale 2021, 13, 3911-3936;

Y. L. Liu, X. Y. Liu, L. Feng, L. X. Shao, S. J. Li, J. Tang, H. Cheng, Z. Chen, R. Huang, H. C. Xu, ChemSusChem 2022, 15, e202102603;

P.-P. Filippatos, A. Soultati, N. Kelaidis, C. Petaroudis, A.-A. Alivisatou, C. Drivas, S. Kennou, E. Agapaki, G. Charalampidis, A. R. b. M. Yusoff, N. N. Lathiotakis, A. G. Coutsolelos, D. Davazoglou, M. Vasilopoulou, A. Chroneos, Sci. Rep. 2021, 11, 5700.

J. Wang, J. Zhang, S. B. Peh, L. Zhai, Y. Ying, G. Liu, Y. Cheng, D. Zhao, ACS Appl. Energ. Mater. 2019, 2, 298-304;

A. J. Clough, J. W. Yoo, M. H. Mecklenburg, S. C. Marinescu, J. Am. Chem. Soc. 2015, 137, 118-121;

F. Dai, X. Wang, S. Zheng, J. Sun, Z. Huang, B. Xu, L. Fan, R. Wang, D. Sun, Z.-S. Wu, Chem. Eng. J. 2021, 413, 127520.

M. Z. Hussain, P. F. Großmann, F. Kohler, T. Kratky, L. Kronthaler, B. van der Linden, K. Rodewald, B. Rieger, R. A. Fischer, Y. Xia, Solar RRL 2022, 6, 2200552;

K. K. Gangu, S. B. Jonnalagadda, Front. Chem. 2021, 9, 747615.

Q. Zuo, T. Liu, C. Chen, Y. Ji, X. Gong, Y. Mai, Y. Zhou, Angew. Chem. Int. Ed. 2019, 58, 10198-10203.

A. Ortega-Guerrero, M. Fumanal, G. Capano, I. Tavernelli, B. Smit, Chem. Mater. 2020, 32, 4194-4204;

Y. Keum, S. Park, Y. P. Chen, J. Park, Angew. Chem. Int. Ed. 2018, 57, 14852-14856;

Z.-B. Fang, T.-T. Liu, J. Liu, S. Jin, X.-P. Wu, X.-Q. Gong, K. Wang, Q. Yin, T.-F. Liu, R. Cao, J. Am. Chem. Soc. 2020, 142, 12515-12523.

V. Posligua, D. Pandya, A. Aziz, M. Rivera, R. Crespo-Otero, S. Hamad, R. Grau-Crespo, J. Phys. E 2021, 3, 034005.

T. He, S. Chen, B. Ni, Y. Gong, Z. Wu, L. Song, L. Gu, W. Hu, X. Wang, Angew. Chem. Int. Ed. 2018, 57, 3493-3498;

F. Leng, H. Liu, M. Ding, Q.-P. Lin, H.-L. Jiang, ACS Catal. 2018, 8, 4583-4590.

Y. Zheng, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2015, 54, 52-65;

S. Trasatti, J. Electroanal. Chem. Interfacial Electrochem. 1972, 39, 163-184;

Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev. 2014, 114, 9987-10043.

G. Cha, I. Hwang, S. Hejazi, A. S. Dobrota, I. A. Pašti, B. Osuagwu, H. Kim, J. Will, T. Yokosawa, Z. Badura, iScience 2021, 24, 102938.

Y. Zhao, J. Wang, R. Pei, J. Am. Chem. Soc. 2020, 142, 10331-10336.

L. Qin, S. Zhao, C. Fan, Q. Ye, RSC Adv. 2021, 11, 18565-18575.

J. Ma, W. Bai, X. Liu, J. Zheng, Microchim. Acta 2022, 189, 20.

Y. Li, Z. Gao, F. Chen, C. You, H. Wu, K. Sun, P. An, K. Cheng, C. Sun, X. Zhu, ACS Appl. Mater. Interfaces 2018, 10, 30930-30935.

C. Lin, C. Han, H. Zhang, L. Gong, Y. Gao, H. Wang, Y. Bian, R. Li, J. Jiang, Inorg. Chem. 2021, 60, 3988-3995.

A. Lin, A. A. Ibrahim, P. Arab, H. M. El-Kaderi, M. S. El-Shall, ACS Appl. Mater. Interfaces 2017, 9, 17961-17968.

G. O. Ngongang Ndjawa, M. R. Tchalala, O. Shekhah, J. I. Khan, A. E. Mansour, J. Czaban-Jóźwiak, L. J. Weselinski, H. A. Ahsaine, A. Amassian, M. Eddaoudi, Materials 2019, 12, 2457.

B. Mondal, R. Bera, S. Ghosh, S. K. Nayak, A. Patra, ChemPhysChem 2020, 21, 2196-2205.

M. Adams, M. Kozlowska, N. Baroni, M. Oldenburg, R. Ma, D. Busko, A. Turshatov, G. Emandi, M. O. Senge, R. Haldar, ACS Appl. Mater. Interfaces 2019, 11, 15688-15697.

O. B. Malcıoğlu, I. Bechis, M. Bockstedte, Phys. Chem. Chem. Phys. 2020, 22, 3825-3830;

A. Zhang, L. Kwan, M. J. Stillman, Org. Biomol. Chem. 2017, 15, 9081-9094.

M. Rostami, L. Rafiee, F. Hassanzadeh, A. R. Dadrass, G. A. Khodarahmi, Res. Pharm. Sci. 2015, 10, 504;

T. Kumpulainen, B. Lang, A. Rosspeintner, E. Vauthey, Chem. Rev. 2017, 117, 10826-10939.

X. Wang, X. Zhang, W. Zhou, L. Liu, J. Ye, D. Wang, Nano Energy 2019, 62, 250-258;

A. Fateeva, P. A. Chater, C. P. Ireland, A. A. Tahir, Y. Z. Khimyak, P. V. Wiper, J. R. Darwent, M. J. Rosseinsky, Angew. Chem. Int. Ed. 2012, 51, 7440-7444.

Y. Chen, A. Li, Z.-H. Huang, L.-N. Wang, F. Kang, Nanomaterials 2016, 6, 51.

X. Fang, Q. Shang, Y. Wang, L. Jiao, T. Yao, Y. Li, Q. Zhang, Y. Luo, H. L. Jiang, Adv. Mater. 2018, 30, 1705112.

D. R. Subedi, R. Reid, P. F. D′Souza, V. N. Nesterov, F. D′Souza, ChemPlusChem 2022, 87, e202200010.

G. B. Bodedla, Y. Dong, G. Tang, J. Zhao, F. Zhang, X. Zhu, W.-Y. Wong, J. Mater. Chem. A 2022, 10, 13402-13409.

E. Önal, S. Saß, J. Hurpin, K. Ertekin, S. Z. Topal, M. U. Kumke, C. Hirel, J. Fluoresc. 2017, 27, 861-868;

E. l. G. Azenha, A. C. Serra, M. Pineiro, M. M. Pereira, J. S. De Melo, L. G. Arnaut, S. J. Formosinho, R. G. AMd′A, Chem. Phys. 2002, 280, 177-190;

M. Gouterman, F. P. Schwarz, P. D. Smith, D. Dolphin, J. Chem. Phys. 1973, 59, 676-690.

S. S. Rajasree, X. Li, P. Deria, Commun. Chem. 2021, 4, 47;

J. S. O′Neill, L. Kearney, M. P. Brandon, M. T. Pryce, Coord. Chem. Rev. 2022, 467, 214599;

A. Dhakshinamoorthy, A. M. Asiri, H. Garcia, Angew. Chem. Int. Ed. 2016, 55, 5414-5445.

N. Denisov, X. Zhou, G. Cha, P. Schmuki, Electrochim. Acta 2021, 377, 137988.

G. Singh, S. Chandra, Electrochem. Sci. Adv. 2023, 3, e2100149.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Single Atom Cocatalysts in Photocatalysis

. 2025 Feb ; 37 (7) : e2414889. [epub] 20241229

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...